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The 3C-like protease of SARS coronavirus (SARS-CoV 3CLpro) is vital for SARS-CoV replication and is a
promising drug target. It has been extensively proved that only the dimeric enzyme is active. Here we
discovered that two adjacent mutations (Ser139_Ala and Phe140_Ala) on the dimer interface resulted in
completely different crystal structures of the enzyme, demonstrating the distinct roles of these two residues
in maintaining the active conformation of SARS-CoV 3CLpro. S139A is a monomer that is structurally similar to
the two reported monomers G11A and R298A. However, this mutant still retains a small fraction of dimer in
solution, which might account for its remaining activity. F140A is a dimer with the most collapsed active
pocket discovered so far, well-reflecting the stabilizing role of this residue. Moreover, a plausible
dimerization mechanism was also deduced from structural analysis. Our work is expected to provide insight
on the dimerization–function relationship of SARS-CoV 3CLpro. © 2009 Elsevier Inc. All rights reserved.
Introduction

Severe acute respiratory syndrome (SARS) (Stockman et al., 2006)
is a highly infectious disease that broke out from November 2002 to
July 2003, and it caused a lot of infection cases and deaths (Stockman
et al., 2006). SARS coronavirus (SARS-CoV) is responsible for SARS
disease (Drosten et al., 2003a, 2003b; Fouchier et al., 2004; Ksiazek et
al., 2003; Peiris et al., 2003). The genome of SARS-CoV contains 14
functional open reading frames (ORFs) (Thiel et al., 2003). The two
large 5′-terminal ORFs, 1a and 1b encode two overlapping poly-
proteins, pp1a and pp1ab, which have to be cleaved extensively to
produce proteins necessary for viral RNA synthesis and genome
replication (Anand et al., 2003; Thiel et al., 2003; Ziebuhr et al., 2000).
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Such proteolytic processing is performed by two viral proteases, the
papain-like cysteine protease (PL2pro) and the chymotrypsin-like
protease called 3C-like protease (3CLpro) due to its distant relationship
with the 3C proteases of picornaviruses (Ziebuhr et al., 2000). While
PL2pro has extra functions like deubiquitination (Barretto et al., 2005,
2006; Lindner et al., 2005, 2007; Ratia et al., 2006; Sulea et al., 2005)
and antagonizing type I interferon to counteract innate immunity
(Devaraj et al., 2007), 3CLpro plays a major role in processing viral
polyproteins and controlling the activities of replication complexes,
thus is also called the main protease (Mpro). Meanwhile, it has been
also shown to induce mitochondrial-mediated apoptosis (Lai et al.,
2007; Lin et al., 2006). Therefore, for its functional indispensability in
viral life cycle, SARS-CoV 3CLpro has become an attractive target for
discovering new anti-SARS agents.

In crystal structure, SARS-CoV 3CLpro forms a dimer with two
monomers oriented perpendicular to one another (Yang et al., 2003),
similar to the TGEV and HCoV 3CLpro structures (Anand et al., 2002,
2003), in which each monomer contains three domains. Domains I
and II (residues 8–101 and residues 102–184) each fold into an
antiparallel β-barrel and together form a chymotrypsin fold respon-
sible for catalysis. The substrate-binding site is located in a cleft
between these two domains. Domain III (residues 201–306) is a
globular cluster of five antiparallel α-helices connected to the
chymotrypsin fold by a long loop (residues 185–200) (Anand et al.,
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2002, 2003; Shi et al., 2004; Yang et al., 2003). It plays a major role in
SARS-CoV 3CLpro dimerization, reflecting one of the most intriguing
properties of the enzyme.

SARS-CoV 3CLpro exists in a equilibrium of dimer and monomer in
solution (Chou et al., 2004; Fan et al., 2004; Graziano et al., 2006a,
2006b; Hsu et al., 2005a, 2005b), with a dissociation constant KD

