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Abstract

Studies conducted in time series could be far more informative than those that only capture

a specific moment in time. However, when it comes to transcriptomic data, time points are

sparse creating the need for a constant search for methods capable of extracting informa-

tion out of experiments of this kind. We propose a feature selection algorithm embedded in a

hidden Markov model applied to gene expression time course data on either single or even

multiple biological conditions. For the latter, in a simple case-control study features or genes

are selected under the assumption of no change over time for the control samples, while the

case group must have at least one change. The proposed model reduces the feature space

according to a two-state hidden Markov model. The two states define change/no-change in

gene expression. Features are ranked in consonance with three scores: number of changes

across time, magnitude of such changes and quality of replicates as a measure of how

much they deviate from the mean. An important highlight is that this strategy overcomes the

few samples limitation, common in transcriptome experiments through a process of data

transformation and rearrangement. To prove this method, our strategy was applied to three

publicly available data sets. Results show that feature domain is reduced by up to 90% leav-

ing only few but relevant features yet with findings consistent to those previously reported.

Moreover, our strategy proved to be robust, stable and working on studies where sample

size is an issue otherwise. Hence, even with two biological replicates and/or three time

points our method proves to work well.

Introduction

High dimensional transcriptome data is described by many features, however, many are either

redundant or irrelevant. Identifying those is key in order to claim results are trustworthy. Data

mining techniques, machine learning algorithms or statistic models are applied to classify fea-

tures but at the cost of other important problems such as model over-fitting or the increase of

computational resources and higher analysis cost [1] [2]. A possible approach to this
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classification problem is to reduce data dimensionality with feature extraction (FE) or with fea-

ture selection techniques (FS) [3] [4].

FS is a technique often used in domains where there are many features and comparatively

few samples, particularly used in microarray or RNAseq studies where there are thousands of

features and a small number of samples [5] [6]. FS is the process of eliminating irrelevant fea-

tures in the data by extracting only a subset of informative ones. Its main objectives include

avoid overfitting, eliminate noise in the data, reduce algorithmic rate of convergence, improve

model performance and, give a more accurate interpretation of features in the data [7]. It is

important not to be confounded with FE such as principal components analysis or compres-

sion, where they use the projection of the original set to a new feature space of lower

dimensionality. In FE, the new feature space is a linear or even non-linear combination of the

original features [4]. FS on the other hand, identifies relevant features without altering the

original domain.

Due to the high dimensionality of most gene expression analyses, it is necessary to select

the most relevant features to get better results interpretation and a deeper insight into the

underlying process that generated the data. However, the noisy data and small sample size

pose a great challenge for many modelling problems in bioinformatics making it necessary to

use adequate evaluation criteria or stable and robust FS models [7].

In general, FS techniques can be classified into three main categories: filters, wrappers, and

embedded [7] [8]. Filters take as input all the features and reduce them into a relevant subset

independent of the model parameters. Wrappers select a subset of features using a search algo-

rithm, then estimate the model parameters for that subset and perform an evaluation test for

each model. Wrappers use FS for model identification by selecting the model parameters that

best fit the training data and has the highest evaluation score. The embedded approach takes

all the features at once, maximizes a learning algorithm optimizing model performance and

outputs both the reduced feature set along with its model parameters. In this work we address

the classification of time series gene expression data using two embedded processes, feature

selection and hidden Markov models.

A variety of FS techniques that have been proposed can be classified into parametric [9]

and non-parametric methods [10]. The non-parametric methods aim to make a less stringent

distribution assumption, however, validation in the context of small sample sizes is a challenge.

Parametric methods assume there is a given distribution for the observed data. The most com-

mon parametric latent variable models are the Gaussian mixture models (GMM) and hidden

Markov models (HMM). The mixture model is often used to model multimodal data, while

the HMM is often used for modeling time series data [8].

In most applications of HMMs, features are pre-selected based on domain knowledge and

the feature selection procedure is completely omitted. Some methods have been explored to

reduce the feature space by using HMMs as stated in Adams and Beling [11]. However, FS

strategies specifically with HMM are sparse. For example, the work of Zhu et al. [12] shows a

wrapper FS approach to get the best model and then the feature subset for a continuous

HMM. The authors proposed a new set of continuous variables, defined as salient features, to

avoid searching the space of all feature subsets and to prevent losing information about the

original variable. The salient features have proved their effectiveness for FS in GMM [13].

Finally, they apply a variational Bayesian framework to infer the salient features, the number

of hidden states and the model parameters simultaneously.

