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Abstract

Markov modeling provides an effective approach for modeling ion channel kinetics. There are several search algorithms for
global fitting of macroscopic or single-channel currents across different experimental conditions. Here we present a particle
swarm optimization(PSO)-based approach which, when used in combination with golden section search (GSS), can fit
macroscopic voltage responses with a high degree of accuracy (errors within 1%) and reasonable amount of calculation
time (less than 10 hours for 20 free parameters) on a desktop computer. We also describe a method for initial value
estimation of the model parameters, which appears to favor identification of global optimum and can further reduce the
computational cost. The PSO-GSS algorithm is applicable for kinetic models of arbitrary topology and size and compatible
with common stimulation protocols, which provides a convenient approach for establishing kinetic models at the
macroscopic level.
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Introduction

Ion channels are the pivotal elements of cells, controlling the

flow of ions through cell membranes. Voltage-gated channels, for

example, are responsible for producing electric signals in excitable

cells and thus lay the foundation for life. Different voltage-gated

channels exhibit different gating kinetics in response to changes in

membrane potentials. For understanding how the channels

achieve their functions, it is often necessary to do quantitative

analysis of their gating kinetics, because it can provide insights into

the functional mechanisms by which they respond to changes of

stimulus. Kinetic modeling of ion channels has a long history,

dated back to the fifties when Hodgkin and Huxley provided the

earliest kinetic models for voltage-gated Na+ and K+ channels in

giant squid axons [1]. Since then, the H-H models have been

extensively used in data analysis of cellular electrophysiology.

However, with the availability of high resolution data, many ion

channels exhibit features beyond the traditional H-H models, such

as the multi-stimuli-dependent gating of big-conductance KCa

(BK) channels and the bi-exponential recovery of voltage-

dependent NaV channels. As a consequence, more complicated

Markov models have been proposed for analysis of ion channel

kinetics. Such models usually produce more precise descriptions to

the data and provide further insights into the structural and

functional mechanisms of the channels. Moreover, the availability

of a model will allow one to replicate many properties of the

channels such as their responses to various voltage commands,

which can be ultimately use to help understand the generations of

action potentials in excitable cells [2]. To develop such a model,

one faces the inverse problem of Markov modeling, i.e. how to fit a

model to data. Depending on the complexity of the models, the

problem can be challenging.

It is recently reported by Gurkiewicz and Korngreen [3] that a

genetic algorithm(GA) in combination with the Principle Axis

technique(PrAxis) was used to globally fit a complicated model to

macroscopic responses of voltage-gated channels with a cluster of

ten computers in more than a week. The approach appears to

work reliably when tested with data simulated from several

Hodgkin-Huxley–like and other Markov models of voltage-gated

K+ and Na+ channels. Nonetheless, the approach requires

extensive computing. Maximum likelihood estimation provides

an efficient approach for single-channel analysis [4,5] and has also

been applied more recently to macroscopic data [6]. The method

allows for arbitrary stimulation protocols, such as trains of ligand

or voltage steps as well as global fitting across multiple

experimental conditions. But the method also suffers from

intensive computations.

In this study, we aim to develop a whole-cell fitting method, i.e.,

particle swarm optimization(PSO)-golden section search(GSS)

algorithm that is computationally more efficient so that it can be

applied for analysis of complicated models with a desktop

computer in less than 10 hours. Our tests indicate that the PSO-

GSS algorithm can be one or two orders of magnitude faster than

the genetic algorithm described by Gurkiewicz and Korngreen [3]
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(Table S1). To further speed up the algorithm, we also introduce a

method for initial estimation of rate constants of the models.

Results

Before starting a fit, one can set a searching range for PSO-GSS

algorithm. In this study, there were two ways for searching the

parameter space: the first one to narrow down the searching

ranges of parameters derived from the estimated initial values with

the boundary factors of 3–5, and the second simply to use the

default range of parameters. The first one was expected to

accelerate the fitting progress.

Now we tested a five-parameter C-O model (Figure 1A). With

the estimated parameters as we described previously, the maximal

relative error was less than 100% of the target values before fitting

(Figure 1B, left), and after fitting, it approached zero (Figure 1B,

right). During fitting, the generation-course (in a way, time-

consuming-course) of scores plotted as a function of generations

showed that the optimization took about 100 generations (50

samples per generation) to achieve a score of ,1026 or less. With

default initial parameters (0.5 ms21 for all rates), it took about 200

generations (Figure 1C). At a score ,1026, the deviation of

parameters was ,1% from the target values. In Figure 1D, all of

the activation (left) and deactivation (right) lines (fits) completely

cross the empty circles representing the traces.