lower than 100 nM (Hsu et al., 2005b; Kuo et al., 2004; Verschueren
et al., 2008). Since it has been widely proved that only the dimer is
active (Barrila et al., 2006; Chang et al., 2007; Chen et al., 2005, 2006,
2008b; Chou et al., 2004; Fan et al., 2004; Graziano et al., 2006b; Hsu
et al., 2005b; Lin et al., 2008), the dimer interface is regarded as an
ideal target for structure-based enzyme inhibitor design. The major
components of the interface are: (i) the N-terminal residues 1–7 (N-
finger), (ii) the S1 substrate-binding subsite, (iii) helix A′ (residues
10–15) that immediately follows the N-finger, and (iv) domain III.
Fig. 1 illustrates the complete interaction network among these
elements.
Fig. 1. The dimer interface of wild-type SARS-CoV 3CLpro (PDB code: 1UK4). (a) The interac
(cyan) from chain B. The dashes represent hydrogen bonds, and the spheres indicate hydroph
dimer dissociation of the enzyme. (b) The interactions between two helices A′. (c) The inter
(For interpretation of the references to colour in this figure legend, the reader is referred to
The S1 subsite confers the enzyme an absolute specificity for a
glutamine at the P1 position of the substrate (Gln-P1). Moreover, it
lies immediately next to the catalytic dyad (Cys145 and His41), and
uses a structural element called the “oxyanion hole” to stabilize the
tetrahedral intermediate produced during proteolysis (Fig. 1a). Thus,
maintaining the intact conformation of S1 subsite is vital for catalysis,
and this is exactly the major function of the counterpart N-finger (Fig.
1a). In brief, the Ser1B…Phe140 interaction helps the large aromatic
ring of Phe140 insert into the S1 subsite to hold it open and active; the
Ser1B…Glu166 hydrogen bond constrains the position of Glu166 to
prevent it from blocking the entrance of the S1 subsite; the Ser1B…
Ser139, Gly2B…Ser139 and the serial Arg298B…Met6B…Tyr126A…
Phe140A interactions all make substantial contributions to dimer
stability (Shi et al., 2008). In fact, an octapeptide interface inhibitor,
designed according to the sequence of the N-finger, has been found to
specifically inhibit the activity and dimerization of the protease (Ding
et al., 2005).
tions between the S1 substrate-binding subsite from chain A (green) and the N-finger
obic interactions. The mutations of residues with red names have been proved to induce
actions between domain III from chain B and the N-finger and S1 subsite from chain A.
the web version of this article.)



Fig. 2. (a) Overall structure of S139Amutant and its superpositionwith the other two structures of monomeric SARS-CoV 3CLpro (G11A and R298A). The color scheme is indicated. (b)
The 2Fo–Fc electron density map contoured at 1.0σ around the mutated residue and two S1 subsite residues of S139A mutant. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Besides, the formation of H-bonds between the two helices A′
(Ser10A…Ser10B and Gly11A/B…Glu14B/A) is also the major
stabilizer of the dimer interface (Fig. 1b). Actually the Gly11_Ala
mutation has caused a crystallographic dissociation of SARS-CoV
3CLpro dimer (Chen et al., 2008a). Last but not least, domain III has
been extensively proved to be a key regulator of the dimerization and
catalysis of SARS-CoV 3CLpro (Anand et al., 2002; Bacha et al., 2004;
Chang et al., 2007; Shi and Song, 2006; Shi et al., 2004; Ziebuhr et al.,
1997). As shown in Figs. 1a and c, it not only directly contacts the
opposite S1 subsite (Gln299B…Ser139, Arg298B…Ser123), but also
helps position the N-finger properly to insert into the counterpart
protomer by making both inter-protomer (Arg4B…Glu290) and
intra-protomer (Arg298…Met6) interactions. As evidence, the
Arg4B…Glu290 salt bridge has been demonstrated to be a key force
in the dimerization of SARS-CoV 3CLpro (Chou et al., 2004), and the
Arg298_Ala mutation has produced yet another monomeric structure
of the enzyme (Shi et al., 2008).

In order to evaluate the exact contributions of these interface
residues to the dimerization and activity of SARS-CoV 3CLpro, we
previously conducted a systematic mutagenesis study of these
residues combining biochemical, biophysical and crystallographic
techniques (Chen et al., 2008a, 2008b). In the current work, we
determined the crystal structures of two mutants S139A and F140A.
Although S139A mutant is a monomer that is structurally similar to
those of the other two reported monomers Gly11_Ala (Chen et al.,
2008a) and Arg298_Ala (Shi et al., 2008), gel filtration analysis has
clearly revealed the existence of the dimeric S139A in solution
ascribing to its remaining enzymatic activity in solution. F140A, on the
other hand, is still a dimer in crystal structure, with the dimer
interface rearranged to some extent but at the cost of destructing the
active site conformation. Its S1 subsite, especially the “oxyanion loop”
has undergone the most dramatic conformational change ever
reported at this site (Chen et al., 2008a; Shi et al., 2008; Yang et al.,
2003), including a pH-dependent flip of the key substrate-binding
residue His163, as revealed by three F140A structures at pH 6.0, 6.5
and 7.6. Together the structures of these two mutants suggested that
the dimerization of SARS-CoV 3CLpro is regulated by all the responsible
Fig. 3. Stereo illustrations and structural comparisons of the S1 subsite in S139A mutant. (a
substrate analog (chain A and G of the PDB entry 1UK4). Protein residues are colored in yello
subsite comparison between wild-type (yellow) and S139A (cyan). Mutation-induced confo
the three monomeric structures of SARS-CoV 3CLpro: S139A (cyan), G11A (green) and R298
elements in a cooperative manner, and its stability depends highly on
the integrity of the dimer interface.

