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Persistent high-risk human papillomavirus (hrHPV) infection is the highest risk to cervical
cancer which is the fourth most common cancer in women worldwide. A growing body of
literatures demonstrate the role of cervicovaginal microbiome (CVM) in hrHPV
susceptibility and clearance, suggesting the promise of CVM-targeted interventions in
protecting against or eliminating HPV infection. Nevertheless, the CVM-HPV-host
interactions are largely unknown. In this review, we summarize imbalanced CVM in
HPV-positive women, with or without cervical diseases, and the progress of exploring
CVM resources in HPV clearance. In addition, microbe- and host-microbe interactions in
HPV infection and elimination are reviewed to understand the role of CVM in remission of
HPV infection. Lastly, the feasibility of CVM-modulated and -derived products in
promoting HPV clearance is discussed. Information in this article will provide valuable
reference for researchers interested in cervical cancer prevention and therapy.
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INTRODUCTION

Persistent high-risk human papillomavirus (hrHPV) infection is the highest risk to invasive cervical
cancer (ICC), which has caused an estimated 570,000 new cases and 311,000 deaths in 2018 (1).
Prophylactic vaccines are effective in preventing HPV infection, but providing limited protection
against pre-existing HPV infection which impact large populations in developing countries for a
long-lasting period (2, 3). It will be an imperative alternative to prevent HPV-infected cervical
intraepithelial neoplasia (CIN) and ICC by eliminating HPV infection. An increasing number of
literatures suggests the association of natural HPV clearance and CIN regression with cervicovaginal
microbiome (CVM) (4–8), which modulate a finely-tuned immune responses balancing
reproductive tolerance with protection against genital infections (9). Our and other studies
demonstrated predominance of one or few Lactobacillus species in CVM of healthy lower
reproductive tract (LRT), including Lactobacillus crispatus (community-state type I, CST I),
Lactobacillus gasseri (CST II), Lactobacillus iners (CST III) and Lactobacillus jensenii (CST V)
(10–14). These Lactobacillus species benefit reproductive health by inhibiting pathogens via
produced bacteriocins, lactic acid and hydrogen peroxide (15).
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Emerging reports demonstrate imbalanced CVM in women
with HPV infection, including increased bacterial diversity,
depletion of Lactobacillus as well as identified high rate of
natural HPV clearance in women with predominant L.
crispatus in CVM (4, 8, 16–21). To the best of our knowledge,
there is no public report investigating the mechanism of
interaction between HPV and microbiome, due to difficulties
to cultivate HPV in vitro and limited mouse models for HPV-
medicated cervical dysplasia or cancer. Nevertheless, a number
of studies support the concept that CVM modulates immune
microenvironment through microbe- or microbe-host
interactions to impact the risk of viral infections and clearance
(9, 22–25). For instance, Lactobacillus conferred colonization
resistance to Gardnerella vaginalis which induced suppressive
immune responses beneficial to persistent HPV infection (22). M
N Anahtar et al. demonstrated that CVM was the main
modulator of immune responses in lower reproductive tract
(LRT) and affected the risk of human immunodeficiency virus
(HIV) infection (23). Peptidoglycans (PGN) produced by
isolated vaginal L. crispatus activate Langerhans cells (LCs),
which is the most important antigen presenting cells (APCs) in
cervical epithelium (25), and several follow-up investigations
further suggest a strong in vivo relationship between LCs
activities and HPV clearance (26–28).

In this review, we first summarize the association of CVM
with HPV infection and clearance, then discuss mechanisms of
microbiome, host responses and HPV interaction. Lastly, several
potentials are explored about how to eliminate pre-existing HPV
infection via microbiome-derived products or microbiome-
targeted interventions.
IMBALANCED CVM IN HPV INFECTION

