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Abstract: A new method for the determination of oxytetracycline (OTC) has been established by
coupling the catalytic amplification reaction of copper nanoclusters (CuNCs) with the aptamer
reaction. CuNCs prepared by a wet chemical method have the catalytic activity for the formation of
gold nanoparticles (AuNPs) resulting from a HAuCl4-ethanol (En) reaction. The experimental results
showed that OTC aptamer (Apt) can be adsorbed on the surface of CuNCs in a non-specific way,
thus inhibiting its catalytic activity. When OTC was added to the solution, the OTC-Apt complex
was generated by a specific reaction, which made the CuNCs desorb and restore their catalytic
activity. With the increase of OTC, the recovery of the catalytic activity of CuNCs is strengthened, the
reaction speed is accelerated, and the number of AuNPs is increased. The generated AuNPs exhibited
surface enhanced Raman scattering (SERS) signals at 1615 cm−1 in the presence of Vitoria blue 4R
(VB4R) molecular probes, and a resonance Rayleigh scattering (RRS) peak at 586 nm. There is a good
linear relationship between the intensities of SERS, or RRS, and OTC concentration at the range of
37.5–300 ng/L or 37.5–225 ng/L, respectively. A new SERS and RRS assay for the determination of
trace OTC based on the regulation of CuNCs catalysis was established.

Keywords: CuNCs; OTC; aptamer; RRS; SERS

1. Introduction

Metal nanoclusters have attracted much attention because of their unique physical,
chemical, and optical properties, and have become a hot research field in recent decades [1].
Significant achievements have been made in the research of gold, silver, and other noble
metal nanomaterials [2]. Meanwhile, copper, which is in the same group as gold and silver,
has attracted extensive attention. Compared to gold and silver, copper is more abundant,
available, and relatively cheap on the planet. The preparation conditions of CuNCs are
simple, and it has been proved experimentally that CuNCs have similar advantages to
gold and silver nanoclusters in optical properties [3]. Therefore, the research prospect
and application potentials of CuNCs are very great and are worth exploring further. The
preparation of CuNCs in the laboratory is usually directly reduced by using a wet chemical
method, which involves adding reductive substances to make copper ions recover in
the solution to produce Cu atom particles, which are further clustered until CuNCs are
obtained [4]. With the research development of CuNCs in recent years, it has been found
that most CuNCs using a direct reduction method have the problems of weak fluorescence,
low quantum yield, and easy aggregation. To obtain CuNCs with good stability, and
a suitability for experimental use, surface ligands can be added for protection during
preparation, which can control the stability and rate of nanocrystalline nucleation. In
combination with different methods to improve the stability of CuNCs, more synthesis
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processes and methods have been experimented with, such as water-in-oil (w/o) micro
emulsion strategies [5] and the Brust-Schiffrin method [6], among others. It is reported
that CuNCs have a great potential in optical sensing [7], environmental monitoring [8],
and medical-related applications [9,10]. Han et al. [11] found that highly photoluminescent
CuNCs have been developed using 2,3,5,6-tetrafluorophenol as a reducing agent and
protective ligand for the rapid, sensitive, and selective detection of histamine in foods. The
detection limit was as low as 60 nmol/L and the linear range was 0.1–10 µmol/L. Deng
et al. [12] reported that copper nanoparticles were used as precursors and ammonia was
used as an etching agent to prepare CuNCs with a good green fluorescence. When the
ammonia source was from urea and hydrolyzed under the catalysis of urease, the CuNCs
could be used to detect urea. The linear range for urea detection is from 0.25 to 5 mmol/L,
and the limit of detection (LOD) is 0.01 mmol/L. The above studies are mainly based
on the fluorescence properties of CuNCs, while there are few studies on their scattering
properties. To the best of our knowledge, there are not published studies regarding CuNCs’
catalysis of HAuCl4-ethanol reaction and its application to the aptamer SERS/RRS for the
quantitative analysis of OTC.