A little more complicated example was a nine-parameter model

C-O-I (Figure S1A), in which C-O and O-I were separately used

to estimate the free parameters. Here we also wanted to point out

that some steady-state expressions were often useful in parameter

estimation of the incomplete inactivation channels. In the O-I

course, we had IOff/Imax = e*exp(v/f)*ti and ti(v) = 1/(e*exp(v/

f)+g*exp(2v/h)), where Imax was the maximal current, IOff the

remaining current and ti(v) the inactivation time constants. The

values of e*exp(v/f) could be derived from measuring IOff/Imax

and ti(v). In Figure S1B, the maximal relative error of parameters

was over 200% before fitting (left), and decreased to about 10214

after fitting (right). With estimated initial values, the optimization

took about 1000 generations (100 samples per generation), while

with the default values, it took about 1700 generations (Figure

S1C). In both cases, the model adequately fitted the activation,

deactivation and recovery currents (Figure S1D).

The incorporation of constraints could tremendously reduce

number of free parameters. For example, the Kv-like model was

composed of four sequential closed states and one open state C1-

C2-C3-C4-O (or C4-O) (Figure S2A). In this model, the forward

rate k was constrained in a ratio of 4:3:2:1 and the backward rate

k9 in turn in a ratio of 1:2:3:4 if the transition between two

consecutive steps was independent. Therefore, total parameters

were reduced to five. Because the C4-O was identical to four

independent C-O courses, it thus had an analytic expression of

I!A?
4(1{e{(kzk’)t)4 [7], where A‘ = k/(k+k9). Fitting the above

equation to currents, we could obtain the values of k+k9 and A‘,

and thus the k and k9. Figure S2B showed that the maximal

relative error in parameters was about 200% from the target value

before fitting (left), and decreased to about 10214 after fitting

(right). With estimated initial values, the optimization took about

150 generations (100 samples per generation), while with the

default values, it took about 200 generations (Figure S2 C). Again,

the resulting model fitted both the activation and deactivation time

courses of channel currents perfectly (Figure S2 D and Animation

of Kv model). The C4-O could be expanded to the C1-C2-C3-C4-

C5-O (or C4-C-O) by replacing the last open state O with C5-O.

Let d and c be the forward and backward rates between the C5

and O states, respectively, of which both were voltage-independent

parameters. In this case, it was difficult to get all of six parameters

directly. However, we could get them by the courses C4-O or C5-

O, separately. When transition from C1 to C5 was much faster

than C5 to O, e.g. at the higher voltages, we only calculated the

slower C5-O course to get d and c as if C1-C5 merged into C5;

when transition from C1 to C5 was much slower than C5 to O, e.g.

at the lower voltages, we only calculated the slower C4-O course to

get the k and k9 as if O merged into C5. Remaining parameters

should be faster than the calculated ones. With the above

estimated initial values, a boundary factor of 3–5 was usually

good enough to ensure a parameter range fully covering its target

value.

Large conductance calcium- and voltage-dependent potassium

(BK) channel had a 10-state allosteric model C5-O5 named the

Monod-Wyman-Changeux (MWC) model [8]. A BK-like C5-O5

model contained eleven free parameters as shown in Figure 2A. In

addition to the constraints we mentioned previously, all the rate

constants in this model must obey the microscopic reversibility of

cycles, i.e., the product of the rates going clockwise must equal to

the product of the rates going anticlockwise. In other words, these

constraints of rate constants could be written as follows:

Pkij =Pkji. Here kij denoted a rate constant of transition between

states iRj. To solve this problem, there were three general

methods for imposing microscopic reversibility [9]. In this study,

we were going to deal with those constraints with a manual way.

For a four-state cyclic reaction model, the equation

k12k23k34k41 = k14k43k32k21 allowed one of rate constants to be

calculated from the other seven. Therefore, one cycle could reduce

one free rate constant. To automatically solve the microscopic

reversibility, a factor c (Refer to Figure 3A) was usually introduced

into the rate constants of models as we did in the BK-like model

[7]. Evidently, there were four cycles in the C5-O5 to reduce four

free rate constants. For estimating initial values of those free

parameters, we could discompose the model C5-O5 according to

different Ca2+ concentrations. For the intrinsic gating (C0-O0), we

estimated their rate constants at the lowest calcium concentration

(e.g. 0.005 mM). For the C4-O4 rates, we estimated them at the

highest calcium concentration (e.g. 100 mM). For other transitions

(e.g. C1-O1, C2-O2 and C3-O3), we simply set their initial values

in-between. Taking advantage of the detailed balance constraints,

we could further reduce the number of free rate constants by four.