Results and discussion

Mutation choice

We chose to study the crystal structures of S139A and F140A
mutants of SARS-CoV 3CLpro mainly because of the following reasons.
First, most of the reported mutant crystal structures are related to the
mutations involved in the catalytic dyad (Hsu et al., 2005a), the helix
A′ (Chen et al., 2008a) and domain III (Shi et al., 2008), which have
provided profound insight into the dimerization-activity relationship
of this enzyme. At the same time, the S1 substrate-binding subsite is
another critical element involved in this issue, because it not only
participates in catalysis but also directly contacts the opposite
protomer. Thus, we selected the mutations of the two important
residues Ser139 and Phe140 in this site. Second, these two mutations
are adjacent to each other, but they exhibited completely different
enzymatic activities (Chen et al., 2008b). It would be interesting to
explore the underlying mechanism.

Crystal structure of S139A

Overall structure
To date, two crystal structures of monomeric SARS-CoV 3CLpro have

been reported, which are induced by mutations in helix A′
(Gly11_Ala) (Chen et al., 2008a) and domain III (Arg298_Ala) (Shi
et al., 2008) respectively. The Gly11_Ala mutation caused the dimer
dissociation by abolishing the entire interaction networks between
the two opposing helices A′ (Fig. 1b), because (i) it interfered with the
Gly11A/B…Glu14B/A interaction, and (ii) shortened helix A′ from
residues 10–15 to 11–14, thus affecting the position of Ser10 and
abolishing Ser10A/B…Ser10B/A H-bonds. As for Arg298_Ala, this
mutation induced monomerization by disrupting the Arg298B…
Ser123A H-bond and the serial interaction chain Arg298B…Met6B…
Tyr126A…Phe140. In the current work, we discovered another
) The S1 subsite in the structure of the wild-type SARS-CoV 3CLpro complexed with the
w, and the glutamine at the P1 position of the substrate analog is colored in pink. (b) S1
rmational changes were indicated by curved arrows. (c) S1 subsite comparison among
A (magenta).
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monomeric crystal structure of SARS-CoV 3CLpro by Ser139_Ala
mutation. In the dimer structure, the sidechain hydroxyl of Ser139
forms hydrogen bonds with the mainchain carbonyls of Ser1B and
Gly2B (Fig. 1a) as well as the sidechain amide of Gln299B (Fig. 1c).
Thus, the mutation might have substantially destabilized the dimer
interface. This again demonstrates that the integrity of the dimer
interface is essential for dimerization, as supported by a lot of reports
that a single mutation on the dimer interface could cause the
complete dissociation of the dimer (Chen et al., 2008a; Hsu et al.,
2005b; Lin et al., 2008; Shi et al., 2008; Shi and Song, 2006).

The overall structure of S139A is similar to those of G11A and
R298A, with RMSD values being 0.40 Å and 0.69 Å, respectively
(Fig. 2a). The 2Fo–Fc electron density map clearly shows the mutation
of Ser139 to alanine, as well as the flip of Phe140 from the S1 subsite
toward Tyr126,whichwas also observed inG11A andR298A structures
(Fig. 2b). The unique structural features associated with monomeric
SARS-CoV 3CLpro, namely the rotation of domain III and the “mis-
orientation” of N-finger both exist in the S139A structure. The latter is
especially worth noting. In our previous work with G11A, we thought
the “mis-oriented” N-finger was caused by the mutation-induced
shortening of helix A′ (Chen et al., 2008a). Now with the structures of
R298A (Shi et al., 2008) and S139A, it is obvious that the mis-
orientationof N-finger is an intrinsic property ofmonomeric SARS-CoV
3CLpro. This observation could provide valuable clues for deducing the
dimerization process of the enzyme. But to better understand this, we
need to first inspect the structural changes of the active site.