Emerging evidence suggests association between CVM and HPV
infection and persistence. Almost all cross-sectional studies
consistently found higher diversity of CVM in HPV-positive
women, with or without CIN, as compared to HPV-negative
individuals (16–21, 29–32). In recent decade, a growing body of
literature suggests that depletion of Lactobacillus and overgrowth
of anaerobic bacteria is associated with increased CVM diversity
(Figure 1) (16–21, 29, 30). For individuals infected with HPV but
without CIN or ICC, initial cross-sectional studies involving
Korean (n=68 selected from 912 women in Healthy Twin Study)
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and Chinese (n=70) women identified reduced levels of
Lactobacillus as well as higher abundance of bacterial vaginitis
(BV)-associated bacteria such as Gardnerella, Sneathia and
Megasphaera (18, 30). This is consistent with increased
susceptibility to HPV infection in women with BV revealed by
meta-analysis (33). Besides to Gardnerella, Sneathia and
Megasphaera, additional reports found greater relative
abundance of Atopobium, Bacteroides, Prevotella and lower
proportion of Lactobacillus in CVM of HPV-positive women
(16, 17, 29). Studies involving women with CIN or ICC
consistently found significant decrease of Lactobacillus and
substantial increase in CVM diversity compared with HPV-
negative individuals (18, 19, 31, 32).

At species level of Lactobacillus, a marked decrease of L.
crispatus was found in CVM of women with HPV infection, CIN
or ICC, while L. iners-dominant CVM had higher risk of CIN (8,
18, 31, 32, 34). Additionally, women with HPV infection had
accumulation of Bacteroides plebeius, Acinetobacter lwoffii,
Prevotella buccae, Dialister invisus, G. vaginalis, Prevotella
buccalis and Prevotella timonensis in CVM (29, 31, 32, 34). For
instance, a study involving 70 women with CIN and 50 HPV-
negative women indicated that 6-fold risk of CIN associated with
unique CVM, which is characterized by paucity of L. crispatus,
enriched A. vaginae, G. vaginalis and L. iners (30). Two
independent systematic reviews and meta-analysis also found
that L. crispatus correlated with decreased risk of hrHPV
infection and CIN (35, 36). Compared with L. crispatus-
dominant CVM, women with non-Lactobacillus- or L. iners-
dominant CVM had 2-3 times higher odds of hrHPV prevalence
and CIN, as well as 3-5 times higher odds of any prevalent HPV
(95% CI) (35).

Besides to microbial components, emerging literature
explores functional difference of CVM between HPV-positive
and HPV-negative women (37–39). Functional prediction of 16S
rDNA amplicon sequencing data found accumulation of
multiple pathways in HPV-infected and CIN women,
including those of folate biosynthesis and oxidative
phosphorylation (37). Metagenomic analysis of 17 CIN, 12
ICC cases and 18 healthy individuals found enriched genes
related to peptidoglycan synthesis as well as depletion of
dioxin degradation and 4-oxalocrotonate tautomerase in CVM
of women with CIN or ICC (38). Biofilm formation assessment
identified higher formation rate in HPV-positive women (45%)
compared to HPV-negative women (21.9%) (39), which may be
FIGURE 1 | Imbalanced CVM in HPV-infected cervix. The left is the normal cervicovaginal microenvironment without HPV infection, and the right is HPV-positive
microenvironment (HPV-infected cells are labelled purple). Created in BioRender.com.
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attributed to increased levels of obligate anaerobic bacteria in
CVM of HPV-infected women, such as G. vaginalis with
sialidase-encoding gene involved in biofilm formation (8).

Above-mentioned observational studies are only possible to
demonstrate association of CVM with HPV infection and CIN
diseases rather than causality. Longitudinal data is increasingly
applied to explore the causal link (7, 40, 41), which has profound
clinical impact to provide effective alternatives for therapeutic
strategies of HPV-infected CIN. Six-month follow-up of 211
Nigerian women showed the association of Lactobacillus paucity
and high CVM diversity with persistent hrHPV infection (40).
Analysis of serial cervicovaginal specimens obtained over 8-10
years unraveled that high relative abundance of L. crispatus in
CVM had the lowest risk of HPV infection compared to other
types of CVM, according to 16S V1-V2 rRNA gene amplicon
sequencing and HPV DNA testing conducted annually (41).
Brotman and colleagues collected self-sampled mid-vaginal
swabs twice a week for 16 weeks from 32 reproductive-age
women, and showed that depletion of Lactobacillus in CVM
may increase the chance to acquire transient and persistent HPV
infection (7). Consistently, meta-analysis involving 39 articles
suggests the protection against HPV infection imposed by
Lactobacillus-dominant CVM (42). Another systematic review
and meta-analysis of longitudinal studies also support a causal
Frontiers in Oncology | www.frontiersin.org 3
relationship between non-Lactobacillus-dominant CVM and
cervical carcinogenesis via the effect of CVM on HPV infection
(RR 1.33, 95% CI) and persistence (RR 1.14) (43).
CVM IS ASSOCIATED WITH NATURAL
HPV CLEARANCE AND CIN REGRESSION

