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Abstract: The LMNA gene encodes lamins A and C with key roles in nuclear structure,
signaling, gene regulation, and genome integrity. Mutations in LMNA cause over 12 diseases
(‘laminopathies’). Lamins A and C are identical for their first 566 residues. However, they form
separate filaments in vivo, with apparently distinct roles. We report that lamin A is β-O-linked
N-acetylglucosamine-(O-GlcNAc)-modified in human hepatoma (Huh7) cells and in mouse liver.
In vitro assays with purified O-GlcNAc transferase (OGT) enzyme showed robust O-GlcNAcylation
of recombinant mature lamin A tails (residues 385–646), with no detectable modification of lamin B1,
lamin C, or ‘progerin’ (∆50) tails. Using mass spectrometry, we identified 11 O-GlcNAc sites in a ‘sweet
spot’ unique to lamin A, with up to seven sugars per peptide. Most sites were unpredicted by current
algorithms. Double-mutant (S612A/T643A) lamin A tails were still robustly O-GlcNAc-modified at
seven sites. By contrast, O-GlcNAcylation was undetectable on tails bearing deletion ∆50, which causes
Hutchinson–Gilford progeria syndrome, and greatly reduced by deletion ∆35. We conclude that
residues deleted in progeria are required for substrate recognition and/or modification by OGT
in vitro. Interestingly, deletion ∆35, which does not remove the majority of identified O-GlcNAc sites,
does remove potential OGT-association motifs (lamin A residues 622–625 and 639–645) homologous to
that in mouse Tet1. These biochemical results are significant because they identify a novel molecular
pathway that may profoundly influence lamin A function. The hypothesis that lamin A is selectively
regulated by OGT warrants future testing in vivo, along with two predictions: genetic variants may
contribute to disease by perturbing OGT-dependent regulation, and nutrient or other stresses might
cause OGT to misregulate wildtype lamin A.
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1. Introduction

Lamins, encoded by three human genes (LMNA, LMNB1, and LMNB2), form nuclear intermediate
filaments that support nuclear structure, cell mechanics, development, genome organization, DNA
repair, signaling, and tissue-specific gene silencing [1–3]. Lamins have a conserved molecular structure;
each polypeptide has a small globular ‘head’ domain, a long coiled-coil ‘rod’ domain, and a ‘tail’
comprising an Ig-fold domain as well as, in the case of lamin A, an extended unstructured region [4–6].
Mutations in LMNA cause diverse tissue-specific diseases [7]. Some ‘laminopathies’ affect mainly striated
muscle (e.g., Emery–Dreifuss muscular dystrophy; dilated cardiomyopathy), whereas others perturb
metabolism, causing insulin resistance syndrome [8] or Dunnigan-type familial partial lipodystrophy
(FPLD2). FPLD2 is a puberty-onset disorder characterized by lipodystrophy, muscle hypertrophy,
insulin-resistant diabetes [9,10], and elevated (dysregulated) hepatic glucose production [11]. LMNA
missense mutations are also reported in patients with metabolic syndrome [12,13], although genetic
causality has not been established. In rare cases, LMNA mutations cause Hutchinson–Gilford progeria
syndrome (HGPS) or related phenotypes [14]. Most HGPS patients have a mutation that alters pre-mRNA
splicing, generating a 50-residue deletion (‘∆50′) lacking the site required for ZMPSTE24-dependent
proteolytic maturation of the lamin A precursor [15,16]. The resulting permanently farnesylated protein,
named ‘progerin’, has acute and long-term effects on nuclear structure and function [3,17]. About 35% of
progerin-expressing HGPS patients are also insulin-resistant [18].

These metabolic phenotypes drew our attention to evidence that lamin A is modified by
a nutrient, stress-responsive enzyme named OGT (O-GlcNAc transferase), which adds a simple
sugar, O-GlcNAc (β-O-linked N-acetylglucosamine), to Serine or Threonine residues of target proteins.
Endogenous lamin A is O-GlcNAc modified at two sites (S612 and T643) in mitotic HeLa cells [19].
O-GlcNAc is a ubiquitous, reversible, and dynamic modification that controls translation, transcription,
signal transduction, mitosis, and many other cellular pathways [20]. O-GlcNAc is added to target
proteins by OGT and removed by O-GlcNAcase (OGA), each encoded by a single essential gene in
mammals [21–23]. Notably, OGT is ‘tuned’ to metabolism in liver, kidney, and pancreatic β-cells;
its catalytic activity increases in tandem with cellular levels of glucose or glucosamine, which are
converted via the hexosamine biosynthetic pathway to UDP-GlcNAc, the donor substrate for
O-GlcNAcylation reactions [24–26]. OGT activity can protectively increase during stress, including
recovery of the heart from ischemic injury [27]. However, long-term cardiomyopathy associated with
diabetes, aging, and hypertension all correlate with aberrantly high levels of protein O-GlcNAcylation,
suggesting that OGT hyper-activity perturbs heart function [28]. Protein hyper-O-GlcNAcylation
has pathophysiological implications in insulin resistance, non-alcohol fatty liver disease, and fibrosis,
and is also characteristic of diabetic nephropathy [29], the leading cause of chronic kidney disease and
a significant long-term complication of diabetes.

We investigated potential O-GlcNAc modification of A-type lamins in hepatoma (Huh7) cells and
liver tissue. We also tested recombinant purified tail domains of A- and B-type lamins as potential
substrates for OGT in vitro. We report extensive O-GlcNAc modification of residues unique to lamin
A in vitro, and evidence that lamin A substrate recognition or modification by OGT requires residues
deleted in progeria.

2. Materials and Methods

2.1. Cell Culture

Huh7 liver hepatoma cells grown at passages 15–30 were maintained in high glucose (25 mM)
DMEM (D6546; Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10% FBS, 4 mM L-glutamine,
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and 1% penicillin-streptomycin. Subconfluent cells in 10 cm culture dishes were adapted to
physiological glucose (5 mM) DMEM (D6046; Sigma-Aldrich) overnight before culturing cells in
physiological glucose or high glucose for 24 h.

2.2. Nuclear Extraction, Immunoprecipitation, and Western Blotting

Nuclear lysates from Huh7 cells were prepared using the NE-PER extraction kit (Pierce
Biotechnology, Waltham, MA, USA) with the following inhibitors added: 1 mM NaF, 1 mM Na3VO4,
1 mM β-glycerophosphate, 1 µM GlcNAc-thiazoline (OGA inhibitor), and CompleteTM protease
inhibitors (Roche Applied Science, Penzberg, Germany), followed by sonication on ice (30 s on, 30 s off
per session; three sessions), and centrifugation (10 min, 16,000× g). Supernatant (nuclear lysate) proteins
were stored at −20 ◦C. For each immunoprecipitation, 100 µg nuclear lysate proteins were pre-cleared
by rotating with Protein A/G agarose (sc-2003; Santa Cruz Biotechnology, Santa Cruz, CA, USA) for
1 h (4 ◦C), then centrifuged (2 min, 500× g). Supernatants were incubated with a mouse monoclonal
antibody against human lamin A/C (clone 5G4; kindly provided by Robert Goldman, Northwestern
University; 1 µg per reaction), rotated overnight (4 ◦C), and then added to 20 µL Dynabeads Protein G
(Invitrogen, Carlsbad, CA, USA) and rotated for 1 h (4 ◦C). Immunoprecipitates were washed thrice in
Phosphate-buffered saline (PBS) with 0.2% NP-40 and eluted by boiling for 10 min in NuPage LDS
sample buffer. Nonspecific mouse IgG (Jackson ImmunoResearch Laboratories, West Grove, PA, USA)
was used as the negative control.