Aptamer is a class of single-stranded oligonucleotides with a high affinity and specific
binding to targeted target molecules, including DNA, RNA, and modified RNA [13]. SE-
LEX is known as the systematic evolution of ligands by exponential enrichment. According
to the experiment of Tuerk C et al. [14,15], the basic principle is to artificially construct
a single-chain random oligonucleotide ligand library by applying the new technology
of modern molecular biology. The oligonucleotide ligands, which interact with special
target molecules, were retained and expanded, and then they were enriched through
amplification and artificial selection. Imran Mahmood Khan [16] applied aptamer to func-
tionalize silver nanoclusters and combined them with MoS2 nanosheets to prepare an
aptamer-silver nanoclusters fluorescent probe capable of detecting T-2 toxin. The linear
range was 0.005–500 ng/mL, and the LOD was 0.93 pg/mL. Thus, a high sensitivity, sim-
ple, rapid, and efficient mycotoxin detection method was established. Zhang et al. [17]
had established a new fluorescence method for the quantitative analysis of Pb2+ by us-
ing silver nanoclusters functionalized aptamers, and enhanced their fluorescence after
the aptamers specifically recognized Pb2+, with a linear range of 5–50 nmol/L and the
LOD of 3 nmol/L. RRS is a kind of special elastic scattering produced by the absorption
spectrum of scattering molecules located near the excitation wavelength, and its inten-
sity is much higher than that of the traditional light scattering [18]. Liu et al. [19] first
used RRS signals to study the physical and chemical differences of ion complexes formed
due to electrostatic attraction, hydrophobic interaction, and charge transfer interaction
between small molecules. Therefore, RRS has been widely used in the determination of
polymer organic matter, the research and analysis of nanoparticles, and trace inorganic
small molecules, which has become a new method with a wide range of applications,
accurate and reliable, with a simple operation and a low cost. Using citric acid, thiourea,
and auric chloride as precursors, Wang et al. [20] prepared gold-doped carbon dots through
microwave digestion-equipment, and the acidified ammonium molybdate and gold-doped
carbon dots combined formed a complex by intermolecular force, which weakened the
RRS signal of the reaction system. When PO4

3− is added, it will combine with ammo-
nium molybdate to release the gold-doped carbon dots, and the RRS signal of the system
will be restored. The detection range of PO4

3− was 1.4–21 nmol/L, and the LOD was
0.60 nmol/L. Hang et al. [21] proposed a convenient and sensitive spectrophotometric
method for the determination of malathion (Mala) by RRS using Erythrocyte B as a probe
with a detection range of 0.012–0.8 µg/mL and LOD of 1.7 ng/mL. Nano-catalysis is a kind
of important signal amplification method based on the improvement of electron transfer in
oxidation-reduction reaction by the surface electrons of nanoparticles, which accelerates
the indicator reaction and strengthens the signal by increasing the product, thus improving
the sensitivity of the method. Combined with RRS, nano-catalysis has a broad application
prospect in the field of analysis [22–24]. Based on the catalysis of gold-doped carbon
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dots on the HAuCl4-fructose reaction to generate gold nanoparticles, Wang et al. [22]
combined the RRS effect of gold nanoparticles and the regulation of As3+ aptamer on nano-
catalysis, and established a new RRS method of nano-catalytic amplification to determine
0.10–0.60 µg/L As3+. Using the catalytic effect of nano gold, which was produced through
CO reducing HAuCl4 and the RRS effect of the product, Yao et al. established a sensitive
SERS/RRS dual-function probe for the determination of 3.0–413 ng/mL CO [23]. Theoreti-
cal and experimental studies show that, in general, the smaller the size of nanoparticles,
the stronger the catalytic ability. Nanoclusters are smaller than ordinary nanoparticles,
and their catalytic amplification effect is better [25–28]. Therefore, it is of great innovative
significance to explore new catalytic amplification reactions of CuNCs and to use them in
the detection of OTC by aptamer RRS.