Active site structure
As has been previously described about G11A and R298A

structures, the catalytic dyad and the S1 subsite are the two key
elements directly regulated by dimer–monomer switch of the
enzyme. SARS-CoV 3CLpro undergoes a general serine protease
catalysis mechanism, and residues His41 and Cys145 have been
identified as the catalytic dyad (Fig. 2a) (Huang et al., 2004). It was
suggested that hydrogen bond formation between His41 NE2/ND1
and Cys145/SG could indicate the right conformation of the dyad
(Chen et al., 2006). On the other hand, the substrate-binding pocket
of SARS-CoV 3CLpro is constituted by numerous subsites, S1′, S2′ and
S1–S6, corresponding to the P1′, P2′ and P1–P6 residues on the
peptide substrate. Among them, the S1 subsite is most important
because its binding of a glutamine confers the enzyme absolute
specificity for the Gln-P1 residue on the substrate. The S1 subsite
could be divided into four parts: the oxyanion hole, His163, Glu166
and the various stabilizing elements (Fig. 2a). The oxyanion hole is
constituted by the mainchain amides of Gly143, Ser144 and Cys145.
An “open” oxyanion hole could not only recognize the mainchain
oxygen of Gln-P1 but also stabilize the tetrahedral catalytic
intermediate. This open conformation is supported by (i) Asn28…
Gly143 interaction and (ii) the proper positioning of Phe140, which
relies on its interaction with the opposite N-finger. The imidazole ring
of His163 interacts with the sidechain oxygen of Gln-P1 and is held in
place by (i) H-bond with the phenol hydroxyl of Tyr161 and (ii)
stacking against the aromatic ring of Phe140, which also guarantees
that this histidine remains uncharged over a wide range of pH values
(Shi et al., 2008). The sidechain of Glu166 locates at the entrance of
the pocket and recognizes the sidechain nitrogen of Gln-P1. It is
constrained in an open state by H-bond with Ser1B from the opposite
N-finger.

Fig. 3b shows the structural change of the active site in S139A
monomer. Since some of the common features have been detailedly
described in the study of G11A structure (Chen et al., 2008a), here
we would only briefly point out the key changes. First, the distance
between the two catalytic dyad residues increased to 3.70 Å,
implying the catalytic dyad might be malfunctioning. Second, the
oxyanion loop completely collapsed inward, as exemplified by the
large movement of the sidechains of Asn142 and Leu141. In addition,
the key supporting force Phe140 flipped away and packed with
Tyr126 that adjusted its sidechain correspondingly. The position
where Phe140 used to lie is now occupied by Leu141 to stack against
His163. The stability of His163 was very likely to be undermined due
to the disappearance of the Tyr161…His163 H-bond. Notably the
sidechain of Glu166 directly formed an H-bond with the “slipped”
Asn142 and blocked the entrance of the S1 subsite. This interaction
was not observed in G11A and R298A monomer structures,
suggesting the flexibility of the sidechains of Asn142 and Glu166
(Fig. 3c).

As has been indicated, the active site changes are basically similar
for S139A, G11A and R298A structures (Fig. 3c), implying that these
changes are stable conformations unique to the monomeric SARS-CoV
3CLpro. Therefore, the support from the opposite protomer is essential
for maintaining the correct conformation of the active site, but how
does this interplay happen in the first place?

Implications for dimerization process
In our previous work about G11A mutant, we brought forward a

plausible dimerization mechanism of SARS-CoV 3CLpro based on the
single monomer structure available at that time (Chen et al., 2008a).
We thought that when two monomers approach each other, their
domains III might initially form a dimer, then the two catalytic folds
rotate to bring their N-fingers into each other and lock the dimer in a
stable intermediate state. Finally the two domains III rotate to their
final positions and further stabilize the dimer to form a mature and
fully active enzyme. Now with the help of these three monomer
structures (G11A (Chen et al., 2008a), R298A (Shi et al., 2008), and
current work S139A), we could come up with a better conjecture
about the dimerization process of SARS-CoV 3CLpro, in which the
movement of the N-finger could be better explained.

As mentioned before, the mis-oriented N-finger should actually be
an intrinsic property of monomeric SARS-CoV 3CLpro. But a question is
also raised as to how the N-finger would change its position? We
believe its movement is largely dependent on the rotation of domain
III. After superposing the dimer and monomer structures based on
their catalytic folds, we found that the positional relationship between
domain III and the parental N-finger is actually unchanged in dimeric
andmonomeric enzymes (Fig. 4a). Further analysis revealed that their
interaction patterns also remain similar in dimers and monomers
(Figs. 4b and c). In detail, both Phe3 residues are wrapped by
numerous hydrophobic residues including Trp207, Ala210, Leu282,
Phe291 and Val296; and both Lys5 residues are salt-bridging to
Glu290, the major stabilizing force of dimerization (Chou et al., 2004).
Notably most of the interactions are mediated by regions around the
last helix of domain III. Based on these observations, we thereby think
it possible that these two important dimerization-related elements
might actually be tethered together during the process of dimeriza-
tion, which means that domain III might be the “motivator”
controlling the movement of the N-finger.