Proteins (8% input lysate; 50% immunoprecipitate) were resolved on 10% SDS-PAGE gels
(BioRad, Hercules, CA, USA) and transferred to PVDF membranes (Immobilon-FL, Millipore,
Burlington, MA, USA). Blots were blocked and incubated overnight with primary antibodies
against O-GlcNAc (mouse monoclonal antibody CTD110.6; Covance MMS-248R, diluted 1:5000),
OGT (AL25, diluted 1:2000), lamins A/C (5G4, diluted 1:2500), or lamin A (L1293; Sigma-Aldrich;
diluted 1:2000). Secondary HRP-conjugated anti-mouse (115-035-174) and anti-rabbit (211-032-171)
IgG antibodies (both from Jackson ImmunoResearch Laboratories) were used at 1:10,000 dilution.
Secondary anti-mouse IgM antibodies (A8786; Sigma-Aldrich) were used at 1:5000 dilution. Blots were
developed using ECL (Pierce Biotechnology) and quantified from five independent experiments using
ImageJ software bundled with 64-bit Java 1.6.0_2.0 (NIH, Bethesda, MD, USA).

2.3. Succinylated Wheat Germ Agglutinin (sWGA) Pulldown

Mouse liver nuclear lysates (100 µg per sample) were incubated for 1 h (4 ◦C) with protein A/G
agarose beads (sc-2003; Santa Cruz Biotechnology), then centrifuged. The resulting supernatants
(cleared extracts) were transferred to new tubes and incubated overnight (rotating; 4 ◦C) with 40 µL
succinylated wheat germ agglutinin (sWGA)-agarose (Vector Laboratories, Burlingame, CA, USA).
After washing four times with PBS containing 0.2% NP-40, proteins were eluted from the beads by
boiling for 10 min in NuPage LDS sample buffer, and resolved by SDS-PAGE. The captured proteins
were analyzed by immunoblotting as described above.

2.4. Mice

Male mice (mixed genetic background based on C57BL/6J and 129/Sv strains, backcrossed
with C57BL/6J for at least six generations) were housed in a temperature-controlled (22 ◦C) facility
with a strict 12 h light/dark cycle. Mice had free access to food and water at all times. STZ (S0130;
Sigma-Aldrich) was prepared in a sodium citrate buffer (50 mmol/L, pH 4.5) immediately before
injections. STZ-treated mice were treated with two intraperitoneal injections of STZ (100 mg/kg) with
a 1-day interval. Seven days after the first STZ injection, mice were included in a fasting–re-feeding
experiment. Mice were either fasted for 24 h, or fasted for 24 h and re-fed for 12 h on a diet containing
64% carbohydrates, 31.5% protein, 4.5% fat, and no cholesterol (SDS RM no.1 maintenance, Special
Diets Services, Witham, UK). The mice were euthanized by cervical dislocation at 8:00 a.m. and liver
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tissues were snap-frozen in liquid nitrogen and stored at −80 ◦C until further analysis. All use of
animals was approved and registered by the Norwegian Animal Research authority.

2.5. Peptide Arrays and Antibody Epitope Mapping

To generate peptide arrays, human lamin A (P02545, full length), human lamin C (NP_005563,
full length), mouse lamin A (P48678, 588-end), and rat lamin A (P48679, 588-end) were synthesized as
20 mer peptides with three amino acid offsets on cellulose membranes using a Multipep automated
peptide synthesizer (INTAVIS Bioanalytical Instruments AG, Koeln, Germany) as described [30].
Peptide array membranes were blocked for 2 h in 1% casein in TBST (Tris-buffered saline with
1% tween) at 22–25 ◦C, and then incubated overnight at 4◦C with a primary antibody (5G4 at
1:2500 dilution; L1283 at 1:2000) in TBST/1% casein. Membranes were then washed three times
in TBST (10 min each) and incubated with affinity-purified horseradish-peroxidase-conjugated
polyclonal anti-mouse IgG HRP (NA931V) or anti-rabbit IgG HRP (NA934V), both from GE HealthCare
(Little Chalfont, UK). Blots were developed using ECL Prime (RPN 2232, GE HealthCare) and
chemiluminescence signals were detected using Las 1000 (Fujifilm, Tokyo, Japan). Lasergene software
(DNAStar, Madison, WI, USA) was used to generate peptide sequence alignments.

2.6. Purification of Recombinant Lamin Tails

Recombinant His-and-T7-tagged lamin tail polypeptides were expressed in E. coli BL-21, purified
using nickel NTA-agarose and stored in a buffer (50 mM NaHPO4 pH 8.0, 300 mM NaCl, 100 mM
imidazole, 0.5 mM PMSF) at −80 ◦C until use, as described [31].

2.7. In Vitro O-GlcNAcylation Reactions

Each reaction contained 1 µg recombinant lamin tails, 1 Unit calf intestinal phosphatase (CIP)
(New England Biolabs, Ipswich, MA, USA) and 10 mM UDP-GlcNAc (Sigma-Aldrich), plus or minus
1 µg purified recombinant active His-tagged OGT enzyme in a final reaction volume of 20 µL in 50 mM
Tris-HCl pH 7.4. Recombinant OGT was purified as described [32]. Reactions were incubated for 2 h at
22–25 ◦C, and then overnight at 4 ◦C. Reactions were stopped by adding 4X SDS sample buffer and
33% of each reaction was resolved on 4–12% Bis-Tris NuPage gels (Invitrogen), and then transferred to
nitrocellulose membranes, blocked for 1 h at 22–25 ◦C with 3% BSA in PBS, and incubated overnight
at 4 ◦C with affinity-purified O-GlcNAc-specific mouse antibody CTD110.6 (diluted 1:1000), or with
a mixture of CTD110.6 antibody and competing (free) GlcNAc sugar (100 mM). Secondary antibodies
were horseradish peroxidase-coupled anti-mouse IgM (Santa Cruz SC-2064; diluted 1:10,000) and
anti-T7-tag (69048-3; diluted 1:100,000, Novagen, Darmstadt, Germany).