OTC is a tetracycline antibiotics and its molecular formula is C22H24N2O9. It is a
broad-spectrum antibiotic with antibacterial activity and can be used as an additive in food.
In the environment, OTC diffuses into the water environment with the discharge of tail
water from sewage plants, surface runoff, and garbage exudate, thus affecting the water
quality and human health. Many reports indicate that antibiotics have been detected in
groundwater and water sources. OTC in the environment with contact absorption into
the organism will cause antibiotic resistance in human body, thus affecting health [29].
Therefore, accurate detection of OTC content is of positive significance for environmental
protection and human health. At present, the main methods for determining OTC are high
performance liquid chromatography, electrochemical method, fluorescence photometry,
immunoassay, and so on. But some require expensive instruments, and complex procedures
or are not sensitive enough [30–35]. So, it is of great practical significance to explore a more
sensitive and simple method for detecting OTC. González Fá et al. [36] prepared silver
nanoparticles with glucose as a reducing agent and used them as SERS substrate to detect
OTC in honey. The detection limits can be as low as 15.3 ppb. Gao et al. [37] constructed two
high-efficiency fluorescent probes; they are orange peel carbon quantum dots (ON-CQDs)
and watermelon peel carbon quantum dots (WN-CQDs), which are compatible with OTC
concentrations at 2–100 mol/L and 0.25–100 mol/L, respectively. Moreover, the LOD were
0.973 µmol/L (ON-CQDs) and 0.077 µmol/L (WN-CQDs). In this article, a kind of high
catalytic activity of CuNCs was prepared with CuSO4 as a precursor and L-cysteine as
reducing agent in alkaline conditions. Aptamers can form complexly with it. Combining
the regulation of aptamer on CuNCs catalytic effect with the scattering properties of the
product of nanogold particles, a simple, sensitive, and selective method was established
for the determination of OTC, which can provide a reliable basis for the determination of
OTC in water samples.

2. Materials and Methods
2.1. Instruments

A model of DXR smart Raman spectrometer (Thermo, Waltham, MA, USA), with
a laser wavelength of 633 nm, power of 3.5 mW, slit of 50 µm, and acquisition time of
5.0 s, a model of CaryEclipse fluorescence spectrophotometer (Hitachi Company, Tokyo,
Japan), a model of TU-1901 dual-beam ultraviolet-visible spectrophotometer (Beijing Gen-
eral Analysis General Instrument Co., Ltd., Beijing, China), a model of 79-1 Magnetic
Heating Stirrer (Jiangsu Zhongda Instrument Factory, Jiangsu, China), and a model of
HH-2 digital constant temperature water bath (Changzhou Guohua Electric Appliance Co.,
Ltd., Changzhou, China) were used.

2.2. Reagents

84 µmol/L HAuCl4 (Sinopharmaceutical Chemical Reagents Co., Ltd., Shanghai,
China), 1 mmol/L CuSO4, 1 mol/L NaOH, 35 mg/mL L-cysteine, 100 µmol/L oxytetracy-
cline aptamer (Apt) with sequence of CGA CGC ACA GTC GGT GCG TAC CTG GTT GCC
GTT GTG T (Shanghai Sangon Bioengineering Co., Ltd., Shanghai, China). The binding
force between aptamer and target is closely related to base composition and base number.
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In order to select a suitable aptamer, it is necessary to refer to previous experience [33] and
experimental verification. 10 µg/L oxytetracycline (OTC) solution (Sinopharmaceutical
Chemical Reagent Co., Ltd., Shanghai, China), ethyl-alcohol (Guangdong Guanghua Sci-
Tech Co., Ltd., Guangdong, China) and 10 mmol/L HCl (Sichuan Xilong Science Co., Ltd.,
Sichuan, China) were used. All reagents were analytical grade, and the experimental water
was ultrapure water.

2.3. Preparation of Copper Nanoclusters (CuNCs)

1 mL 1 mmol/L CuSO4 was added drop by drop into 10 mL reductant solution [L-
cysteine (35 mg/mL) + NaOH (1 mol/L)], then heated in a 60 ◦C water bath with stirring
for 4.5 h, and a yellow clarification solution was obtained after the reaction. The solution
was cooled to room temperature, and the impurities were removed with a 0.2 µm filter
membrane. The volume was fixed to 25 mL, and the concentration of the solution was
measured by Cu2+, which was 0.04 mmol/L.