For the MWC model, its equilibrium probability could be

calculated analytically by [8]:

Po~
1

1z½
1z
½Ca�
kc

1z
½Ca�
ko

�4L(0)e
{QFV

RT

ð1Þ

Making use of the relationship, we determined KO and KC by a fit

of conductance-voltage (G-V) curves.

Here the maximal relative error in the estimated parameters

was about 70% of its target value before fitting (Figure 2B, left),

and declined to ,0.2% after fitting (Figure 2B, right). In

Figure 2C, the estimated way cost about 700 generations (50

samples per generation) to get a good fit. For a complex model

with huge amounts of data, the default way was usually hard to

give a good fit within hours. To avoid a big computational cost, we

could manually or directly fit the element courses decomposed

from a complex model to roughly find out its initial values prior to

a global fit. Again, both of the activation and deactivation currents

at five different calcium concentrations were fitted perfectly

(Figure 2D).

Optimal Estimation of Ion-channel Kinetics
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A 13-parameter Nav-like model denoted as C5-O-I-CI5 contains

five cycles shown in Figure 3A, where CI represented the close-

inactivated state [2]. The above model was composing of four

kinetic courses: C0-C1-C2-C3-C4-O (or C5-O), O-C10 (or O-I), C9-

C8-C7-C6-C5 (or CI5) and C5-C0. The initial parameters of the C5-

O and O-I courses could be separately estimated by the way

described previously. Because C10RO was voltage-independent

but the channel recovery from inactivation was voltage-dependent,

the C5-C0 course was the only recovering gateway of inactivated

channels. We thus determined the rates of C5-C0 based on the

recovery time courses. Here we set the rates of C9-C10 as those of

C4-O. The left four cycles automatically satisfied the microscopic

reversibility by multiplying a factor c. Additionally, we imposed a

constraint i = ruj/(swgc8) to satisfy the microscopic reversibility of

the rightmost cycle. Here, each of the letters in the above

equation, i.e. r, u, j, s, w, g and c, represents the different rate

constants in Figure 3A, respectively. In this model, the maximal

relative error in parameters was .200% of its target value before

fitting (Figure 3B, left), and declined to ,1% after fitting

(Figure 3B, right). In Figure 3C, the estimated way cost about

1000 generations (50 samples per generation) in less than

10 hours. Similarly, all the activation, deactivation, recovery and

steady-state inactivation currents were perfectly fitted (Figure 3D).

Until now, all the examples dealt with PSO-GSS were derived

from the kinetic simulations created manually in advance, i.e., the

data used so far were ideal ones. However, the practical data

always contained several kinds of noises, such as thermal noise,

gating noise and capacitive noise. It was important to know the

antinoise ability of algorithm. Therefore, the macroscopic currents

of BK channels recorded from oocytes were used for this purpose.

Figure 1. Fit a five-parameter voltage-dependent C-O model to the target current traces. (A) A five-parameter Markov model consisting of
a closed state and an open state labeled with the letter C and O, respectively. The forward and backward rate constants separately are a*exp(v/b) and
c*exp(2v/d). Here v represents voltage in mV, a and c the pre-exponential factors in ms21 and b and d the exponential factors in mV. The fifth
parameter is the channel number NC. (B) The errors relative to their target values were obtained by estimation of initial values (left) or by fit (right). (C)
Convergence of PSO-GSS with (solid line) or without (dotted line) direct estimation. (D) In this model, target parameters a = 1 ms21, b = 50 mV,
c = 1 ms21 and d = 200 mV; the reversal potential of channels Vr = 0 mV; the single-channel conductance G = 250 pS and the channel count NC = 1.
The empty circles represent the target currents at the various voltages shown under each of current traces, and the solid lines represent fitted
currents.
doi:10.1371/journal.pone.0035208.g001