2.8. Mass Spectrometry

Recombinant purified His-tagged lamin A tails (wildtype, S612A/T643A, ∆35), O-GlcNAcylated
in vitro as described above, were reduced for 1 h with dithiothreitol (DTT, Sigma-Aldrich) at
a molar ratio of 20:1 (DTT/cysteine), carbamidomethylated for 1 h in the dark with iodoacetamide
(IAA, Sigma-Aldrich) at a molar ratio of 3:1 (IAA/DTT), and then proteolytically digested in 100 mM
ammonium bicarbonate at a molar ratio of 1:20 (enzyme/substrate) by AspN (Roche Applied Science),
quenched with glacial acetic acid (to pH 3–4), and stored at −35 ◦C. An additional chymotrypsin
(Roche Applied Science) digest was performed using similar conditions. For mass spectrometric
analysis, a fraction of the digest was pressure loaded onto a precolumn (360 µm o.d. × 75 µm i.d.,
fused silica capillary) packed with 6–8 cm of C18 reverse-phase resin (5–20 µm irregular diameter,
120 Ǻ pore size, YMC). After a desalting rinse with 0.1 M acetic acid, the precolumn was connected
via polytetrafluoroethylene tubing (0.06 in. o.d. × 0.012 in. o.d., Zeus Industrial Products,
Branchburg, NJ, USA) to the end of an analytical column (360 µm o.d. × 50 µm i.d. fused silica
capillary) packed 6–8 cm with C18 reverse-phase resin (5 µm diameter, 120 Ǻ pore size, YMC) and
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equipped with an electrospray emitter tip [33]. Peptides were gradient eluted directly into the mass
spectrometer with an Agilent 1100 series binary LC pump at a flow rate of ~60 nL/min with the
following gradient: 0–60% B in 60 min, 60–100% B in 65 min, hold at 100% B for 70 min (solvent
A: 0.1 M acetic acid, solvent B: 70% acetonitrile). Mass spectra were acquired with a modified
front-end electron transfer-enabled [34] high-resolution LTQ-FT or an LTQ-Orbitrap mass spectrometer
(Thermo Scientific, Waltham, MA, USA). Mass analyses were completed with one high resolution MS1
(60,000 at m/z 400) scan followed by six collisionally activated dissociation (CAD) and electron transfer
dissociation (ETD) MS2 scans, acquired with the LTQ operating in either data-dependent or targeting
mode. Azulene was used for ETD reactions with times of 30–50 ms.

Data from MS/MS analyses were searched against human lamin A using the Open Mass
Spectrometry Search Algorithm (OMSSA; [35]). OMSSA search tolerances were±0.01 Da and±0.35 Da
for precursor and product ion masses, respectively. For ETD spectra, search parameters were set to
exclude reduced charge species from peak lists prior to searching. Database searches were completed
using either AspN or no enzyme specifications and allowing up to three missed cleavages. Specified
variable modifications: carbamidomethylation of Cys, oxidation of Met, and O-GlcNAcylation of Ser
and Thr. While OMSSA searches were used as a guide, all spectra and O-GlcNAc site modifications
were validated by manual interpretation of the raw data.

3. Results

3.1. Native Lamin A is O-GlcNAcylated in Human Hepatoma Cells and Mouse Liver

To assess potential O-GlcNAcylation of A-type lamins, we cultured human hepatoma (Huh7)
cells for 24 h in medium containing physiological (5 mM) or high (25 mM) glucose. A-type lamins
were immunoprecipitated from sonicated Huh7 nuclear lysates using monoclonal antibody 5G4,
which recognizes the Ig-fold domain (residues 466–484; Supplemental Figure 1A) in both lamin A
and lamin C. Immunoprecipitates (50% per lane) were resolved by SDS-PAGE with input lysate
controls (8%), and immunoblotted (Figure 1A). One set of samples was probed using antibody CTD110.6,
which recognizes the O-GlcNAc modification, and then stripped and re-probed for lamins A/C using
antibody 5G4 (Figure 1A). The ~73 kD lamin A band was consistently O-GlcNAc-positive in both
concentrations of glucose (asterisk; Figure 1A; n = 5), demonstrating O-GlcNAc modification of lamin A
in cultured human hepatoma cells. However, the level of lamin A O-GlcNAcylation in 5-vs. 25-mM
glucose, and the extent to which other O-GlcNAcylated proteins co-immunoprecipitated with lamin A
in 25 mM glucose, varied between experiments and was not studied further. O-GlcNAc signals were not
detected on lamin C (~60 kD; Figure 1A). These results demonstrated O-GlcNAcylation of endogenous
lamin A in proliferating hepatoma cells, consistent with previous results from mitotic HeLa cells [19].

To determine whether lamin A was O-GlcNAcylated in a non-proliferating tissue, we analyzed
liver lysates from wildtype mice that were either fasted for 24 h, or fasted for 24 h and then
re-fed for 12 h on a regular chow diet to boost overall protein O-GlcNAcylation (see Methods).
O-GlcNAc-modified proteins from each nuclear lysate (two livers per condition) were selectively
affinity-purified using succinylated Wheat Germ Agglutinin (sWGA; does not bind sialylated proteins).
The resulting O-GlcNAc-modified proteins were then resolved by SDS-PAGE and western blotted
for O-GlcNAc (antibody CTD110.6) and lamin A (antibody L1293; Figure 1B). Control input lysates
were analyzed in parallel. Lysates contained similar levels of input mature lamin A (~73 kD;
Figure 1B, Input). As expected, re-feeding caused an overall increase in O-GlcNAcylation of nuclear
proteins (CTD110.6 Ab; Figure 1B). Probing for specific proteins in the affinity-purified samples
revealed enrichment for two lamin A-specific bands: the expected ~73 kD mature lamin A band
and a slower-migrating (~74 kD) band (sWGA; Figure 1B). Pull-downs from mouse liver nuclear
lysates, using either WGA (QF & LMGW, unpublished observations) or sWGA (Figure 1B), all
revealed two lamin A bands. The single lamin A band detected in inputs (Figure 1B) corresponded
to the faster-migrating band in sWGA (Figure 1B). We speculate that the second band represents
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differentially-modified forms of lamin A that were enriched by sWGA pull-down. Supporting
this possibility, two lamin A bands were also detected in mouse liver after enrichment via
immunoprecipitation with lamin A/C antibodies (TD & KLW, unpublished observations).
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Figure 1. O-GlcNAcylation of native lamin A in human hepatoma (Huh7) cells and mouse liver.
(A) Western blots of proteins from human hepatoma (Huh7) cells, cultured for 24 h in physiological
(5 mM) or high (25 mM) glucose, probed with antibody CTD110.6 specific for the β-O-linked
N-acetylglucosamine modification (O-GlcNAc), and then stripped and re-probed with antibody 5G4,
specific for lamins A and C (Lamin A/C). Control input lysates, and proteins immunoprecipitated
using lamin A/C antibody 5G4 or nonspecific IgG as the negative control, were resolved in parallel gels.
Asterisk indicates the O-GlcNAc signal corresponding to immunoprecipitated lamin A; (B) Western
blots of mouse liver nuclear proteins, before (Input) or after affinity purification on succinylated Wheat
Germ Agglutinin (sWGA), which binds O-GlcNAc-modified proteins. We analyzed two livers for each
condition. Male mice were either fasted (Fasted), or fasted and then re-fed for 12 h (‘Refed’), and were
either pretreated with streptozotocin to induce hyperglycemia (‘STZ’), or not (‘Vehicle’). Input controls
were probed with lamin A-specific antibody L1293. Affinity-purified samples were probed first for the
O-GlcNAc modification (antibody CTD110.6), and then stripped and re-probed for lamin A (antibody
L1293). Control input lysates, and proteins immunoprecipitated using lamin A/C antibody 5G4 or
nonspecific IgG as the negative control, were resolved in parallel gels. STZ—streptozocin.