2.4. Procedure

In a 5.0 mL stoppered test tube, 60 µL 0.04 mmol/L CuNCs and 55 µL 1 nmol/L
Apt solutions were added sequentially, successively, and let stand for 5 min. Subse-
quently, a certain concentration of OTC, 100 µL 0.1%HAuCl4, 130 µL 10 mmol/L HCl, and
110 µL ethanol were added and diluted to 2 mL. After the reagents were mixed fully, they
were placed in a water bath at 60 ◦C for static reaction, and then placed in ice water for
6 min to quickly cool to room temperature. Resonance scattering spectra were obtained
by synchronous scanning with a fluorescence spectrophotometer Volt = 350 V, excited slit
= emission slit = 10 nm, emission filter = 1%T attenuator, λex − λem = ∆λ = 0. The RRS
intensity at 586 nm (I586 nm) was measured. Without adding OTC to blank, to determine
its blank value and calculate ∆I586 nm = I586 nm − (I586 nm)0. A 50 µL10 µmol/L VB4R was
added for SERS detection. The SERS value at 1615 cm−1 was recorded as I1615 cm

−1, the
SERS value without OTC was taken as the blank value (I1615 cm

−1)0, and the value of
4I1615 cm

−1 = I1615 cm
−1 − (I1615 cm

−1)0 was calculated.

3. Results and Discussion
3.1. Analysis of the Principle

The reduction solution of L-cysteine and NaOH can reduce CuSO4 to produce CuNCs.
The newly formed CuNCs are stable and have strong fluorescence and good catalytic
activity. Under normal conditions, due to the absence of the catalyst, the reaction of
HAuCl4-ethanol was very slow, and few AuNPs were produced, so the RRS signal value
was also extremely low. However, the addition of CuNCs can greatly catalyze the reaction
of HAuCl4-ethanol, generating more AuNPs and stronger RRS signals. When the Apt was
added, it could be adsorbed to the surface of CuNCs due to electrostatic attraction and
the catalytic effect was inhibited. After the addition of OTC, the Apt was desorbed from
the surface of the CuNCs due to the specific binding between the OTC and Apt, and the
catalytic activity of the CuNCs was restored. With the increase of the OTC concentration,
more and more CuNCs were released, and the catalytic generation of the AuNPs also
increased. Based on the linear relationship between the RRS/SERS signals enhancement
and the OTC concentration, a new RRS/SERS method for OTC was established (Figure 1).
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Figure 1. Schematic diagram of RRS/SERS assay of OTC based on Apt controlling CuNCs catalysis.

3.2. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)

The prepared CuNCs were dropped into the nickel mesh after being diluted with
ethanol for a certain time and dried naturally. The samples were detected by TEM. The
results show that the CuNCs particles (marked with arrows) are a uniform sphere with an
average particle size of about 1–2 nm, and have a good dispersion (Figure 2A). According
to the experimental method, the solution containing different concentration of OTC were
centrifuged at the speed of 10,000 r/min for 10 min respectively, and the supernatant
was discarded. Then, the precipitation with ultrapure water was dispersed using an
ultrasonic method and centrifuged again. The samples were detected by SEM. When low
concentration OTC was added, it combined with the Apt which was desorbed from the
CuNCs to recover its catalytic activity, and a small amount of AuNPs were generated in
lumps (Figure 2B). With the increasing concentration of OTC, more and more AuNPs were
generated, with the size increasing (Figure 2C).