Therefore, a possible dimerization process of SARS-CoV 3CLpro

might be supposed as follows. First, the trigger of the dimerization is
very likely to be the association of two domains III, because domain III
alone has been reported as stable dimers as well as monomers in
solution (Shi et al., 2004; Zhong et al., 2008), while the catalytic fold
alone cannot dimerize (Tan et al., 2005). It should be noted that the
two domains III do not have any contact in the dimeric enzyme, thus
their initial association should be temporary, presumably using the
interface as reported recently (Zhong et al., 2008), just to bring two
monomers close together. Subsequently, the catalytic folds might be
close enough to anchor on each other, probably via the numerous H-
bonds between the two helices A′. Based on this scaffold, the two
domains III might dissociate and rotate themselves along with the
tethered N-fingers to the opposite S1 subsites. In the last step, the
Glu290…Arg4B salt bridge might help freeze the mature dimer (Chou
et al., 2004), and Phe140…Ser1B, Ser139…Ser1B, Ser139…Gly2B



Fig. 4. Association between domain III and the parental N-finger. (a) The positional relationship between domain III and the parental N-finger remains similar in dimeric (yellow) and
monomeric (cyan) SARS-CoV 3CLpro. (b)(c) The detailed interactions between domain III and the parental N-finger. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 5. Gel filtration analysis of SARS-CoV 3CLpro S139A mutant. 2 mg/ml of the protein
at neutral pH (7.5) was eluted on a HiLoad™ Superdex™ 75 prep grade column (GE
Healthcare) at a flow rate of 1 ml/min. Marked on the x-axis are the molecular weight
(MW) of the four marker proteins (namely ribonuclease A (15.6 kDa), chymotrypsino-
gen A (22.8 kDa), ovalbumin (48.9 kDa) and albumin (65.4 kDa)) at their specific
retention volumes (Chen et al., 2005). The molecular weight of monomeric 3CLpro is
about 34 kDa. For S139A mutant, peak A and peak C represent stable dimer and
monomer respectively, while peak B represents the equilibrium of monomer and dimer.
Peak E and peak D represent wild-type and F140A mutant proteins respectively, which
were both in the equilibrium of monomer and dimer. The contents of these peaks were
all confirmed by SDS-PAGE (inset) to be SARS-CoV 3CLpro.
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interactions might directly activate the opposite S1 subsite. It also
implies that these “activating” interactions might be the “result”
rather than the “cause” of dimerization.

The reliability of this hypothesis could be supported by the
findings that mutations in the key interactions involved in this
dimerization process could severely impair the dimer stability of
SARS-CoV 3CLpro (Chen et al., 2008a; Hsu et al., 2005b; Lin et al.,
2008; Shi et al., 2008; Shi and Song, 2006). These interactions
include: (i) the initial association of the two domains III; (ii) the H-
bonds between the two helices A′; (iii) the intra-protomer tethering
between domain III and the N-finger; and (iv) the contact of domain
III and the N-finger with the opposite S1 subsite. Remarkably,
mutations and deletions in the last helix of domain III have caused
great tendency of the enzyme to form monomers (Lin et al., 2008;
Shi and Song, 2006). We believe this is at least partly due to the
weakened affinity between domain III and the parental N-finger,
which prevented domain III from efficiently bringing the N-finger to
the opposite protomer during dimerization. This is supported by the
fact that mutations of the first two N-terminal residues, which do
not contact the parental domain III, have no obvious impact on
SARS-CoV 3CLpro activity (Chen et al., 2008b; Verschueren et al.,
2008); while mutations beyond Phe3 in the N-finger caused drastic
loss of the dimer stability and enzymatic activity (Chen et al., 2008b;
Chou et al., 2004). As for the argument about whether the
dimerization is triggered by the association of domain III (Zhong et
al., 2008), a crystal structure of domain III alone might be highly
desired to map the interface residues and direct the relevant
mutagenesis confirmations.
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The remaining activity of S139A
It is noticed that although S139A mutant is a monomer in crystal

structure, it still retains some enzymatic activity in solution (Chen et
al., 2008b). Gel filtration analysis of S139A showed that besides a
majority of monomers, this mutant could still form a small fraction of
stable dimer in solution (Fig. 5), which might be responsible for the
remaining activity. As a control, the wild-type 3CLpro migrated as a
single peak in gel filtration chromatography (Fig. 5), representing an
equilibrium between monomer and dimer, which was consistent with
the previous report (Zhong et al., 2008). Therefore, it is possible that
during the crystallization of S139A, only themore abundant and stable
monomer form was incorporated into the crystal lattice.

Interestingly, themutation of the adjacent residue Phe140 caused a
contrary result. F140A is completely inactive yet remains a dimer in
crystal. The reason underlying this difference will be described below.

Crystal structure of F140A

Overall structure
The crystal structure of F140A mutant is still a dimer. In addition,

we managed to obtain three crystal structures of F140A at pH 6.0, 6.5
and 7.6, which could help find out whether pH variation would cause
structural changes. All these F140A structures are very similar to that
of the wild-type enzyme (PDB code: 1UK4), with RMSD values being
Fig. 6. Structural analysis of F140A mutant. (a) Superposition of three F140A structures dete
2Fo–Fc electron density maps contoured at 1.0σ around the mutated residues and some key
subsite comparison among the wild-type structure (yellow), the S139A monomer structure
oxyanion loops in F140A, and the new Asn142…Arg4B interaction formed at the dimer inte
1.24 Å,1.16 Å and 1.20 Å, respectively (Fig. 6a). The sidechain deletions
of Phe140 could be clearly identified in the 2Fo–Fc electron density
maps (Fig. 6b).