Optimal Estimation of Ion-channel Kinetics
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Figure 2. Fit a 11-parameter BK-like C5-O5 model to the target current traces. (A) A 11-parameter Markov model consisting of five closed
states and five open states labeled with the letter C and O, respectively. Each of parameters to be fitted is similar to that we described in Figure 1(A).
(B–C) See the description in Figure 1B–C. (D) In this model, the target parameters c0 = 1.8225 ms21, c1 = 1.215 ms21, c2 = 0.855 ms21, c3 = 0.49 ms21,
c4 = 0.11 ms21, d = 200 mV, b = 36 mV, a4 = 0.396 ms21, ko = 1.5 mM and kc = 13.5 mM; calcium concentration ca = 0.05, 1, 4, 10 and 100 mM,
respectively; the reversal potential of channels Vr = 0 mV; the single-channel conductance G = 250 pS and the channel count NC = 1. Four dependent
parameters are a0 = 0.001 ms21, a1 = 0.006 ms21, a2 = 0.038 ms21 and a3 = 0.196 ms21. The empty circles denote target currents and the solid lines
represent fitted currents. The voltage protocols are placed below each of current traces.
doi:10.1371/journal.pone.0035208.g002
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Figure 3. Fit a 13-parameter Nav-like C5-O-I-CI5 model to the target current traces. (A) A 13-parameter Markov model consisting of five
closed states (C0, C1, C2, C3 and C4), an open state (O), an inactivation state (C10) and five closed-inactivation states (C5, C6, C7, C8 and C9). Each of
parameters to be fitted is similar to that we described in Figure 1(A). (B–C) See the description in Figure 1B–C. (D) In this model, the target parameters

Optimal Estimation of Ion-channel Kinetics
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The model C5-O5 shown in Figure 2A was used for fitting the

experimental data. The practical data brought forth three

problems: capacitive noise; channel reopen; delayed current.

The capacitive noise came from voltage steps. The channel reopen

might come from recovery of Ca2+ block at higher voltages or the

miss match between model and data. The third one was due to the

miss match between model and data. Thus, we substituted all the

points with a straight line that would never be counted during run

to reduce the effects coming from capacitive noise and reopen. In

Figure 4A–B, the goodness of fit seemed to be good for currents

only. The G-V curves and time constants of model channels were

plotted in Figure 5A–B, respectively, indicating that the goodness

of fit is good again. The global best-fit parameters by PSO-GSS

shown in Table 1 was mostly consistent with that previously

calculated by Horrigan et al. [7], indicating that the global fitting is

a better way for building modeling. It was known that the same

data can be explained by several different models. Fitness of model

matching currents would have an impact on precisely describing

the action potentials of cells. Thus, it was meaningful to distinguish

which model provides the better fitness. In Figure 6A, a 7-state

model differing from 10-state MWC model was used to fit BK

currents as shown in Figure 5A. Obviously, it produced a worse fit

by eye or LER = 0.16 (Figure 6B).

Discussion

In this study, we have developed a new approach based on the

PSO-GSS algorithm for kinetic analysis of macroscopic currents of

ion channels. The approach is applicable to data obtained with

arbitrary voltage protocols. It also allows for global fitting of

current traces with models of arbitrary topology and complexity.

The fitting typically takes a few minutes for models at a reasonable

size. It is also applicable for more complicated models (e.g. 13

parameters) with a larger datasets, though the fitting takes a longer

time, e.g., ,10 hours on a desktop computer with a single AMD

Phenom 3.2 GHz CPU. Because calculation of initial probabilities

of all the states is automatic before starting parameter space search

by default, we thus suggest that starting position of each current

trace should be selected at steady states. Additionally, the

capacitive noises of raw data were eliminated before starting a fit.

The method in this study shows high efficiency in calculation

mostly due to the PSO-GSS algorithm with the corresponding

estimation in initial values. Is this estimation really necessary?

Answer is certainly positive. Our results indicated that the number

of generation cost for the simpler model was shortened at least to

half, using initial estimations. Additionally, it is not only easy to get

a good approximation as initial guess, but also investigators usually

want to use his own initial guess with a different boundary factor at

beginning, and to make some changes to parameters during

calculation, that let it become more friendly. When using the

default values, it is better to make a change on the exponential

factor from 0.5 to 10, which may create a very large number

difficult to calculate at the higher voltages. Additionally, we found

that either channel count NC or single-channel conductance could

be crucial for global fitting, as a bad approximation of NC may

severely affect actual probability of each state. Fortunately, good

approximation of NC can easily obtain after measuring the

saturated currents of channels.

For the complicated models, e.g., BK-like or NaV-like models

with huge amounts of data, our approach needs a relatively longer

time to converge to the target values with an average error of 1%.