According to a follow-up analysis on 55 women with HPV
infection and 17 age-matched healthy HPV-negative women, L.
crispatus was the most abundant Lactobacillus species in
individuals with natural HPV clearance (Figure 2A) (8).
Conversely, high proportion of Atopobium in CVM had
significantly slowed HPV remission rate in 16-week follow-up,
compared to L. crispatus-dominant CVM8. Another longitudinal
study involving 64 HPV16-positive women found more frequent
transition between identified CSTs, including dominant
Lactobacillus sp., L. iners, two mixed non-Lactobacillus of CVM,
in women with persistent HPV16 infection (34% with averaged
155.5 days interval) when compared to women with natural
clearance of HPV16 (19% with averaged 162 days interval)
(Figure 2A) (6). Consistently, Anita Mitra and partners found
more stable CVM in women with CIN2 regression, as compared
to individuals with CIN persistence or progression4. In this study,
A

B

FIGURE 2 | Cervicovaginal microenvironment in persistent HPV infection and natural HPV clearance. (A) L. iners- or non-Lactobacillus-dominated CVM is
characterized by allowing the proliferation of anaerobes which produce sialidase to disrupt epithelial barrier and then facilitate the entry of HPV. HPV particles
exist in infected keratinocytes as episomes before entry into the nucleus, and viral integration induces high expression of E6/E7 proteins to promote abnormal
cell proliferation as well as carcinogenesis. L. crispatus-dominated CVM is associated with natural HPV clearance and CIN regression. (B) For HPV-positive women
with L. crispatus-dominated CVM, L. crispatus can inhibit growth of anaerobes through several mechanisms (microbe-microbe interaction) and activate LCs which
is the only APCs in cervical epithelium to present HPV antigens and induce HPV-specific CMI (host-microbe interaction). Both microbe- and host-microbe
interaction decrease the level of factors correlated with barrier impairment (sialidase and biofilm of anaerobes) and suppressive immunity (Treg, Th2, Th17 cells,
IL-10, IL-17, TGF-ß), and increase the expression of biomarkers in activated LCs (antigen-binding langerin and TLR9, antigen-presenting CD1a and MHC-I,
co-stimulatory molecule CD80/86 and CD40) as well as CMI-associated molecules (cytotoxic T lymphocytes-CTLs, Th1 cells, IFN-g, TNF-a). This figure applied
icons in BioRender.com.
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87 CIN2 patients aged 16-26 years old were included in two-year
follow-up showing that women with Lactobacillus-dominant
CVM at baseline are more likely to regress at 12 months while
slower regression was associated with Lactobacillus depletion as
well as increased abundance ofMegasphaera, Prevotella timonensis
and G. vaginalis (4). At species level, women with L. crispatus-
dominant CVM had faster regression and higher rate of CIN
remission at 12 and 24 months (4).

A total of four CSTs, dominated by L. crispatus, L. iners, G.
vaginalis and mixed genus, was identified in another study
involving 273 women aged 18-25 years old (5). At first visit,
Lactobacillus and Gardnerella abundance was associated with
CIN2 regression and progression respectively. Second visit was
conducted at least 305 days after first visit, and CIN2 progression
had strong correlation with increased bacterial diversity.
Functional prediction of 16S rDNA amplicon sequencing data
further showed the positive relationship between pathway of cell
motility and CIN2 regression, while progression was in
association with “Xenobiotics Biodegradation and Metabolism”
pathway in CVM.

Fungal components in CVM were also associated with HPV-
infected CIN regression (5). Mykhaylo Usyk and colleagues found
the protective effect of fungal diversity against CIN progression
(OR=0.90, 0.82-1.00) (5). Among fungus Candida, Malassezia and
Sporidiobolaceae, the accumulation of Candida was identified in
CVM of CIN1 which had the highest regression rate (5).
Additionally, a retrospective investigation on 100,605 women who
had 2 smears each over a period of 12 years, found that common
fungus Candida in cervicovaginal microenvironment decreased the
risk of squamous intraepithelial lesions (44).
MICROBE- AND HOST-MICROBE
INTERACTIONS IN HPV CLEARANCE

The complexity of cervicovaginal microenvironment of women
with HPV infection is determined by HPV, CVM and the host.
To explore the contribution of CVM to promote or protect
against HPV infection, there is much work to be done in
exploring microbe-microbe interactions in CVM, as well as the
interactions between microbe and HPV/host (Figure 2B).