Active site structure
In the wild-type structure, Phe140 is stabilized by interacting with

Ser1B from the opposite protomer, and plays two major roles in
maintaining the active state of the S1 subsite: (i) to uphold the open
conformation of the oxyanion loop; and (ii) to stack against His163
and assure its uncharged state (Shi et al., 2008). Accordingly, the F140
mutation has caused damages on both aspects.

As shown in Fig. 6c, the oxyanion loops in the structures of F140A
mutant all collapsed enormously inward. The movement of the
oxyanion loops is about one-fold further than that observed in the
monomer structure (Fig. 6c, the pink ribbon). The positions of Cys145
are also influenced by these large structural changes, increasing the
distances between the catalytic dyad residues to 3.61 Å, 4.09 Å and
4.35 Å in structures at pH 6.0, 6.5 and 7.6, respectively, the latter two are
among the largest ones observed in all known structures of SARS-CoV
3CLpro. However, the sulfur atoms of Cys145 are still approximately in
the plane of the His41 imidazole rings, as is in the wild-type structure.

As for the charging state of His163, we found an interesting
phenomenon that the imidazole ring of His163 underwent a pH-
dependent flip in the three structures, as obviously indicated in the
rmined at different pHs with the wild-type structure. The color scheme is indicated. (b)
S1 subsite residues. Note the different conformations of His163 at different pHs. (c) S1
(pink), and the three F140A structures. Note the large conformationals changes of the
rface.



Fig. 7. Dimerization model of SARS-CoV 3CLpro. When two monomers approach, their domains III initially associate and bring the two chymotrypsin folds together. The two
catalytic folds then anchor on each other, probably via the hydrogen bond network between the two helices A′. Based on this scaffold, the two domains III dissociate and rotate.
Since the N-fingers are tethered with the last helices of the domains III, they are simultaneously brought to contact with the S1 subsites on the opposite monomers, which might
induce the active conformation of the S1 subsites. Finally, the mature dimer would dissociate again due to the dimer–monomer equilibrium of the enzyme in solution.
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electron density map (Fig. 6b). At pH 6.0, His163 flipped away from
the original position and was trapped between the phenol hydroxyl
groups of the two nearby tyrosine residues, Tyr126 and Tyr161; at pH
7.6, it remained the same conformation as in the wild-type structure;
while at pH 6.5, both states were present for this residue. Thus, we
could conclude that without Phe140 packing, the charging state of
His163 might have returned to that of a “normal” and unconstrained
histidine residue. We also speculate that the reason why His163 does
not flip away in the monomeric structures of SARS-CoV 3CLpro, which
were all determined at pH 6.0, is probably because Leu141 has taken
the role of Phe140, and Phe140 has pushed Tyr126 away to prevent it
from interacting with His163 (Fig. 3b). These observations all
demonstrated that Phe140 is the major stabilizing force in maintain-
ing the active conformation of the S1 subsite of SARS-CoV 3CLpro, thus
emphasizing again that a properly charged His163 is significant for
substrate-binding (Tan et al., 2005).

Implication for dimerization
Remarkably, Ser139 residue does not participate in forming the

dimer interfaces of these F140A mutants. Thus, a question has been
raised: why does F140A fail to be monomerized? We speculate that
this might be because F140A mutation endowed the oxyanion loop
with a flexibility large enough to allow it rearrange its interactionwith
the opposite protomer (e.g. the new Asn142…Arg4B H-bond, Fig. 6c),
and the dimer stability was compensated to the extent even stronger
than that of the wild-type enzyme, as indicated by the smaller
retention volume, and thus a larger dimer proportion of F140A in gel
filtration compared with the wild-type (Fig. 5). While in S139A
structure, the conformational change of the S1 subsite is much more
limited due to the presence of Phe140, probably making it difficult for
the dimer interface to rearrange. Therefore, the rigidity of the S1
subsite might be another factor contributing to the dimerization of
SARS-CoV 3CLpro.