Considering the stochastic property of PSO, we tested the

repeatability of convergence of the algorithm. Our data showed

that it had good repeatability of convergence for the BK-like

models with 11-parameter (n = 3), but disaccord for the NaV-like

models with 13 parameters. In Figure S3 A, one score declined to

1026, two to 1025 and three to 1024. With six tests, the mean

errors derived from 12 parameters except NC are ,20% (n = 3),

,10% (n = 2) and ,1% (n = 1), respectively; the minimal mean

error is less than 1% and the maximal mean error is more than

60% (Figure S3 B). However, fixing the constraint factor

c = 4.436203 (target value), we completely eliminated the instabil-

ity of convergence (n = 3), suggesting that it is coming from the

constraint i = ruj/(swgc8) with a big factor c8.

Macroscopic responses of ion channels are less rich in kinetics

than single-channel events. Thus, they allow fewer parameters of

the model to be identified. To improve the issue, we added

constraints on the model. Our tests suggest that the incorporation

of such constraints greatly improves the identifibility of complex

models. For all the examples considered here, our algorithm

successfully recovers the parameters of the models from data of

activation, deactivation, inactivation, steady-state inactivation and

recovery of inactivation.

Materials and Methods

Simulation environment
PSO-GSS algorithm written by the Visual C++ language is

running on a desktop computer with a AMD Phenom 3.2 GHz

CPU, Windows-XP system. Algorithm will automatically calculate

the starting probabilities of each state before fitting. The

established model can be used to further calculate action potentials

in a model cell [6]. All data in a format of ABF were analyzed

using the software Clampfit (MDC/Axon Instruments, USA).

Particle swarm optimization-golden section search
algorithm

Population-based random search method is a kind of stochastic

optimization method that can be applied to a wide variety of

problems (whether it is linear or nonlinear, continuous or discrete,

differentiable or not). It is especially suitable for the traditional

optimization problems difficult to be solved, such as those with no

analytical solution, multi-modal and multi-objective criterions and

large variable dimensions. The method has been successfully

applied to a broad range of science and engineering problems,

such as, task matching and scheduling [10], capacitated multipoint

network design [11], nonlinear controller design of power system

[12], distributed database management [13], large-scale circuit

design [14,15], military tactical planning [16], etc.

PSO algorithm [17,18] is a typical population-based heuristic

global stochastic optimization technique introduced by Kennedy

and Eberhart in 1995. Its basic idea is based on the simulation of

simplified animal social behaviors such as fish schooling, bird

flocking, etc. In classic PSO, a population of random particles

(solutions) is initialized. The optimal particle (solution) is then

m = 288.655598 ms21, n = 12 mV, p = 22.144593 ms21, q = 48 mV, r = 7.5 ms21, s = 2 ms21, g = 0.001, d = 0.5 ms21, c = 4.436203, u = 0.9 ms21,
w = 0.006 ms21 and j = 4 ms21; the reversal potential of channels Vr = +55 mV; the single-channel conductance G = 250 pS and the channel count
NC = 1. A dependent parameter i = 15 ms21. The empty circles denote target currents and the solid lines represent fitted currents. The voltage
protocols are placed below each of current traces.
doi:10.1371/journal.pone.0035208.g003
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found through continuous updating in generations. In every

generation, particles are updated by tracking two ‘extremums’.

One is the optimal value found by the current particle so far, and

the other is the optimal value found by all the particles so far. The

former one denotes the local optimal information, and the latter

one represents the global optimal information. Combining them

with the inertia information of the particle, which contains its

historical information, the particles move towards the optimal

value gradually in the search space.

In the present work, we used an adaptive inertial weighted PSO

algorithm with a genetic operator [19,20]. The population was

sorted according to each individual value of the cost function in

Equation 2, and new generation was created using selection and

crossover operators of PSO algorithm. Our simulations suggest

that the kinetic fitting of ion channels follow a unimodal-type

function in a local area. As a result, we applied the classic linear

search procedure, golden section search (GSS) [21] for searching

the optimal solutions locally. GSS is a technique using for finding

the extremum of a unimodal function by successively narrowing

the range of parameters. For example, assuming that the point A is

the previous best parameter set and B the present best parameter

set, GSS searches for the new best solution along the vector AB
�!