Adams et al [11] propose a feature saliency hidden Markov model. This model also uses fea-

ture saliency variables and they represent the probability that a feature is relevant by distin-

guishing between state-dependent and state-independent distributions. If the number of

hidden states is known, this approach simultaneously provides maximum a posteriori
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estimates and select the relevant feature subset by using the expectation-maximization algo-

rithm. Finally, the most recent work is introduced in Zheng et al [14]. Their strategy combines

a hidden Markov model, a localized feature saliency measure and two t-Student distributions

to describe the relevant and non-relevant features, to accurately model emission parameters

for each hidden state. All the parameters are estimated using a Variational Bayes framework.

Most of these methods use saliency parameters additionally to those required by the model,

therefore, when analyzing gene expression data the increase in variables to be estimated from

data becomes a hurdle. Besides, the number of hidden states necessary to model the data also

affects the total parameters to estimate. Hence, a strategy that make use of a minimal number

of parameters to get the most relevant features from a data set is indispensable to study gene

expression data.

In this article we present a novel strategy for FS capable of selecting and ranking relevant

genes based on the changes between conditions and successive times, using an embedded FS

technique with a HMM at its core. Lack of replication is handled using a novel data rearrange-

ment that overcome the limitations of few samples in gene expression experiment designs. To

prove its efficiency, the strategy is applied to a simulated dataset and also to three publicly

available data sets.

Results

Overview of the strategy

We present a strategy that selects the most relevant features (genes) from high dimensional

gene expression experiments with longitudinal design for one or multiple conditions. First, it

compares gene profile over time of the affected samples against those in the control group

selecting relevant features. Secondly, scores are calculated for the relevant features ranking

them. The ranking is based on three scores: one accounts for number of changes across time,

the second one considers the magnitude of those changes and a third one which acts as quality

metric bases its ranking on the consistency of replicates.

Strategy assumptions:

• Gene expression values are modeled as continuous variables and considered independent

features so the model can be trained using as much as (Nfeatures
�Kconditions

�Rreplicates) number

of observations at each time step.

• The independence assumption is based on a common scenario where observations at time t

and at time t+1 belong to the same condition but not necessarily measure the same subject.

• The strategy will only consider transcripts for which no changes over time are found for the

control samples. The rationale behind this assumption is that observed changes for the sam-

ples in the condition set are more likely to be associated to the condition per se. This, in no

way means the other ones are not important, but rather that we can focus on those that have

a more robust association.

The complete computational pipeline takes a gene expression matrix from either a microar-

ray or an RNAseq experiment as input data and returns the list of ranked features. The main

steps in the process involve transforming and rearranging input data, estimate the model

parameters, evaluate time course expression profiles and select relevant features providing a

ranking score for such genes. Code for each step in the pipeline is structured as a collection of

single functions that allow user to customize methods, the full pipeline is available as an R-

library. Some plots are also included. Fig 1 shows the schematic representation of the proposed

strategy. Source code can be found as supplementary information in S1 File.
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A key element of this strategy is the use of Occam’s razor or law of parsimony in the state

transition model used for the HMM. The hidden state complexity is reduced to a minimum

with a two-node clique that is capable of fully describing system dynamics by only considering

a change or no change in gene expression over time. The ‘change” state would model either up

or down regulation. Therefore, with only two states we are able to define three different

behaviors.

Testing the model on simulated data

Gene expression profiles were generated for both control synthetic samples and simulated con-

ditions. To keep similar structure toy data had 10 thousand transcripts, 6 time points and 3

replicates. Changes in differential expression were set to be zero for control group. Conditions

however, had changes modeled with 1 standard deviation for state “change” and 0.2 std. devia-

tions for “no change” state. Also, under the assumption that not all transcripts in the condition

group are affected by a stimulus, a prior was set to limit the number of perturbed genes to

10%. To generate the simulated data from the model, transition matrix was set to be stochastic

with spectral radius equal to 1. As for the emision matrix, numbers were set according to the

standard deviations described above. Replicates were generated adding white noise. Using that

data, a randomly initialized model was fit and results show that our model could identify up to

90% of the observations that have at least one change. Moreover, out of that 90% the accuracy

of detection was 99.6%

Validation using real data

The strategy was applied to three different publicly available datasets, two from the Gene

Expression Omnibus [15] and one from the Japanese Toxicogenomics Project (TGP) [16]. We

used RNAseq data (GSE75417) comprised of 6 time points, 2 conditions and 3 replicates [17].