Conclusion

In the current work, we have determined the crystal structures of
Ser139_Ala and Phe140_Ala mutants of SARS-CoV 3CLpro. These two
mutations are both from the S1 substrate-binding subsite of the
enzyme. Ser139 contributes its sidechain hydroxyl in forming three
hydrogen bonds with the opposite protomer, and Phe140 donates its
mainchain groups to interact with Ser1B from the counterpart N-
finger. Interestingly, although these two residues are adjacent, they
caused completely different activity loss and structural change of the
protease. S139A is monomeric but retains some enzymatic activity,
while F140A is still a dimer but inactive. Basically, the whole structure
of S139A is very similar to those of the two reportedmutation-induced
monomeric enzymes. Considering that the positional relationship and
the interaction network between domain III and the parental N-finger
is essentially unchanged in monomeric and dimeric enzymes, we
speculate that during the dimerization process, the rotation of domain
III might bring the parental N-finger to contact and activate the S1
subsite of the opposite protomer (Fig. 7). The existence of a small
fraction of stable dimer in solution for S139A might account for the
remaining activity of this mutant. As for the F140A mutant, the
conformational changes observed in crystal structure, especially the
pH-dependent flip of His163, have well-reflected the functional roles
of Phe140 in both supporting the open conformation of S1 subsite and
maintaining the uncharged state of His163 for substrate recognition.
Moreover, the deletion of the large aromatic ring of Phe140 might
have conferred the oxyanion loop great flexibility so that the dimer
interface could be rearranged to restore the stability of the dimer. This
might explain why F140A is still a dimer even though Ser139 is absent
from its dimer interface. Our work has not only provided the direct
structural evidence for the indispensable roles of these two S1 subsite
residues in maintaining the dimerization and activity of SARS-CoV
3CLpro but also suggested a plausible dimerization process for the
enzyme. More importantly, we showed that the elements involved in
dimerization constitute a complex network to cooperatively regulate
the activity of the enzyme, a single mutation on the dimer interface
could often cause complete dimer dissociation. Our results have
strongly supported that targeting the dimerization of SARS-CoV 3CLpro

could be an effective strategy for developing inhibitors against this
enzyme to combat SARS infection.

Materials and methods

Cloning, expression, purification and gel filtration analysis

The coding sequence of the wild-type 3CLpro was cloned from
SARS-CoV Tor2 strain (Sun et al., 2003) and inserted into the BamHI
and XhoI sites of the plasmid pGEX4T-1 (Amersham Pharmacia
Biotech). Mutations of Ser139_Ala and Phe140_Ala were performed
with the QuikChange site-directed mutagenesis kit (Stratagene) using



332 T. Hu et al. / Virology 388 (2009) 324–334
pGEX4T-1-SARS-CoV 3CLpro as template. The nucleotide sequences of
the primers used for single point mutation were:

5′-CATACCATTAAAGGTGCTTTCCTTAATGGATCATGTGG-3′ (forward,
S139A)
5′-CCACATGATCCATTAAGGAAAGCACCTTTAATGGTATG-3′ (reverse,
S139A)
5′-CATACCATTAAAGGTTCTGCCCTTAATGGATCATGTGG-3′ (forward,
F140A)
5 ′-CCACATGATCCATTAAGGGCAGAACCTTTAATGGTATG-3 ′
(reverse, F140A).

The resulting plasmids were verified by sequencing and then
transformed into E. coli BL21 (DE3) cells. The expression and
purification protocols for the two mutants are the same as reported
in the study of Gly11_Ala mutant (Chen et al., 2008a). In brief, the
expressionwas induced byadding IPTG to 0.5mMwhen the A600 of the
LB medium reached 0.8, and the culture was grown for another 6 h at
25 °C. The recombinant protein was purified in PBS buffer with the
Glutathione Sepharose™ 4B affinity column (Amersham Pharmacia
Biotech). The GST tagwas subsequently cleaved off by thrombin (50 U)
at 25 °C for 6 h. The target protein was further purified by MonoQ 10/
100 GL column (Amersham Pharmacia Biotech) with a NaCl gradient
from 0 to 1.0 M, and dialyzed against 10 mM Tris–HCl pH 7.5, 1 mM
EDTA, 5 mM DTT. The gel filtration analysis of S139A mutant is
performed in the same buffer at 2mg/ml, on aHiLoad™ Superdex™ 75
prep grade column (GE Healthcare) at a flow rate of 1 ml/min.

Crystallization and data collection

The two mutants of SARS-CoV 3CLpro were both crystallized at
10 mg/ml by hanging-drop vapor-diffusion method at 4 °C. Crystals of
S139A mutant were grown from the mother liquor containing 0.1 M
MES pH 6.0, 10% PEG 6000, 1 mM DTT, 5% DMSO. Crystals of F140A
Table 1
Statistics of diffraction data and structure refinement.