We found similar sWGA-purification results in liver lysates from mice treated with streptozocin (STZ),
which kills pancreatic β-cells and models diabetes [36]: two lamin A bands, one or both of which were
presumably O-GlcNAc-modified (STZ; Figure 1B). The relative abundance of the two lamin A bands
could not be interpreted, because the core epitope recognized by antibody L1293 (residues 604-611;
Supplemental Figure 1) adjoins a potential O-GlcNAc site (S612; [19]) and potential phosphorylation
sites [37,38], and may be differentially accessible on native lamin A. Collectively, these results from
hepatoma cells and mouse livers support the hypothesis that lamin A is O-GlcNAc-modified, and hence
O-GlcNAc-regulated, in the liver. To explore whether OGT targets lamin A selectively, we compared the
tail domains of A- and B-type lamins as biochemical substrates for OGT in vitro.
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3.2. In Vitro O-GlcNAcylation of Recombinant Lamin Tails

To identify O-GlcNAc sites, we incubated recombinant lamin tail domains with purified OGT
in vitro. We tested nine different tail constructs: lamin B1, lamin C, mature lamin A residues
385–646 (wildtype, S612A, T643A, or S612A/T643A), and prelamin A residues 385–664 bearing the
progeria-associated ∆35, ∆50, or ∆90 deletions (Figure 2A). Each purified recombinant T7-tagged
lamin tail polypeptide (1 µg protein) was incubated with UDP-GlcNAc and calf intestinal phosphatase
(CIP), plus or minus purified recombinant His-tagged OGT enzyme, for 2 h at 22–24 ◦C, and then
overnight at 4 ◦C. The reactions were quenched with SDS sample buffer, resolved by SDS-PAGE
and immunoblotted first with antibody CTD110.6, specific for the O-GlcNAc moiety, then stripped
and re-probed with antibodies against the T7-tag on lamins. These in vitro O-GlcNAcylation assays
revealed robust and specific modification of the recombinant mature lamin A tail domain (Figure 2B).
O-GlcNAcylation of mature lamin A tails mutated at one or both previously reported O-GlcNAc
sites (S612A, T643A, S612A/T643A) was similarly robust (Figure 2B), suggesting OGT targeted
alternative O-GlcNAc sites. The O-GlcNAc signals were specific: potential antibody cross-recognition
of recombinant proteins was ruled out by probing duplicate membranes with the O-GlcNAc antibody
plus 100 mM free sugar (+GlcNAc; Figure 2C). In vitro O-GlcNAcylation was greatly reduced by
deletion ∆35 (loss of residues 622–658) [16]; trace signals were detected only in long exposures
(Figure 2B; ‘long exp’). There was no detectable O-GlcNAcylation of the HGPS-associated deletion
∆50 (∆608–658; [15]) or deletion ∆90 (Restrictive Dermopathy-associated loss of residues 567–658; [39])
in vitro (Figure 2B,C; n = 3). There were also no specific O-GlcNAc signals on lamin C or lamin B1
tails (Figure 2B), or on full-length C. elegans lamin (‘ce-lamin’; Figure 2D), which has a short ‘B-like’
tail. Potential O-GlcNAc modification of the head or rod domain of human lamins was not tested.
These results did not rule out potential O-GlcNAc modifications of lamin C or B-type tails since negative
results can be artifacts of recombinant proteins. However, selective O-GlcNAcylation of lamin A tails
in vitro was consistent with our results in hepatoma cells (Figure 1A). These results suggested OGT
targets the tail domain of lamin A selectively in vitro and is sensitive to progeria-associated deletions.
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recombinant proteins was ruled out by probing duplicate membranes with the O-GlcNAc antibody 
plus 100 mM free sugar (+GlcNAc; Figure 2C). In vitro O-GlcNAcylation was greatly reduced by 
deletion Δ35 (loss of residues 622–658) [16]; trace signals were detected only in long exposures (Figure 
2B; ‘long exp’). There was no detectable O-GlcNAcylation of the HGPS-associated deletion Δ50 (Δ608–
658; [15]) or deletion Δ90 (Restrictive Dermopathy-associated loss of residues 567–658; [39]) in vitro 
(Figure 2B,C; n = 3). There were also no specific O-GlcNAc signals on lamin C or lamin B1 tails (Figure 
2B), or on full-length C. elegans lamin (‘ce-lamin’; Figure 2D), which has a short ‘B-like’ tail. Potential O-
GlcNAc modification of the head or rod domain of human lamins was not tested. These results did not 
rule out potential O-GlcNAc modifications of lamin C or B-type tails since negative results can be 
artifacts of recombinant proteins. However, selective O-GlcNAcylation of lamin A tails in vitro was 
consistent with our results in hepatoma cells (Figure 1A). These results suggested OGT targets the 
tail domain of lamin A selectively in vitro and is sensitive to progeria-associated deletions. 
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wildtype lamin C (‘lam C’) and lamin B1 (‘lam B1′) tails. The nuclear localization signal (NLS) and Ig-
fold domain [40] are indicated. The results for each construct are summarized on the right; (B,C) in 
vitro O-GlcNAcylation results, assayed by western blotting with the CTD110.6 O-GlcNAc antibody. 
Lamin tails (wildtype, S612A, T643A, S612A/T643A, Δ35, Δ50, or Δ90; lamin C or B1) were incubated 
with UDP-GlcNAc and calf intestinal phosphatase (CIP) with or without OGT for 2 h (22–25 °C), and 
then overnight at 4 °C. Reactions were resolved by SDS-PAGE and immunoblotted with antibody 
CTD110.6 (α-O-GlcNAc) in the absence (B) or presence (C) of competing 100 mM free sugar, and then 
stripped and re-probed with T7-tag antibodies (α-T7-tag) to detect lamin tails; (D) in vitro O-
GlcNAcylation results for recombinant full-length C. elegans lamin (‘ce-lamin’), detected by Ponceau-
staining prior to immunoblotting for O-GlcNAc, were negative. OGT activity was confirmed by auto-
O-GlcNAcylation of the OGT band (‘OGT’). 
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Figure 2. In vitro O-GlcNAcylation of recombinant lamin tails. (A) Schematic diagram of the recombinant
lamin tail constructs used as substrates for in vitro modification by recombinant O-GlcNAc transferase
(OGT) enzyme. These included mature wildtype lamin A tail residues 385–646 (‘mat Lam A’); mature
lamin A residues 385–646, bearing single or double Ala-substitutions at S612 and T643 [19]; deletions
∆35, ∆50, or ∆90 in the context of prelamin A tail residues 385–664; and wildtype lamin C (‘lam C’) and
lamin B1 (‘lam B1′) tails. The nuclear localization signal (NLS) and Ig-fold domain [40] are indicated.
The results for each construct are summarized on the right; (B,C) in vitro O-GlcNAcylation results,
assayed by western blotting with the CTD110.6 O-GlcNAc antibody. Lamin tails (wildtype, S612A, T643A,
S612A/T643A, ∆35, ∆50, or ∆90; lamin C or B1) were incubated with UDP-GlcNAc and calf intestinal
phosphatase (CIP) with or without OGT for 2 h (22–25 ◦C), and then overnight at 4 ◦C. Reactions were
resolved by SDS-PAGE and immunoblotted with antibody CTD110.6 (α-O-GlcNAc) in the absence (B) or
presence (C) of competing 100 mM free sugar, and then stripped and re-probed with T7-tag antibodies
(α-T7-tag) to detect lamin tails; (D) in vitro O-GlcNAcylation results for recombinant full-length C. elegans
lamin (‘ce-lamin’), detected by Ponceau-staining prior to immunoblotting for O-GlcNAc, were negative.
OGT activity was confirmed by auto-O-GlcNAcylation of the OGT band (‘OGT’).