Sialidase are a group of mucin-degrading enzymes produced
by BV-associated G. vaginalis and Prevotella, and disrupt the
integrity of mucosa as well as epithelium to aid the entry of HPV
to basal keratinocytes (Figure 2A) (45). Besides to compromised
cervical epithelial barrier, BV-associated anaerobes also impact
several cellular pathways to enable persistent viral infection and
subsequent disease development (46–50). Sneathia spp.,
commonly accumulated in CVM of BV and HPV-infected
patients, belongs to Fusobacterium genus which can activate
proinflammatory pathways and inhibit immunocytotoxicity to
promote carcinogenesis (51). This information may explain the
high susceptibility to HPV infection in women with BV and
accumulation of vaginal obligate anaerobic bacteria in women
with persistent HPV infection or cervical dysplasia progression
(16–18, 29, 30, 33).
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Vaginal Lactobacillus spp. can produce a large amount of
lactic acid through glycogen fermentation, maintaining acidic
environment to inhibit the colonization of several pathogenic
species such as Chlamydia trachomatis, Neisseria gonorrhoeae
and BV-associated G. vaginalis (Figure 2B) (15, 52–55).
Bacteriocins produced by vaginal Lactobacillus also exhibit
inhibitory effects on common pathogenic bacteria and certain
fungi, such as G. vaginalis and Candida albicans (Figure 2B) (15,
56, 57). In addition, Lactobacillus hold the potential to alter
surface tension and thus bacterial adhesion which is pivotal in
biofilm formation via excreted biosurfactants, therefore
preventing overgrowth of pathogenic anaerobes, especially G.
vaginalis (Figure 2B) (22, 58–60). Another defense factor
derived from vaginal Lactobacillus is H2O2, which destroys
vaginal bacterial components with limited expression of H2O2-
degrading enzymes, including Prevotella and Gardnerella (60,
61). Besides direct inhibition on pathogens, Lactobacillus can
occupy possible niches to indirectly protect against pathogen
colonization (Figure 2B). For instance, epithelium adhesin
facilitates the adhesion of L. crispatus to genital mucosa and
then additionally inhibits pilus-mediated adhesion of G.
vaginalis (22).

As discussed above, vaginal Lactobacillus play critical roles in
cervicovaginal health, but not all Lactobacillus-dominant CVM
benefit the host in the same manner. Lactic acid has D- and L-
isomer while the former is mainly produced by L. jensenii, L.
crispatus, L. gasseri and the latter is produced by L. iners and a
variety of anaerobes (62). Women with L. iners- or non-
Lactobacillus-dominant CVM therefore have a higher ratio of
L- and D-lactate, increasing the expression of extracellular
matrix metalloproteinase inducer and activating matrix
metalloproteinase 8, which facilitate the entry of HPV to the
basal keratinocytes by altering cervical integrity (Figure 2A)
(62). Conversely, L. crispatus-dominant CVM can lead to
increased cervicovaginal mucus viscosity and promote viral
capture (63). Additionally, CVM predominated by L. iners is
more instable than CVM with other dominant Lactobacillus
species and therefore allows growth of strict anaerobes
resulting in transition to non-Lactobacillus-dominant CVM (4,
64). This is consistent with findings that L. iners-dominant CVM
tends to be identified in women with persistent HPV infection
and progression of cervical diseases (Figure 2A) (8, 18, 31, 32,
34). On the contrary, L. crispatus-dominant CVM has the lowest
possibility in transition to other CVM types (4, 13, 64), and is
thus positively associated with cervicovaginal health (Figure 2A).