S139A (pH 6.0) F140A (pH 6

Data collection
Space group P212121 P212121
Cell dimensions
a, b, c (Å) 90, 90, 90 90, 90, 90
α, β, γ (°) 34.3, 66.0, 128.2 61.2, 67.9, 149

Resolution (Å) 15.0–2.50 (2.59–2.50)a 15.0–2.30 (2.
Rsym or Rmerge

b 0.135 (0.378) 0.103 (0.327)
I/σ 5.4 (2.0) 5.8 (2.1)
Completeness (%) 98.7 (99.9) 99.3 (100.0)
Redundancy 3.6 (3.8) 3.8 (3.8)

Refinement
Resolution (Å) 15.0–2.50 15.0–2.30
No. reflections 9981 26699
Rwork/Rfreec 0.252/0.308 0.208/0.246
No. atoms 2363 4887
Protein 2309 4628
Water 54 259

B-factors (Å2) 36.2 25.9
Protein 36.5 25.9
Water 22.1 28.1

R.M.S. deviations
Bond lengths (Å) 0.006 0.007
Bond angles (°) 0.933 1.057

Ramachandran plot (%)
Most favored 85.3 90.4
Allowed 13.6 8.5
Generously allowed 0.4 0.6
Disallowed 0.8 0.6

a Values in parentheses are for highest resolution shell.
b Rsym orRmerge =

P
h
P

i j Ihi − hIhi j =
P

h
P

i Ihi , where Ihi and 〈Ih〉 are the i-th and mean
c Rwork = Rfree =

P
h Fo:h − Fc:h =

P
h Fo:h , where Fo.h and Fc.h are the observed and calculat
were grown at three pH values: 0.1 M MES pH 6.0/0.1 M MES pH 6.5/
0.1 M Tris pH 7.6, with 10% PEG 6000, 1 mM DTT and 5% DMSO.

Diffraction data was collected in-house on a Rigaku rotating-
anode X-ray generator operated at 100 kV and 100 mA (λ=1.5418 Å).
Diffraction images were recorded by a Rigaku R-AXIS IV++ imaging-
plate detector with an oscillation step of 1°. The crystals were
harvested with a nylon loop and flash-cooled in liquid nitrogen. Data
collection was performed at 100 K in the cryoprotectant solution
containing 30% of glycerol and 70% of the mother liquor. The data sets
were indexed, integrated and scaled using the program suite
CrystalClear (Rigaku). Statistics of data collection were summarized
in Table 1. F140A crystals were difficult to grow at pH 7.6 and their
qualities were relatively low, probably because basic pH is unfavor-
able for the crystallization of SARS-CoV 3CLpro (almost all of its
reported crystal structures were obtained at acidic pHs). However,
the resultant electron density map was good enough to address our
interested problems (e.g. the conformation of His163).

Structure determination, refinement and model building

The structures were determined by molecular replacement using
Molrep (Vagin and Teplyakov, 1997) of the CCP4 program suite
(Collaborative Computational Project, 1994). The protomer (chain A)
or the whole dimer in the structure of wild-type SARS-CoV 3CLpro

(PDB coed: 1UK4) was used as the search model. Model refinement
was initially performed with CNS (Brunger et al., 1998), using
standard protocols including simulated annealing, minimization and
B-factor refinement. Coot (Emsley and Cowtan, 2004) and refmac5
(Murshudov et al.) were subsequently employed for iterative cycles of
model building and refinement. The water molecules were modeled
by inspecting the N3σ Fo–Fc difference map. The geometry of the
model was validated by Procheck (Laskowski et al., 1993). Statistics of
the refinement were summarized in Table 1. Note that the average
temperature factors are smaller for water molecules than for the
.0) F140A (pH 6.5) F140A (pH 7.6)

P212121 P212121

90, 90, 90 90, 90, 90
.2 61.2, 68.0, 149.3 61.1, 68.1, 148.9
38–2.30) 15.0–2.60 (2.69–2.60) 15.0–2.90 (3.00–2.40)

0.155 (0.350) 0.189 (0.366)
4.3 (1.9) 4.9 (1.9)
95.7 (96.8) 98.4 (99.9)
3.4 (3.4) 3.5 (3.6)

15.0–2.60 15.0–2.90
17902 13355
0.232/0.306 0.232/0.294
4715 4655
4604 4634
111 21
21.9 22.9
22.1 22.9
15.4 5.7

0.006 0.006
0.926 0.932

86.7 85.6
11.5 13.3
1.2 0.4
0.6 0.8

measurement of the intensity of reflection h, respectively.
ed structure factor amplitudes, respectively.
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polypeptide chain, except for the highest resolution (2.3 Å) structure
(F140A, pH 6.0), because in the lower resolution structures, only the
most firmly bound water molecules could be detected, the similar
phenomenon was also observed in our another structure with low
resolution(Yu et al., 2008).

Structural superpositions and RMSD calculations were performed
in Pymol. The interfaces between domain III and the parental N-finger
were determined by the EBI PISA web server. The figures were all
prepared with Pymol (DeLano, 2002). Coordinates and structure
factors of the two SARS-CoV 3CLpro mutants have been deposited in
the Protein Data Bank with accession number of 3F9E for S139A, and
3F9F, 3F9G, and 3F9H for F140A.
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