Illumina Microarray gene expression data (GSE39549) consisting of 9 time points, 2 condi-

tions and 3 replicates [18]. Affymetrix Microarrays (TGP) a variety of studies on hepatotoxic

compounds made up of 3 time-points, 1 control, 3 conditions and 2-to-3 replicates. These

datasets were uploaded as .Rdata to be used with the R-package of our method at github

(https://github.com/robalecarova/FSHMM).

Ikaros induced B3 cells. The first example, based on the work by Ferreiros et al [19]

where B3 pre-B-cell line is transduced with mouse stem cell virus retroviral vectors encoding

wild-type Ikaros or Aiolos tagged with a hemagglutinin epitope followed by an internal ribo-

somal entry site and GFP. B3 cells containing inducible Ikaros were treated with 4-hydroxy-

tamoxifen and sampled at 0, 2, 6, 12, 18 and 24 hours after Ikaros induction. The control

Fig 1. Feature selection strategy pipeline. The expression matrix is preprocessed to estimate the HMM parameters.

With the fitted model, the features are evaluated and compared to filter out the expression profiles with a flat behavior.

Finally, the selected features are scored and ranked to give a better interpretation and a deeper insight into the

underlying process that generated the data.

https://doi.org/10.1371/journal.pone.0223183.g001
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counterpart (not induced) were also sampled at the same times. Data are available at GEO

with accession number GSE75417. Gene expression data comprised 2 conditions, 6 time

points per condition and 3 biological replicates per time-point leading to 36 RNAseq samples.

Results were compared to those reported in Ferreiros et al. [19] which, provided a list of dif-

ferentially expressed genes as well as the enriched pathways in their Excel Supp 1. Only two

comparisons were selected mainly because we only had access to those results. Further com-

parison included an enrichment analysis with DAVID [20] to match the approach used in

what was originally reported. According to the GO terms, results showed many shared path-

ways, although the number of genes in each differed. We found that 44% of pathways are

shared by the two approaches the remainder 56% involves leukocyte cell-cell adhesion, its reg-

ulation and some immune system cascades such as JAK/STAT. The cut-off value used, was a

natural p-value of 0.05. The list of common and exclusive pathways are available in S1 Table.

We should consider though that the FSHMM strategy used all samples and all time-points

to train the model which, presents a better idea of the dynamics in the experiment as opposed

to analyzing isolated time-points. Details of genes and pathways are available in S2 and S3

Tables.

High-fat diet in mouse model. A second example with longitudinal design is the one

published by Kwon et al. [18] and available through GSE39549. It is on an in vivo mouse

model with two conditions high-fat and normal diet. Both with same time measurements,

nine time points at 0, 2, 4, 6, 8, 12, 16, 20 and 24 weeks of high-fat or normal diet intake. The

authors analyzed differential expression between both diets. However, they focused on diet

effect at each time without considering the longitudinal nature of the study or a temporal

dependency. They reported a total of 2037 differentially expressed genes as a result of adding

all same-time contrasts. Using FSHMM the number of relevant genes obtained were 1922. We

could not report level of agreement between the two studies because the list of differentially

expressed genes was not released with their paper. However, a gene set enrichment analysis

was performed on the FSHMM results using DAVID, see S4 Table. A caveat regarding this

analysis is that search in DAVID involves a variety of parameters associated to different data-

bases, the authors did not elaborate on which ones were used. Therefore, we decided to use the

GOTERM_BP_FAT considering the cellular process to which they belong.

Their results showed an enrichment analysis that favors pathways involved in immune

response, metabolic process and response to wounding. As stated before, these enriched path-

ways only considered the treatment vs control contrasts. When we compared these results

with those obtained by FSHMM, common pathways are those associated to immune response.

Hence, either time-by-time comparisons or considering the whole system the level of correla-

tion is good. However, when proposing a time course experiment we should also consider

studying the system dynamics instead of partitioning as if we had multiple pair-wise studies.

Details of this analysis are available in S4 Table, the shared pathways are shown in yellow, com-

paring them with Table 2 in Kwon et al [18]. In terms of genes found, the authors report

Emr1, CCL2, 6 and 7, Adam8, IL1rn, Itgam, CD3, 4, 9, 14 and 180, TLR1, 3, 6 and 7, Tgfb1,

Irf5, Mmp12, Col1a, Col2, Col3a1, Col4a5, Col8a1, Col9a3, Col16a1, Ctsa, Ctsb, Ctsk, Ctsl,

Ctss and Ctsz as some of the genes differentially expressed in the comparison between same-

time contrasts. FSHMM classified as relevant CCL2, 6 and 7, CD14 and CD180, TLR1, 6 and

7, Irf5, Mmp12, Col3a1 and Col1a2. Leading to over 50% of genes found in common. On the

other hand, the authors report that the Resistin signaling is activated through the NF-κB tran-

scription factor. In the enriched pathways found with FSHMM, the I-κB kinase/NF-κB signal-

ling was reported, an important finding that coincides between the two analyses.