Though many clues exist in microbe-microbe interactions,
there are no published reports exploring the mechanism of
interaction between CVM and HPV, due to the difficulties
of in vitro HPV cultivation. Nevertheless, a growing number of
literatures demonstrate unique host immune responses
(Figure 2B) (65), which mediate the CVM-HPV interactions
in women with HPV infection. Oncoproteins of hrHPV can
suppress presentation of hrHPV antigens and impair alarm
functions of infected basal keratinocytes where HPV thrive.
For example, hrHPV E7 protein can lead to repression of
major histocompatibility complex I (MHC I), LMP2 as well as
July 2021 | Volume 11 | Article 722639
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TAP1 gene through interaction with MHC I promoter, and E5
protein blocks the transport of MHC I and CD1d to the cell
surface, which is crucial for HPV antigen presentation (66–71).
Infection of hrHPV also reduce the expression of infected
keratinocyte-derived chemokine (C-C motif) ligand 20
(CCL20) (72, 73), attracting the migration of LCs which is the
only APCs in vaginal epithelium where HPV infection occurs. In
addition, hrHPV infection is associated with suppressed LCs
activities, including decreased levels of E-cadherin remaining
LCs in infected epidermis to capture HPV antigens, and antigen-
binding langerin as well as TLR (74–78). Once internalizating
HPV antigens, LCs become mature and migrate to lymph nodes
via chemokine (C-C-motif) receptor 7 (CCR7) on cell surface.
However, prior reports found reduced expression of CCR7 in
ICC patients, and identified decreased levels of LCs-membrane
antigen-presenting and co-stimulatory molecules in exposure to
HPV virus-like particles (VLPs), including CD1a, MHC I, CD40
and CD80/86 (66, 67, 75, 76, 79–81).

To the best of our knowledge, no report established in vivo
CVM-LCs relationship, which can partly improve the
understanding of CVM-HPV interactions. Nevertheless, in vitro
experiment found that a L. crispatus strain isolated from vagina
activated LCs via cell wall-derived PGN, being assessed by elevated
expression of TLR (Figure 2B) (25). This is consistent with prior
findings that TLR agonists promote LCs activation and the
induction of HPV-specific cell-mediated immunity (CMI) (77, 78,
82). Candin, produced by Candida which is inversely associated
with HPV infection, can induce proliferation of T cells to enhance
the effect of therapeutic vaccines against HPV (44, 83, 84). Herbst-
Kralovetz MM and colleagues also found significant differences of
CVM and cervical immune microenvironment between HPV-
negative women (n=18), HPV-infected individuals without
squamous intraepithelial lesion (n=11), HPV-positive women
with low (n=12)/high (n=27) intraepithelial lesion, and ICC
patients (n=10) (85–88). For instance, inhibitory immune
checkpoint protein PD-L1 and LAG-3 were negatively correlated
with Lactobacillus abundance in CVM, while TLR2 was in positive
relationship with Lactobacillus abundance. Conversely, PD-L1 and
LAG-3 positively correlated to dysbiosis-associated Gardnerella,
Sneathia, Atopobium and Prevotella. At species level, L. crispatus
and L. jensenii were in negative relationship with PD-L1, while L.
gasseri was negatively associated with LAG-3. In addition, a 12-
month observational study applied the combination of 16S rDNA
amplicon sequencing, metagenome, transcriptional profiling and
immunological profiling to demonstrate the critical role of
cervicovaginal bacteria in modulating cervicovaginal immune
responses and the host susceptibility to HIV (23).
APPLICATION OF CVM IN PROMOTING
HPV CLEARANCE

Given the critical roles of CVM in modulating cervical immune
responses, it is promising to promote HPV clearance by re-
constructing CVM (Figure 3A). Taken vaginal probiotics L.
crispatus strain CTV-05 for example, a randomized placebo-
Frontiers in Oncology | www.frontiersin.org 5
controlled clinical trial showed that the vaginal colonization with
CTV-05 following 28-day treatment inhibited BV-associated
Atopobium growth (89, 90). Another trial involving 100
participants assessed the efficacy of CTV-05 on preventing
urinary tract infection (UTI), indicating the reduction of recurrent
UTI when compared to placebo treatment (91). Disrupting biofilm
of anaerobes is also an alternative therapy against vaginal dysbiosis,
and Marrozzo J. M. et al. found 50-59% clinical cure rate of BV in
106 participants 9-12 days after treatment (92).