3.3. O-GlcNAc Site Identification by Mass Spectrometry

O-GlcNAc sites were identified by mass spectrometry analysis of three in vitro-modified
samples: wildtype mature lamin A tail, S612A/T643A-mutated mature lamin A tail, and pre-lamin
A bearing the ∆35 HGPS-associated deletion. Samples were digested with either AspN alone or
AspN followed by chymotrypsin. The generated peptides were analyzed by on-line HPLC-MS/MS on
a high-resolution mass spectrometer (see Methods). Peptides were fragmented by both collisionally
activated dissociation (CAD) and electron transfer dissociation (ETD) in a data-dependent mode.
We achieved nearly 90% peptide coverage of both the wildtype and S612A/T643A-mutated lamin A
tails. Coverage of ∆35 was lower (71%), but included 48 of 57 total Ser/Thr residues in the ∆35 tail
(Figure 3A). The O-GlcNAcylated peptides were identified from CAD spectra by either the O-GlcNAc
oxonium signature peak at m/z 203 amu, or they exhibited the charge reduced product ion with the
loss of 203 amu, as shown in Figure 4A. ETD spectra were used to identify sites modified by O-GlcNAc.
We detected a total of 11 unique O-GlcNAc sites in the wildtype lamin A tail, four of which were more
abundant, based qualitatively on the relative abundance of the ions corresponding to the O-GlcNAc
sites: S612, S613, S618, and T643 (‘more abundant’; Figure 3B). The seven less abundant sites were
S603, S619, T623, and four others (S615, S616, T621, and S628), and were detected only on heavily
O-GlcNAc-modified peptides (‘less abundant’; Figure 3B). These results validated previously reported
sites S612 and T643 [19] and identified nine more O-GlcNAc sites in the mature lamin A tail.

Lamin A tail peptides were frequently modified at multiple sites (up to seven; Figure 3B,C).
Mass spectrometry analysis of the AspN peptide containing residues 596–638 from wildtype lamin
A revealed that 37.3% were unmodified, 9% had one O-GlcNAc, 35.8% were di-GlcNAcylated,
14% were tri-GlcNAcylated, and the remaining 3.9% had four to seven O-GlcNAc modifications
(Figure 3B,C). Percentages are based on the chromatographic peak area of each species compared
to the chromatographic peak area of all species combined. Only two di-GlcNAcylated pairs were
detected: S612 + S613 and S612 + S603. The ETD spectrum of the S612 + S613 di-GlcNAcylated pair,
with near complete sequence coverage, is shown in Figure 4B. The most frequent triple combinations
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were S612 + S613 plus one of S616, T623, or S603; together these five sites accounted for all triples in
the wildtype tail.

We also identified sites in the corresponding AspN peptide from the double-mutant
(S612A/T643A; ‘AA’) tail to determine how OGT responded to substrates lacking both previously
identified O-GlcNAc sites [19]. The mono-GlcNAc species (invariably at S613) predominated (50.1%)
over the unmodified species (24.5%; Figure 3B). The di- and tri-GlcNAc species were also relatively
abundant (18.7% and 5%), and the tetra- and penta-GlcNAc species were present at <2% each
(‘AA’; Figure 3B). Collectively, >25% of double-mutant tails had two or more modifications (Figure 3B).
Mass spectrometry analysis of the double mutant revealed O-GlcNAc modifications at three
predominant sites (S613, S615, and S616) and four less abundant sites (S618, S619, T621, and T623;
Figure 3B). We were unable to site-map the mono-O-GlcNAcylated peptide corresponding to residues
639–646 due to poor sequence coverage; however, given the T643A mutation, this peptide had only
one potential site, S645, suggesting O-GlcNAc-modification of residue S645 in the double mutant.
Modification at S645 was not detected in wildtype or ∆35 tails. We concluded that the S612A/T643A
double-mutant tail remained attractive as a substrate for OGT.
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Figure 3. Mass spectrometry identification of O-GlcNAc sites in recombinant lamin A tail polypeptides.
(A) Combined sequence coverage of AspN and AspN-Chymotrypsin digests of lamin A tails. Note:
peptide DNLVTRSY (residues 639–646) included a vector-derived C-terminal residue L647; (B) summary
and relative abundances of identified O-GlcNAc sites in each indicated peptide from wildtype (WT),
double-mutant S612A/T643A (AA), or ∆35 lamin A tails; (C) for peptides comprising wildtype lamin A
residues 596–638, or the corresponding double-mutant (S612A/T643A) peptide 596–638, the percentages
of peptides with zero (unmodified), one, two, or more O-GlcNAc-modified sites are graphed.
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Figure 4. O-GlcNAc site mapping on the wildtype lamin A tail via liquid chromatography-MS/MS.
(A) Collisionally activated dissociation (CAD) MS/MS spectrum recorded on the (M + 5H)5+ ions
(m/z 855.2046) of the di-GlcNAcylated peptide DKASASGSGAQVGGPIgSgSGSSASSVTVTRSYRSVGGSG
GGFG. The CAD spectrum contains the charge-reduced ions minus the loss of 1GlcNAc, 203 Da, at m/z
1018 for the +4 species, and the charge-reduced ion minus the loss of 2GlcNAc residues, 406 Da,
at m/z 1289 for the +3 species and 967 for the +4 species; (B) an electron transfer dissociation (ETD)
MS/MS spectrum recorded on the [M + 5H]5+ ions (m/z 855.2046) of the di-GlcNAcylated peptide
DKASASGSGAQVGGPIgSgSGSSASSVTVTRSYRSVGGSGGGFG. Predicted product ions of types c’- and
z’•- are listed above and below the peptide sequence, respectively. Singly charged ions are listed as
monoisotopic masses, and doubly and triply charged ions are listed as average masses. ETD product ions
are labeled in the ETD spectrum. Observed product ions are underlined and are sufficient to define the
O-GlcNAc residues at Ser612 and Ser613, indicated by ‘gS’ in the amino acid sequence.