3.3. RRS Spectra of CuNCs, Apt Inhibition and OTC Analysis System

HAuCl4 can be reduced by ethanol to form AuNPs at above 85 ◦C, which is diffi-
cult to be performed at lower temperatures. CuNCs can catalyze this reaction at lower
temperatures. In a certain range, with the increase of CuNCs, the catalytic effect was
enhanced, and the number of AuNPs generated by CuNCs-HAuCl4-ethanol-HCl system
increased gradually. In Figure 3, as the CuNCs concentration increased, the maximum peak
is weakly blue shifted (from 590 nm to 582 nm). This is because, with the enhancement
of catalytic effect, both the generation rate of the AuNPs and the nucleation rate were
accelerated, resulting in the generation of more AuNPs with a small particle size. Therefore,
the enhancement of the RRS peak is accompanied by a weak blue shift of the maximum
peak while the CuNCs’ concentration increases. The RRS signal of the system showed an
upward trend, and the maximum RRS peak was at 586 nm. As the concentration of the
CuNCs increases, the value of I586 nm of the system gradually increases. There is a good
linear relationship between the concentration of CuNCs and the intensity of RRS in the
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range of 0.8–4.8 nmol/L (Figure 3). The linear equation is ∆I586 nm = 246.5C − 211.2, and
the linear correlation coefficient was 0.9872.
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Figure 3. RRS spectra of CuNCs catalysis a: 4.2 µmol/LHAuCl4 + 3.5 mol/L ethanol + 0.5 mol/LHCl; b: a + 0.8 nmol/L
CuNCs; c: a + 1.6 nmol/L CuNCs; d: a + 2.4 nmol/L CuNCs; e: a + 3.2 nmol/L CuNCs; f: a + 4 nmol/L CuNCs; g: a +
4.8 nmol/L CuNCs.

In the CuNCs-Apt-OTC-HAuCl4-ethanol-HCl system, the Apt can combine with the
CuNCs to form a CuNCs-Apt complex due to electrostatic attraction. The catalytic activity
of the CuNCs is inhibited, and the RRS signal decreases as the concentration of the Apt
increases. In Figure 4A, with the enhanced inhibition of the aptamer, the reaction speed of
the AuNPs generation slowed down and the product decreased, so the maximum peak
decreased with a slight red shift. The optimal inhibition effect is achieved when the concen-
tration of Apt is 25 nmol/L (Figure 4A). In the CuNCs-Apt-OTC-HAuCl4-ethanol-HCl-OTC
system, with the addition of OTC, Apt in the system specifically combined with OTC, re-
sulting in the release of CuNCs and the recovery of catalytic performance. In Figure 4B,
with the increase of the OTC concentration, the maximum peak starts with a slight blue
shift and then a slight red shift. That is probably because with the OTC addition, the
catalytic activity of the CuNCs recovers, nucleation speed is accelerated, and more AuNPs
are generated with smaller particle size. As the OTC concentration continues to increase,
the nucleation rate does not accelerate, but the catalytic generation of AuNPs continues to
increase, resulting in larger particle size and red shift of the maximum peak. In a certain
concentration range, the RRS signal of the system increases linearly with the increase of
the OTC concentration, and the maximum RRS peak is at 586 nm (Figure 4B). Therefore,
the intensity at 586 nm of RRS signal and OTC concentration were selected as the working
curve of mutual change relationship. As shown in Fig. 4B, the OTC concentration in the
range of 37.5–225 ng/L has a good linear relationship with the intensity of RRS (∆I586 nm).
The linear equation is ∆I586 nm = 1.45C + 293.1, and the linear correlation coefficient
is 0.9935.
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Figure 4. RRS spectra of Apt inhibition and the OTC analysis system (A) RRS spectra of Apt inhibition:
a: 1.2 nmol/L CuNCs + 2.52 µmol/L HAuCl4 + 1.87 mol/L ethanol + 0.65 mol/LHCl; b: a + 5 nmol/L
Apt; c: a + 10 nmol/L Apt; d: a + 15 nmol/L Apt; e: a + 20 nmol/L Apt; f: a + 25 nmol/L Apt; g: a
+ 30 nmol/L Apt. (B) RRS spectra of the OTC analysis system: a: 1.2 nmol/L CuNCs + 27.5 nmol/L
Apt + 2.52 µmol/L HAuCl4 + 1.87 mol/L ethanol + 0.65 mol/L HCl; b: a + 37.5 ng/L OTC; c: a +
75 ng/L OTC; d: a + 112.5 ng/L OTC; e: a +150 ng/L OTC; f: a + 187.5 ng/L OTC; g: a + 225 ng/L OTC.