(Figure 7A). In the succeeding search, if the point C is better than

B while the point D worse than C, the local optimal solution E will

be identified between B and D. The incorporation of the GSS

technique improves the efficiency and precision of the PSO

algorithm. Figure 7B shows the flow diagram of the whole search

procedure. First, the PSO is initialized to set parameters and

operators. Then PSO is started for one generation and the

resulting optimal value is sent to the GSS for further local

optimization. Next, the solution is tested for the stop criterion,

which is normally defined as a constant generation maximum. If

Figure 4. Fit a MWC model C5-O5 to the macroscopic currents of BK channels from Xenopus oocyte. (A) Activation traces of BK currents
were recorded from an inside-out patch from a Xenopus oocyte injected with cRNA encoding mSlo1 a subunits. Channels were activated by voltage
steps ranging from 2200 to +200 mV with 10 mV increments from a holding potential of 2180 mV with a cytosolic [Ca2+]i as indicated. The voltage
protocol is not shown here. The red lines were coming from the globally fitting the model C5-O5 to BK currents by PSO-GSS algorithm. The channel
count NC is 314 for 1 mM, 365 for 10 mM and 433 for 300 mM. The different Nc in the same patch is probably coming from the smaller single-channel
conductance at the higher Ca2+, which will not change the channel kinetics. (B) Deactivation currents were obtained from the same patch as we
described in (A). Currents were elicited by voltage steps ranging from 2200 to +180 mV with 10 mV increments from a 20 ms-prepulse of +180 mV
with a cytosolic [Ca2+]i as indicated. The red lines are fits by a PSO-GSS algorithm. The channel count NC is 301 for 1 mM, 354 for 10 mM and 387 for
300 mM. The score s2 is 41.60. All the capacitive currents of 0.15 ms were pre-substituted with straight lines before run and not counted during run.
The dash line is zero current.
doi:10.1371/journal.pone.0035208.g004
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the stop criterion is not satisfied, the algorithm loops back to PSO

and continues for the next generation; otherwise, the optimization

stops and the solution is taken as the optimal value. During

iterations, the best solution was independently saved for each

generation. Once a better one was found, it was used to replace

the previous one, which was considered as a displacement in the

parameter space.

Our particle swarm optimization in combination with a golden

section search algorithm (GSS) is much faster than that described

by Gurkiewicz and Korngreen [3], since we have taken three

measures to improve the searching efficiency of PSO-GSS

algorthm:

1) PSO and GSS work interactively in each generation so that

the global and local information can be integrated.

2) Real number coding instead of binary coding in GA is

employed in PSO to improve the searching accuracy.

3) Both PSO and GSS require no gradient information.

Figure 5. Comparison of kinetic characteristics between simulation data and target data. (A) The G-V curves of BK channels were plotted
for data and best-fit, in the presence of 1, 10 and 300 mM Ca2+, respectively. (B) Time constants of activation (Left) and deactivation (Right) of BK
channels were plotted for data and best-fit, in the presence of 1, 10 and 300 mM Ca2+, respectively. Here data are in black and fits in red.
doi:10.1371/journal.pone.0035208.g005
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The pseudocode of the PSO-GSS algorithm can be found in the

Supporting file.S1

PSO-GSS searches the true parameter values of models in

parameter spaces. Given the larger spaces, it often costs the longer

computational time. Given a starting value of parameters and a

boundary factor, we can define a window ranging from starting

value/boundary factor to starting value* boundary factor. Without

prior knowledge, we can define the default window ranging from

0.005 and 50, setting the initial values = 0.5 and the boundary

factors = 100. In this study, the unit is ms21 for the preexponential

factor of rate constants k, and mV21 for the exponential factor of

rate constants k. In other words, a default range is between 0.005

and 50 ms21 for preexponential factor, and between 0.005 and

50 mV21 for exponential factor. Virtually, those ranges are

Figure 6. A 7-state BK model used for describing the same currents in Figure 4. (A) A 7-state BK model simplified from the 50-state MWC
model of BK channels. (B) The parameters of the 7-state model were: a = 342.37 s21; b = 67.90 mV; c = 56821.90 s21; d = 168.47 mV; f = 10.21 s21;
i = 232.72 mV; g = 71130.28 s21; j = 121.54 mV; h = 1330.129 s21 M21; c1 = 3.97; kO = 562.23 M; f1 = 105 s21; g1 = 1323.36 s21; f2 = 10.02 s21;

g2 = 99575.30 s21. The score s2 is 84.99. Compared with the 10-state MWC model, we have LER~log(

ffiffiffiffiffiffiffiffiffiffiffi
84:99
p
ffiffiffiffiffiffiffiffiffiffiffi
41:60
p )~0:16.

doi:10.1371/journal.pone.0035208.g006
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adequate for most models in practice. The channel population Nc

can be selected manually, e.g. Nc = 250 pS. The state occupancy

of a model is calculated by Q-matrix [22].