With the S612A/T643A-mutated substrate, OGT apparently compensated by targeting three
predominant sites adjoining residue 612 (S613, S615, and S616) plus nearby residues S618, S619,
T621, and T623. However, there were fewer ‘multiples’: the peptide comprising residues 596–638
was more likely to have one modification (50.1% versus 9% of wildtype), and less likely to have
two (18.7% vs. 35.8% of wildtype), three (5% vs. 14% of wildtype), or four or more modifications
(1.5% vs. 3.9% of wildtype; Figure 3B). In the peptide comprising residues 596–626, we detected
di-GlcNAcylation at residues S613 + S616 and S613 + S615, as well as tri-GlcNAcylation at
S613 + S616 + S618 and S613 + S615 + T621. In a longer version of this peptide (residues 596–638),
we detected di-GlcNAcylation mainly on S613 + S615 and less often on S613 + (S616, S618, or S619).
Figure 5A shows the CAD spectrum of the di-GlcNAcylated species, with the most abundant peaks
being the charge-reduced product ion with the loss of 203 and 406, one and two O-GlcNAc moieties,
respectively. Figure 5B shows the ETD spectrum of the S613 and S618 di-GlcNacylated peptide with
almost full sequence coverage. Tri-GlcNAcylation occurred on S613 plus different combinations of
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S615, S616, T621, and/or T623 as the second and third sites. We speculate that the first O-GlcNAc
modification (e.g., S612 in wildtype; S613 in the AA mutant) strongly favors further modification.
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Figure 5. O-GlcNAc site mapping on the S612A/T643A-mutated mature lamin A tail via liquid
chromatography-MS/MS. (A) CAD MS/MS spectrum recorded on the (M + 4H)4+ ions (m/z 1064.2561)
of the di-GlcNAcylated peptide DKASASGSGAQVGGPIAgSGSSAgSSVTVTRSYRSVGGSGGGFG.
The CAD spectrum contains the charge-reduced ions minus the loss of 1GlcNAc, 203 Da, at m/z 1351,
and the charge-reduced ion minus the loss of 2 GlcNAc residues, 406 Da, at m/z 1284; (B) an ETD
MS/MS spectrum recorded on the [M + 5H]5+ ions (m/z 852.0084) of the di-GlcNAcylated peptide
DKASASGSGAQVGGPIAgSGSSAgSSVTVTRSYRSVGGSGGGFG. Predicted product ions of types c’-
and z’•- are listed above and below the peptide sequence, respectively. Singly charged ions are listed as
monoisotopic masses; doubly and triply charged ions are listed as average masses. ETD product ions
are labeled in the ETD spectrum. Observed product ions are underlined and are sufficient to define the
O-GlcNAc residues at Ser612 and Ser618, indicated by ‘gS’ in the amino acid sequence.

The ∆35 tail, with nine hypothetical sites (see Figure 6A), was modified surprisingly inefficiently:
97.7% of peptides were unmodified, with only single modifications detected at either S612 (<3% of
peptide 596–664) or less frequently at S601 or S618 (Figure 3A,B). Peptides that included residue
S613 were recovered, but unmodified, supporting the hypothesis that ∆35 greatly impairs substrate
recognition or modification by OGT in vitro.

These results identify residues 601–645 as a broadly defined O-GlcNAc ‘sweet spot’ (Figure 6A),
since OGT targeted this region robustly even when two abundant sites (S612 and T643) were
missing (‘AA’ mutant; Figures 2B and 3B). This sweet spot overlaps the region required for
ZMPSTE24-dependent cleavage of prelamin A, raising the possibility that OGT might influence
prelamin A maturation. However, the ‘sweet spot’ is also a permanent feature of mature lamin A
filaments (Figure 7), suggesting OGT regulates roles unique to lamin A.
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diagram of full-length prelamin A and the three recombinant lamin A tail fragments (wildtype—WT,
S612A/T643A, ∆35) analyzed by mass spectrometry, all of which started with residue 385. All identified
O-GlcNAc sites are located in the C-terminal region unique to prelamin A, expanded below (dotted
lines) to show the amino acid sequence. Abundant or less-abundant O-GlcNAc sites are symbolized
by large (‘major’) or small (‘minor’) black rods, respectively. The ZMPSTE24-dependent proteolytic
cleavage site is indicated. The starting points of fragments that were cleaved by ZMPSTE24 with 100%,
~50%, or 0% efficiency in cells [41] are indicated below the sequence. Mutation G608S is sufficient to
block cleavage in a different assay [42]. The region targeted by OGT in both wildtype and mutated lamin
A tails (residues 601–645) is broadly designated the ‘sweet spot’, and includes ‘supersweet’ residues
612–623 (O-GlcNAc detected at every Ser and Thr); (B) amino acid sequence of the OGT-binding
region in mouse Tet1 compared to homologous regions of conspecific Tet2 and Tet3 [43], two regions
in human lamin A, and human HCF-1 and Sin3A. Bold residues are important for mTet1 binding to
OGT [43]. Box indicates best conservation between mTet proteins and human lamin A residues 639–645.
Human protein sequences were aligned against the consensus sequence found in mouse Tet1 using
EMBOSS water pairwise alignment tool v.6.6.0 under default conditions for short sequence alignments
(gap penalty: 10.0, extend penalty: 0.5). The upstream VTXS motif in lamin A (residues 609–635) was
aligned manually against HCF-1 and Sin3A.