3.4. SERS Spectra of OTC Analysis System

The Raman signal of CuNCs-Apt-OTC-HAuCl4-ethanol-HCl-VB4R system increases
linearly with the increase of OTC concentration in a certain concentration range, which
has a maximum value at 1615 cm−1. Therefore, the relationship between the Raman
signal strength at 1615 cm−1 and the change of the OTC concentration was selected
as the working curve. The results showed that an OTC concentration in the range of
37.5–300 ng/L has a good linear relationship with SERS intensity ∆I1615 cm

−1, and the
linear equation is ∆I1615 cm

−1 = 6.84C + 990.4, with a coefficient of 0.9748 (Figure 5).
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Figure 5. SERS spectra of the OTC analysis system a: 1.2 nmol/L CuNCs + 27.5 nmol/L Apt + 2.52 µmol/L HAuCl4 +
1.87 mol/L ethanol + 0.65 mol/L HCl; b: a + 37.5 ng/L OTC; c: a + 75 ng/L OTC; d: a + 112.5 ng/L OTC; e: a + 150 ng/L
OTC; f: a + 187.5 ng/L OTC; g: a + 225 ng/L OTC; h: a + 262.5 ng/L OTC; i: a + 300 ng/L OTC.

3.5. Fluorescence and Stability of CuNCs

At a voltage of 500 V and a slit of 5 nm, the fluorescence characteristics of 0.04 mmoL/L
CuNCs were investigated. In the system of CuNCs-Apt-OTC-HAuCl4-ethanol-HCl, only
the CuNCs showed fluorescence characteristics. The fluorescence spectra of the CuNCs
were detected with the excitation wavelength range of 350–400 nm. As the excitation
wavelength increased, the maximum emission fluorescence peak shifted from 435 nm to
480 nm, and the fluorescence peak increased first and then decreased (Figure S1). The
maximum fluorescence peak was at 475 nm when the excitation wavelength was 390 nm.
The fluorescence properties of the prepared CuNCs were similar to those of other reported
literatures [38,39], indicating that the preparation was successful.

CuNCs in solution tend to aggregate, precipitate, and lose catalytic activity over time.
The fluorescence signals of the newly prepared CuNCs were measured continuously with
time. The results show that the CuNCs were stable within one week.

3.6. Optimization of Experimental Conditions

The optimized reaction conditions of CuNCs-Apt-OTC-HAuCl4-ethanol-HCl system
were studied according to the experimental method. When the concentration of CuNCs
in the system was 1.2 nmol/L, ∆I had a maximum value (Figure S2A). When the Apt
concentration in the system was 27.5 nmol/L, ∆I had a maximum value (Figure S2B).
When the concentration of HAuCl4 in the system was 2.52 µmol/L, ∆I had the maximum
value (Figure S2C). When the concentration of ethanol in the system was 1.87 mol/L, ∆I
had the maximum value (Figure S2D). When the concentration of HCl in the system was
0.65 mol/L, ∆I had a maximum value (Figure S2E). When the heating temperature of the
system was 60 ◦C, ∆I had a maximum value (Figure S2F). When the heating time of the
system was 6 min, ∆I had the maximum value (Figure S2G). As such, the above optimized
conditions were chosen for their use.

3.7. Working Curve

Under the optimized conditions, the working curves of RRS and SERS for the determi-
nation of the OTC were obtained (Table 1). The working curve of ∆I586 nm = 1.45C + 293.1
was determined by RRS. The detection range of RRS is 37.5–225 ng/L with the LOD of
25.0 ng/L and the correlation coefficient of 0.9935. SERS has better sensitivity and a wider
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detection range, and the working curve is ∆I1615 cm
−1 = 6.84C + 990.4. The detection range

of SERS is 37.5–300 ng/L with the LOD of 18.0 ng/L and a coefficient of 0.9748.

Table 1. Working curve of RRS/SERS for measuring OTC.