We define the cost function s2 (or score) as the relative least

square error between fits and data:

s2~
1

M

XP
(fij{tij)

N max(fij)
ð2Þ

Where f is the fit, t is the data, N is the point number of data, and

M is the number of sweeps. Here the normalized least square error

promotes the significance of data with smaller current and less

point.

To rank fitness of different models, we used the Log Error

Ratio(LER): LER = log(sA/sB), where sA and sB are the root

mean squares for fitting the same data to the models A and B,

respectively [3].

Table 1. Parameters Used for Current Simulations.

Activation parameters Range defined in Cox et al. [8] Value used for current simulations

L(0) 1647–2029 1355.59

Q 1.35-1.40e 1.18e

KC 8.68–11.0 mM 14.10 mM

KO 1.04–1.10 mM 1.57 mM

C0RO0 1.8–2.39 s21 0.077 s21

C1RO1 5.0–7.0 s21 20.11 s21

C2RO2 29–40 s21 7.10 s21

C3RO3 130–295 s21 360.12 s21

C4RO4 300 s21 840.33 s21

q0 0.71-0.73e 0.89e

O0RC0 3612–3936 s21 130.45 s21

O1RC1 1076–1338 s21 3624.34 s21

O2RC2 659–974 s21 135.39 s21

O3RC3 480–490 s21 725.92 s21

O4RC4 92–126 s21 179.14 s21

qc 20.64 to 20.67e 21.63e

Ca2+ on rates per site 109 M21 s21 109 M21 s21

doi:10.1371/journal.pone.0035208.t001

Figure 7. Schematic diagram for GSS and PSO. (A) A schematic drawing for golden section search algorithm (GSS). (B) A flow graph for the PSO-
GSS algorithm.
doi:10.1371/journal.pone.0035208.g007
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Estimating the initial values of the model parameters
from macroscopic currents

Stochastic search usually costs tremendous computational time

in the wider ranges, especially dealing with a larger set of

parameters. Additionally, some parameters may go beyond those

ranges. A proper estimation of initial values can help guiding the

whole searching process around the target values in order to

reduce computational time as we select initial values for fitting a

function to data.

We can decompose the whole models into several basic kinetic

elements, because the basic kinetic course of ion-channel gating is

principally composed of several element reactions: activation

(CRO), deactivation (CrO), inactivation (ORI) and recovery

from inactivation (OrI or CrOrI), where C, O and I are the

closed, open and inactivation states, respectively. For example, the

model Cr ROr RI can be divided into two basic kinetic

courses: Cr RO and Or RI, in which the estimated values will

not be far off the true ones. It is known that macroscopic currents

of channels can be written as I = N*g*Po*(v2vr), where N, g, Po, v

and vr are the channel number, the single channel conductance,

the open probability, the membrane potential and the reversal

potential of channels, respectively. Here, the open probability Po

of the simplest voltage-dependent dynamic course Cr RO has an

analytic expression, i.e., Po(t) = kf/(kf+kb)*(12exp(2(kf+kb)*t)) for

activation process, and Po(t) = Po(t0)*exp(2(kf+kb)*t)) for deactiva-

tion process, where the forward rate constant kf(v) = a*exp(v/b)

and the backward rate constant kb(v) = c*exp(2v/d). The letters a,

b, c and d represent the pending parameters (Figure 1A). In other

words, we always have the current I(t)/exp(2(kf+kb)*t) in both

courses. Considering two different cases or directions, i.e., the

extremely positive or negative voltages, we have I(t)/exp(2kf*t)

when kf&kb at positive voltages or I(t)/exp(2kb*t) when kb&kf at

negative voltages. Fitting single exponential function to the

activation currents or deactivation currents separately, we can

obtain a set of values of kf(v) and kb(v), respectively. After that, we

fit the expression a*exp(v/b) to kf(v) to get the parameters a and b.

The same procedure can be used to get the parameters c and d.

Based on these initial values, we further narrow the searching

range by reducing the boundary factors to 5 or less in order to save

the computational cost greatly. The whole procedure can be

summarized as below:

1) Discompose the original model into a series of element

reactions, such as: CRO, CrO, ORI, etc.