4. Discussion

Lamin glycosylation was first suggested nearly 30 years ago [44]. The nature of this modification
was unknown until O-GlcNAc sites were identified in mitotic HeLa cells (S612 and T643; [19]) and
mouse brains (sites S611 and S613, homologous to human S612; [45]). Our evidence that endogenous
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lamin A is O-GlcNAcylated in human hepatoma cells and mouse liver demonstrates biological OGT
targeting of lamin A in liver. However, further studies are needed to identify O-GlcNAc sites in liver
and explore their biological impact. Our biochemical analysis shows that OGT modifies lamin A tails
selectively and robustly in vitro. Interestingly, all 13 identified primary and ‘compensatory’ O-GlcNAc
sites are located within a ‘sweet spot’ (residues 601–645) unique to mature lamin A. This region
includes ‘super-sweet’ residues 612–623, where O-GlcNAc was detected on every available Ser and
Thr (Figure 6A). Two of our most abundant in vitro O-GlcNAc sites, S612 and T643, were previously
reported in mitotic HeLa cells [19] and one was also seen in mouse brain [45], strongly supporting their
biological relevance. However, their functional significance in mitosis or the brain remain completely
unstudied. Our results also independently confirm two previously reported in vitro sites: S623 and
S628 [46]. We further identified seven novel in vitro O-GlcNAc sites in mature wildtype human lamin A
(S603, S613, S615, S616, S618, S619, and T621) and two novel compensatory sites: S601 (identified in ∆35)
and S645 (identified in the S612A/T643A mutant). Our results do not rule out possible O-GlcNAc sites
in the neck or Ig-fold domains, because we recovered the majority of—but not all—Ser/Thr-containing
peptides from these regions. However, the lack of O-GlcNAcylation of either the ∆50, ∆90, or lamin C
tails strongly implies that OGT selectively targets residues 601–645 in the lamin A tail. One limitation
of this study is that we did not examine the head or rod domains, or precursor residues 647–664.
These regions warrant further study, because residue T91, in the coil-1B domain shared by all A-type
lamins [47], is O-GlcNAc-modified in human embryonic stem cells [48].
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Figure 7. Schematic of mature lamin A and lamin C proteins, and filaments. (A) Schematic of the lamin
A and lamin C proteins, which have identical residues 1–566, showing all currently identified O-GlcNAc
sites. The Ig-fold is shaded gray; black indicates the short C-terminal region unique to lamin C. Long
vs. short black ovals indicate greater or lesser abundance at each identified O-GlcNAc site, determined
here for the lamin A tail (see text). The O-GlcNAc-modified region (‘sweetspot’) is highlighted in
yellow, for comparison to panel B. Whether the O-GlcNAc site at T91 identified in embryonic stem
cells [48] is present on both lamins (as depicted here), or limited to one type, is unknown; (B) molecular
impact on filaments formed by lamin A versus lamin C. Competing or synergistic O-GlcNAc and
phosphate modifications are predicted to drive different conformations of the lamin A tail, some of
which may sterically block access to the Ig-fold domain (gray).

4.1. Most O-GlcNAc Sites in Lamin A Are Not Predicted by Current Algorithms

Substrate recognition by OGT is complex, involving both its TPR (protein–protein interaction)
and catalytic domains, and can be influenced by post-translational modifications and partners [23,49].
There is no strict consensus site for O-GlcNAc modification [49]. For example, a study of pre-selected
13-mer peptides showed that O-GlcNAc sites are influenced by size and conformational restrictions
in the −3 to +2 positions [46,50], and reported O-GlcNAc modifications at three sites (T623, S625,
and S628) in lamin A peptide 618SSVTVTRSYRSVG630 and at one site (T399) in lamin B1 peptide
389KLSPSPSSRVTVS401 [46]. Even though our lamin B1 tail polypeptide included T399, O-GlcNAcylation
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was not detected (Figure 2B), possibly because this fragment began at residue 394 and was likely
insufficient for OGT recognition. For lamin A, we identified T623 and S628 (but not S625) as
low-abundance sites, in the context of our much longer (>250-residue) tail polypeptides. Overall,
very few identified O-GlcNAc sites in lamin A were predicted by the Pathak et al. (2015) [46] consensus.
A shorter consensus, proposed by Liu and colleagues [51], fared slightly better: most ‘sweet spot’ sites
match at positions −1 and +2, but only three of our 13 sites match this consensus at position −2.

In agreement with Jochmann and colleagues [49], many sites on lamin A were not predicted.
For example, OGTsite [52] predicted three known sites (S612, T623, and T643), and three sites we did not
detect. The YinOYang O-GlcNAc prediction server (http://www.cbs.dtu.dk/services/YinOYang [53])
strongly predicted two identified sites (S612 and T621), weakly predicted five identified sites
(S603, S613, S615, S618, and T623), failed to predict five sites (T91, S616, S619, S628, and T643; 42% false
negative rate), and predicted eight other tail sites we did not detect. O-GlcNAcPRED [54] predicted
only two sites (both known: S612 and T643) at higher stringency; at lower stringency, this program
predicted one more identified site (S601) plus three tail sites we did not detect. We suggest that
O-GlcNAc sites identified in long polypeptides, rather than peptides, will be critical to improving
predictive algorithms and understanding the molecular basis for OGT modifications at two or more
adjoining residues, as seen for lamin A (this work) and its nuclear membrane partner, emerin [55].

4.2. The ‘Sweet Spot’ in Relation to the Site of ZPMSTE24-Dependent Cleavage

Figure 6A shows the identified O-GlcNAc sites in relation to published constructs, expressed
as GFP-fusions, that were cleaved by ZMPSTE24 with either 100% efficiency (’41-mer’; residues
624–664), 50% efficiency (’31-mer’; residues 634–664), or not cleaved (’29-mer’; residues 636–664) in
human embryonic kidney (HEK293) cells [41]. The ‘super-sweet’ region directly borders the 41-mer
region sufficient for ZMPSTE24-dependent cleavage of prelamin A (Figure 6A). Upstream residues
might also influence maturation, since a G608S substitution blocks FLAG-prelamin A cleavage in
mouse embryonic fibroblasts [42]. Speculatively, OGT access to prelamin A might be influenced by
hypothetical OGT association with Zmpste24 [56] (‘PPI Finder’ algorithm). Whether OGT modifies
prelamin A-specific residues 647–664, or influences lamin A maturation, are open questions.