Toxicogenomics data. The third and final example was a dataset from a time series exper-

imental design to study hepatotoxic compounds [16]. The selected compound was Carbon
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Tetrachloride (CCl4) as it is known to be one of the most potent hepatotoxins [21] and is usu-

ally used in scientific research to investigate possible beneficial effects from hepatoprotective

agents [22] [23]. The study involves only three time measurements at 2, 8 and 24 hours after

dose administration with control and three doses: none, low and middle with two replicates

leading to a 18 samples. This is an in vitro experiment limited in terms of observation space

and it was chosen precisely because it represented the worst case scenario when it comes to a

longitudinal study. It represented the most challenging data to evalulate FSHMM on. Interest-

ingly enough, the number of selected features yielded 1878 genes. The list of all of them is

reported in S5 Table. Pathway analysis using DAVID led to enriched GO terms mainly related

to cell regulation, cell and nuclear division, adherens juntion and cell-cell signaling. This corre-

lated to the toxic behavoir of CCl4 in liver. Nevertheless, to have another perspective of the

results, the KEGG database [24] was used with pathways selected as relevant if they had a p-

value lower than 0.05. The significant pathways were also consistent with DAVID and were

related to cell regulation, nuclear division, adherens junction and cell-cell signaling. However

some of the most relevant pathways that were statisticaly significant were Apoptosis, RNA deg-

radation and the most important was the Carbon metabolism as this is directly related to CCl4.

When classification parameters were tighten to get more over-represented pathways using the

top 200 features, the Nucleotide excision repair pathway was enriched. This pathway is a

mechanism to recognize and repair bulky DNA damage caused by xenobiotic factors as com-

pounds, environmental carcinogens, and exposure to UV-light. All of this correlates to what is

known about CCl4 and its toxicity [21]. Aquiring this level of knowledge with so limited infor-

mation made FSHMM a perfect choice even on studies this short. The enriched GO terms and

details are in S6 Table while the KEGG pathways are in S7 Table.

In summary, for all three cases the feature space was reduced and almost 90% of the vari-

ables were filtered out, Table 1. Remarkably, the limited size of replicated observations and

time-points were not an issue for the FSHMM to reduce the feature space to a more manage-

able and yet informative size. The presented method makes use of all time measurements of

replicated gene expression values as input and is able to get the most relevant genes by using a

HMM as feature classifier.

Discussion and conclusions

Results using the FSHMM strategy outputs a subset of relevant features which is relatively low

compared to the original set but yet, it proved to be informative even in situations where num-

ber of replicates is as low as two and time series only involves 3 point measurements. The three

datasets used to validate our method were chosen because they covered microarray and RNA-

seq data. Also, because they offered opportunity to compare its efficiency at a pathway level as

it was the case of Ikaros data, or gene-to-gene level as we did for the high-fat diet study or on

common knowledge after literature review on results from the toxicogenomics data. In all

three cases, the strategy efficiently reduced the number of relevant features, simplified the anal-

ysis, maintain the time series nature of the studies and provided an insight to the system

dynamics. Features were selected according to three scores. One evaluates gene perturbation

over time adding more value to genes that fluctuate more over time. A second score evaluates

Table 1. Number and percentage of relevant features per dataset.

Study GSE85417

12,762

GSE39549

20,009

TGP-CCl4

14,404

Relevant Features 1461 (11.4%) 1922 (09.6%) 1878 (13.0%)

https://doi.org/10.1371/journal.pone.0223183.t001
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the magnitude of those perturbations and the third score evaluate statistical significance by

means of consistency among replicates.

The parameters of the proposed HMM estimated from all three data sets had the same

mean vector in their emitted normal distributions. This happens because the HMM models

the magnitude of the change in expression instead of the actual expression level. This fact

agrees with the hypothesis that only a small set of genes change, and according to our assump-

tions only those changing in the condition group with no changes among the control set are

considered. Therefore, the distributions are centered around zero and this further reduces the

number of parameters to estimate from data.

The estimated parameters of the proposed HMM on all three data sets had the same mean

vector in their emitted normal distributions. This happens because the HMM models the mag-

nitude of the change in expression instead of the actual expression level. This fact agrees with

the hypothesis that only a small set of genes change, and according to our assumptions only

those changing in the condition group with no changes among the control set are considered.