Method Linearity Range
(ng/L) Regression Equation Coefficient LOD

(ng/L)

RRS 37.5–225 ∆I586 nm = 1.45C + 293.1 0.9935 25.0
SERS 37.5–300 ∆I1615 cm

−1 = 6.84C + 990.4 0.9748 18.0

3.8. Comparison of Methods

The OTC analysis methods mainly include high performance liquid chromatography,
electrochemical methods, fluorescence, surface plasmon resonance, SERS, and enzyme-
linked immunosorbent assays. However, there are some defects in these methods. For
example, according to the related references (Table S1), the HPLC method has a low
sensitivity (µg/kg level), and the downside of fluorescence is that its material prepara-
tion is complex. Compared with some reported methods for the determination of OTC
(Table S1), this method in our work has the advantages of simplicity, speed, sensitivity, and
selectivity.

3.9. The Influence of Coexisting Substances

According to the requirements of the control variable method, the influence of coex-
isting substances in the determination of 150 ng/L OTC by CuNCs-Apt-OTC-HAuCl4-
ethanol-HCl system was investigated. When the relative error was within ±10%,
100 times of Na+, Ca2+, Mg2+, K+, NH4

+, penicillin sodium, penicillin potassium, tetracy-
cline, ofloxacin, NO3

−, SO4
2−, bovine serum albumin (BSA), human serum albumin (HSA),

doxycycline, vitamin B12, tryptophan, glycine, 50 times of PO4
3−, chloramphenicol, and

10 times of Fe3+ did not interfere with the determination of OTC (Tables S2 and S3). The
results showed that this method has a good selectivity.

3.10. Determination of the Samples

Three different OTC samples, including A (0.25 g/tablet, Gansu Qilian Mountain
Pharmaceutical Co., Ltd., Jiuquan, China), B (0.25 g/tablet, Teyi Pharmaceutical Group Co.,
Ltd., Taishan, China) and C (0.125 g/tablet, Anhui Golden Sun Biochemical Pharmaceutical
Co., Ltd., Fuyang, China) were taken, then dissolved after grinding and diluted to a
certain multiple. A 1.0 mL sample solution was accurately absorbed and added into the
optimized CuNCs-Apt-OTC-HAuCl4-ethanol-HCl system, and 5 parallel measurements
were performed by the RRS method for each sample. The determination results are as
follows (Table 2). Relative standard deviation (RSD) can reflect the precision of the test
results. The recovery is an index reflecting the degree of loss of the analytes in the sample
analysis process. The less the loss, the higher the recovery rate. It has a close relationship
with the accuracy and the stability of the analysis. The relative standard deviations are
between 3.8 and 5.2%, and the recoveries are between 97.13 and 103.4%. That means the
new assay is accurate, sensitive, and stable.

Table 2. RRS results of water samples.

Sample Detected Value (ng/L) Average
(ng/L) Add (ng/L) Found (ng/L) Recovery

(%) RSD (%) Content
(g/Tablet)

A 46.13, 42.52, 45.56,
42.80, 43.30 44.06 150 201.0 103.4 3.8 0.2203

B 43.12, 48.50, 48.38,
45.06, 47.95 46.60 150 191.0 97.13 5.2 0.233

C 106.8, 113.4, 109.2,
114.9, 103.7 109.6 150 262.4 101.8 4.2 0.1096
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4. Conclusions

In this work, CuNCs with high catalytic activity were prepared using a simple method,
and their morphology was characterized by SEM and TEM. The CuNCs were applied
as catalysis to the reaction of HAuCl4-ethanol, and the product of AuNPs has a strong
RRS/SERS signal. To realize the sensitive detection of OTC, the electrostatic attraction
between the CuNCs and the Apt was used to regulate the catalytic properties of nanoclus-
ters. This method has the advantages of simplicity, rapidity, stability, and sensitivity, and
provides a new assay for OTC detection.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11102501/s1, Figure S1: Fluorescence spectra of CuNCs with different excitation
wavelengths, Figure S2A–G: Optimization experiments; Table S1: Comparison of characteristics of
some OTC analysis methods reported, Table S2: Influence of interfering ions on RRS determination
of OTC, Table S3: Influence of interfering ions on SERS determination of OTC.
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