4.3. Second Role for Residues Near the ZMPSTE24-Dependent Cleavage Site

We were puzzled by progeria-causing deletion ∆35, which retained nine potential O-GlcNAc
sites (including seven of eight ‘supersweet’ sites), but remained 97.7% unmodified in vitro (Figure 3B).
Wondering if OGT might associate with this region, either during substrate recognition or
independently as a hypothetical partner, we performed pairwise protein sequence alignments of
lamin A to five proteins that bind OGT directly as partners (Figure 6B): Tet1 [43], Tet2 [57], Tet3 [58],
HCF-1 [59], and transcription regulator Sin3A, which recruits OGT to promoters [23,60]. Triple
Ala-substitution mutagenesis of mouse Tet1, in particular, identified a motif in which four residues
(DNVVTVS) were critical for binding to OGT [43]. All four critical residues are conserved in conspecific
Tet2 and Tet3 [43], and in human lamin A residues 639–645 (DNLVTRS; boxed in Figure 6B),
which adjoin the ZPMSTE24-dependent cleavage site (Figure 6A). Whether these four residues are
also important for cleavage is unknown. We found that a similar motif with three of four critical
residues conserved (VTRS) is present in human HCF-1, Sin3A, and lamin A residues 622–625,
which adjoin the ‘supersweet’ region (Figure 6B). Both motifs are removed by ∆35, which deletes
residues 622–656 (Figure 6A). Whether lamin A associates functionally with OGT as a partner,
in addition to being modified by OGT, is an open and challenging question for future work (Levine and
Walker, 2016). Collectively, our findings provide novel insight into progeria mechanisms by predicting
a second molecular consequence of the ∆50 deletion: loss of OGT-dependent regulation.

http://www.cbs.dtu.dk/services/YinOYang
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4.4. Selective OGT Targeting of Lamin A as a Mechanism for Separate Functions and Differential Regulation of
Lamin A versus Lamin C

The discovery that lamin A and lamin C form separate filaments is so new and unexpected [61,62]
that few studies have even attempted to distinguish one from the other. We found that OGT
selectively modifies the tail domain of mature lamin A, not lamin C, in vitro, suggesting the
intrinsically-disordered ‘tail’ of mature lamin A is uniquely controlled by OGT (Figure 7A).
These results add to growing evidence for functional specialization of lamin A versus lamin C
filaments (Figure 7B). For example, lamin C specifically associates with nuclear pore complexes [62].
Specialization is also evident in the brain and in metabolism. Lamin C predominates in neurons,
where mRNAs encoding prelamin A are eliminated by a specific microRNA [63]. When compared
with wildtype controls, mice that express lamin C as their only A-type lamin have significantly longer
lifespans, despite accumulating white fat and developing abdominal tumors that limited their lifespan;
these mice also have reduced rates of metabolism and respiration, fewer mitochondria, higher fasting
insulin levels, and higher blood glucose levels [64]. Mice that express mature lamin A only have
nuclear shape defects in fibroblasts, but otherwise normal body weight, health, and fertility [65],
implying appropriate regulation of mature lamin A. A-type lamins are linked to the mTOR pathway,
which senses glucose and other nutrients to promote biosynthetic pathways, and inhibit or limit
catabolic (breakdown) pathways, including autophagy [66–68]. Autophagy is significantly elevated in
lmna-mutated cells [69,70]. Mice that express H222P-mutated lmna in the heart have elevated AKT
and mTOR signaling that leads to cardiomyopathy and impaired fasting-induced autophagy [71].
These phenotypes are ameliorated by mTOR inhibitors, suggesting an A-type lamin(s) normally
dampens mTOR signaling [72–74]. We speculate that OGT, which responds independently to nutrient
stress, specifically influences lamin A under these conditions.

What happens if OGT cannot modify the lamin A tail? Two elements are lost by deletion in
‘classic’ (∆50) HGPS: functions specifically mediated by the lamin A tail, and OGT-dependent control
of these functions. Neither element is likely to be restored by therapies that block farnesylation.
Treating HGPS patients with the farnesyltransferase inhibitor Lonafarnib improved weight gain [18]
and reduced prevalence of stroke [75], but did not affect other parameters, including insulin resistance
(seen in 35% of patients; [18]). We found that progeria-associated deletions either abolished (∆50) or
greatly reduced (∆35) lamin A modification by OGT in vitro. Interestingly, three missense variants
that perturb metabolism are located in the ‘sweet spot’: p.G602S (insulin resistance syndrome [8];
type 2 diabetes [76]), p.G631D (metabolic syndrome; [12]), and p.R644C (multiple phenotypes; [77]).
Variant p.L92F, identified in an obese patient with severe metabolic syndrome [13], adjoins the reported
O-GlcNAc site at T91 [48]. However more work is needed to decipher mechanisms, since variants that
affect metabolism, like those that cause other laminopathies, are located throughout the polypeptide.

4.5. Potential Impacts of O-GlcNAc on Mature Lamin A

OGT and lamin A each have global roles that include signaling, epigenetic regulation,
and mitosis [3,78,79]. For example, lamins and key partners (LEM-domain proteins and BANF1)
are required to dynamically rebuild nuclear structure during exit from mitosis [80–84]. Similarly,
OGT is required for dividing cells to survive [21,23]. Lamins have many reported modifications,
the best understood of which is phosphorylation. From this perspective, we note that 10 of our 12
total identified O-GlcNAc sites can be phosphorylated in a variety of cell types or conditions [37,38]
(www.phosphosite.org). To our knowledge, O-GlcNAc is the only reported modification of lamin
A residues T91 [48] and T621 (this work). Our findings suggest that lamin A—like cytoplasmic
intermediate filaments—is specifically and dynamically regulated by crosstalk between OGT and
multiple kinases [85].

O-GlcNAc and phosphate modifications can profoundly alter the conformations of intrinsically
disordered polypeptides [86–88], with consequences for partners. Partners that bind the unstructured
region of lamin A, besides ZPMSTE24 (discussed above), include SUN1 [89], Narf, RBBP4, PKCα,

www.phosphosite.org
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and actin [37]. Certain partners identified in a yeast two-hybrid screen are disrupted by disease-associated
missense variants in the ‘sweet spot’, and might therefore be influenced by O-GlcNAc modifications.
These partners include LAP1β (disrupted by lamin A variant p.G602S), ZNF3 (disrupted by p.G602S,
p.G608S, p.T623S, p.R644C), MORF4L1 (disrupted by p.G602S, p.G608S, p.T623S), Cyclin G1 (disrupted
by p.G602S, p.G608S, p.R644C), and CENP-P (disrupted by p.R644C) [90]. We speculate that
‘sweet-spot’ modifications might also influence association with AIMP3, a cytoplasmic scaffolding
protein that can also enter the nucleus and act as a tumor suppressor [91,92]. AIMP3 binds directly to
residues 641–647 in the ‘sweet spot’ of mature lamin A [91]. AIMP3 recruits Siah1 (an E3 ubiquitin
ligase) and triggers selective degradation of mature lamin A to promote senescence [91,92]. In the
context of lamin A filaments, modifications by OGT and kinases might dictate a spectrum of tail
conformations unique to lamin A (modeled in Figure 7B), influencing various partners either directly
or via access to the Ig-fold domain (Figure 7B), as suggested for actin [31] and Tpr [93].

This study is significant because it identifies a novel molecular pathway that may profoundly
influence lamin A function. Our results suggest OGT-dependent control of lamin A is perturbed by
progeria-associated deletions. As a master regulator of metabolism [94,95], OGT has the potential
to misregulate wildtype lamin A in response to nutrient (including glucose) stress or other stresses.
The physiological significance of lamin A tail O-GlcNAcylation, whether it influences signaling,
transcription, 3D genome organization [96–99], or novel roles, and proposed crosstalk with phosphorylation,
all remain to be determined in future studies.
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