In addition, several in vitro and in vivo studies suggest the
promise of prebiotics, which are indigestible carbohydrates, in
promoting the growth of probiotics or beneficial commensals in
the vagina (Figure 3A) (93–95). For example, fructo-
oligosaccharide (FOS) and gluco-oligosaccharide (GOS)
benefited the growth of L. crispatus, L. jensenii and L. vaginalis
in vitro, while pathogen C. albicans, Escherichia coli and G.
vaginalis could not utilize FOS/GOS as energy sources for growth
(93). Significant reduction of Nugent scores was also identified in
BV patients receiving intravaginal GOS gel immediately
following metronidazole treatment (94). Additionally,
glucomannan hydrolysates (GMH) also held the potential to
promote Lactobacillus spp. colonization, conferring health to the
host in C. albicans-infected women (95). To re-establish the
CVM completely, two studies in 2019 conducted vaginal
microbiota transplantation (VMT) (Figure 3A) (96, 97). A
total of 5 women with antibiotic-unresponsive and recurrent
BV were included in one study, and 4 out of 5 participants had
restoration of Lactobacillus-dominant CVM and long-term
remission without any adverse effect at the follow-up of 5-21
months. The other study involving 20 women explained and
implemented a screening approach for universal VMT donors.

Besides to CVM-targeted interventions, CVM-derived products
hold the promise as immune modulators, such as adjuvants of
therapeutic vaccines (Figure 3B). Jie Song and co-workers
demonstrated that PGN produced by a vaginal L. crispatus strain
enhanced the expression of cell-membrane TLR2 and TLR6 to
activate LCs (25), which play a pivotal role in capturing and
presenting HPV antigens. The products of specific bacterial
components have the potential to be effective adjuvants as a series
of clinical trials demonstrated enhanced efficacy of therapeutic
vaccines adjuvanted with TLR agonists which could be served by
bacterial products (98–101). Furthermore, bacterial vectors are
increasingly explored as alternative live vectors due to their
potential as “natural” adjuvants, which attributed to the wide
range of pathogen-associated molecular pattern molecules and
damage-associated molecular pattern molecules (102–106).
Additionally, candin produced by common vaginal fungal
pathobiont Candida could be utilized as adjuvant for therapeutic
vaccine, which partly explain the protection of vaginal Candida
against HPV infection (44, 83, 84).
CONCLUSION

CVM appears to play a crucial role in HPV acquisition and
persistence as well as subsequent development of squamous
July 2021 | Volume 11 | Article 722639
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intraepithelial lesion. Cross-sectional nature of most studies
makes it difficult to derive a causal link between CVM and
HPV infection or clearance. In addition, many prior reports
described CVM in relatively small cohorts, which analysis results
could be compounded by various factors, such as smoking and
sex activities. Prospective cohort study will be needed in the
future to prove that CVM could prevent HPV infection and
promote HPV clearance. This information will determine the
promise of CVM interventions as novel therapies, with the
advantage of low-cost feasibility in developing countries.
Nevertheless, it is imperative to find the most protective strains
before developing CVM-targeted probiotics or prebiotics, for
which the efficacy can be impacted by pre-existed CVM. For
example, L. crispatus-dominated CVM confers high colonization
resistance to other microbes and even probiotic L. crispatus
strain, while pre-colonization of the vagina with endogenous L.
iners allows growth of anaerobes. Therefore, CVM structure
should be taken into consideration when it comes to assess the
efficacy of specific probiotics and prebiotics. However, 16S
rDNA amplicon sequencing that most studies applied has
Frontiers in Oncology | www.frontiersin.org 6
limitations in conducting strain-level analysis and microbe-
microbe/host interactions of CVM, necessitating the utilization
of multi-omics in analyzing “key microbial strains” .
Then mechanistic studies of these strains should be conducted
to further the utilization of “key microbial strains” as immune
modulators in prevention and clearance of HPV infection. Given
the importance of cervical epithelial LCs in presenting HPV
antigens to induce HPV-specific CMI, it will be an effective
mediator of therapeutic vaccine immunity. As discussed above,
specific microbial strains in CVM hold the potential to activate
HPV-suppressed LCs, suggesting the promise of microbial
products as robust activator of immunity against HPV or
adjuvants in therapeutic vaccines. In the future, the
combination of culture-independent and -dependent
techniques should be applied to screen promising microbial
strains and products which functions can be assessed in cell
lines or animal models. Lastly, though VMT can modify the
whole cervicovaginal microenvironment, randomized, placebo-
controlled studies for large cohorts are required to determine the
clinical efficacy as well as long-term benefits.
A

B

FIGURE 3 | CVM-modulated and -derived products in eliminating HPV infection. (A) Strategies to modulate dysbiotic CVM were characterized by anaerobe
overgrowth. (B) Molecules produced by specific microbial strains in CVM can activate LCs in the cervical epithelium, then promote T cell priming and eliminate HPV-
infected cells. Icons in BioRender.com were utilized to prepare this figure.
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