2) For each of the above element reactions, fit I(t)/exp(2kt) in

the k course to get a set of values of k(v).

3) Fit an exponential function to k(v) to get the pre-exponential

and exponential factors.

Experientially, it is better to obtain a good approximation for

the channel number NC so as to roughly keep a suitable initial

occupancy of states. With a good estimation on NC, we simply set

the boundary factor = 1.5 or less. For exponential factors, we

usually set them larger than 10 to avoid larger numbers appearing

at extreme voltages, which may stop fitting.

Electrophysiology
mSlo1 cRNA was prepared as we described previously [23]. 10–

20 ng/ml of RNA was injected into stage IV Xenopus oocytes

harvested 1 d before. The injected oocytes were maintained in

ND96 solutions (96 mM NaCl, 2.0 mM KCl, 1.8 mM CaCl2,

1.0 mM MgCl2, and 5.0 mM HEPES, pH 7.5) supplemented with

2.5 mM sodium pyruvate, 100 U/ml penicillin, 100 mg/ml

streptomycin, and 50 mg/ml gentamicin at 17uC.

Currents were recorded in inside-out patches with symmetric

K+ solutions, and typically digitized at 10–50 kHz. In some

experiments, a sampling rate of 100 or 200 kHz was used. Data

were filtered at 5–20 kHz using the built-in Bessel low-pass filter in

the amplifier. The extracellular solution consisted of (mM):140

potassium methanesulfonate (MES), 20 KOH, 10 HEPES, and 2

MgCl2, pH 7.0. The intracellular solution contained 140

potassium MES, 20 KOH, 10 HEPES, pH 7.0, with Ca2+
buffered by either 5 EGTA (for nominally 0–1 mM Ca2+) or 5

HEDTA (for 4–10 mM Ca2+). For 60 mM–5 mM Ca2+, no buffer

was used. Free [Ca2+] was calculated using the EGTAETC

program (E. McCleskey, Vollum Institute, Portland, OR).

Calibration of [Ca2+] was as we previously described [23].

Experiments were done at room temperature (21–24uC). All the

chemicals were purchased from Sigma-Aldrich.

Data were analyzed with ClampFit (MDC/Axon Instruments,

USA). G-V curves of activation were fit with Boltzmann equation:

G/Gmax = (1+exp((V2V50)/k)21, where V50 is the voltage at

which the conductance (G) is half the maximum conductance

(Gmax), and k determines the slope of the curve.

Supporting Information

Figure S1 Fit a nine-parameter voltage-dependent C-O-
I model to the target current traces. (A) A nive-parameter

Markov model consisting of a closed state, an open state and an

inactivation state labeled with the letter C, O and I, respectively.

The parameters to be fitted are similar to that we described in

Fig. 1(A). (B–C) See the description in Fig. 1B–C. (D–E) In this

model, the target parameters a = 0.001 ms-1, b = 50 mV,

c = 0.081 ms-1, d = 90 mV, e = 0.015 ms-1, f = 200 mV,

g = 0.007 ms-1 and h = 30 mV; the reversal potential of channels

Vr = 0 mV; the single-channel conductance G = 250 pS and the

channel count NC = 1. The empty circles denote target currents

and the solid lines represent fitted currents. The voltage protocols

are placed below each of current traces.

(TIF)

Figure S2 Fit a five-parameter Kv-like C4-O model to
the target current traces. (A) A five-parameter Markov model

consisting of four closed states and an open state labeled with the

letter C and O, respectively. The parameters to be fitted is similar

to that we described in Fig. 1(A). (B–C) See the description in

Fig. 1B–C. (D) In this model, the target parameters a = 0.0414 ms-

1, b = 22 mV, c = 0.0072 ms-1 and d = 45 mV; the reversal

potential of channels Vr = 0 mV; the single-channel conductance

G = 250 pS and the channel count NC = 1. The empty circles

denote target currents and the solid lines represent fitted currents.

The voltage protocols are placed below each of current traces.

(TIF)

Figure S3 Repeatability of convergence of the fit for
NaV-like channels. (A) Converging behaviors of PSO-GSS

algorithm for 13-parameter NaV-like channel model. (B) Sum-

mary on the mean errors of 12 parameters except NC.

(TIF)

Table S1 A Comparison between PSO-GSS and GA+
PrAxis.

(DOC)

Supporting File S1.

(DOC)
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