Therefore, the distributions are centered around zero and this further reduces the number of

parameters to estimate from data.

It is important to highlight that there is not hard cut-off defined within any step of the pro-

posed strategy. Instead, state of change is defined based on emission and transition probabili-

ties after Viterbi algorithm. Therefore, state variance becomes an important parameter as it

determines the change/no-change path each observation transits and it is estimated from the

data. Furthermore, the independence assumption on features reduces the number of parame-

ters to estimate allowing to model robustly even with limited number of observations.

Parameters estimated from data using FSHMM strategy were compared to the models pre-

sented in [8] [12] and [14], with the conclusion that saliency variables were found not to be

necessary, making it all more feasible for a genomic context where the number of observations

is low so the less parameters to estimate, the better. The FSHMM used two hidden states to

represent relevant features and non-relevant features similar to Zheng et al, however the multi-

variate normal distributions proposed let the user provide all the replicates with its inherent

variability to model the system dynamics.

Although, similar methods for time series data using either FS or HMM have been pro-

posed. The embedded approach we present in this manuscript is novel as it includes several

ideas that have been done separately, in just one model. For instance, feature selection in time

series using Granger causality was published by Li et al in 2015 with the aim at prediction [25].

Granger causality approach is commonly used to identify causal interactions between sequen-

tial continuous variables. In their work, the authors also present an embedded approach using

a support vector machine (SVM) to train a model, then iteratively rank features eliminating

the ones with lowest rank. In contrast to our method, theirs is a supervised approach that

requires the exact number of features to be input and the iterative process is time consuming.

Another example is the implementation of a clustering-based approach using also SVM com-

bined with a K-nearest neighbors clustering (KNN), which also integrates a protein-protein

interaction network into the modeling [26]. The model is a great design but requires data to be

discretized, which can be an issue as most thresholds are heuristic. The proposed HMM/

GMM hybrid model transforms noisy gene expression values into discrete gene states repre-

senting qualitative assessment of time dependent gene expression levels. This PPI-SVM-KNN

+ HMM/GMM model identifies clusters that authors assume may potentially share a biological

function.

In terms of accuracy of detection, the variation in data may be simply due to random error

particularly because almost all of the time series transcriptomic experiments have low replica-

tion and few time measurements. Hence, we present the simplest model cabable to describe
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the major features of the data simply following the principle of parsimony [27]. By keeping it

simple and with a proper rearrangement of data, a highlight of our proposed method is that it

works even on a small number of replicates. On the other hand, having short time series also

significantly complicates both, the development and then verification of models intended to

produce seasonal forecasts [28]. Our model has more emphasis on describing time and condi-

tion dependent gene expression levels than it has on forecasting.

Another important aspect of our strategy is its capability to work with multiple conditions.

Other methods can analyze multiple conditions, for instance, DEclust [29] is a recent strategy

that uses gene expression values and performs a statistical test on all pairwise comparisons out

of all conditions. A statistical test of differential expression for a pair of conditions is then

labeled as +1, -1, or 0 upregulated pair, downregulated pair or insignificantly altered pair. This

discretization is inherently subject to a heuristic threshold nonetheless. In our approach we

use only two labels {C (change), N (no change)} but no threshold is required. The decision is

made based on conditional probabilities within the HMM. Hence, the decision about change/

no change across time is made according to which state has the highest probability. Other

methods have also used only two states [30], in their work the authors present a univariate case

using Unconditional Mixture Modelling. It assumes two different states of the gene effect (on

and off), and classification assessment is done using mixture overlap probability. They also

present a multivariate scenario where the features are selected based on their dependency to a

class using Markov Blanket Filtering and a correlation-based feature selection that evaluates

subsets of features. Their claim is that their method provides a “heuristic merit” for a feature

subset instead of each feature independently. This means that they use correlation to maximize

their objective function which by the way is heuristic. Our model instead utilizes conditional

probabilities and decision is made based on which probability is higher at each time step con-

sidering all the sequence values.

Also, it is essential to highlight the role of data preprocessing but even more important the

input data rearrangement. For our FSHMM strategy, each gene represents a different observa-

tion sequence in the training matrix. Therefore, even if the sample size is low, the model

parameters can be estimated from data. Moreover, with the feature randomization, it is less

probable to overfit. We also analyzed the idea of adding a third hidden state to model the up-

regulation, down-regulation, and no-change. Results showed it was not worth it to add com-

plexity by increasing the dimensionality of the hidden vector but instead keep it as simple as

possible would allow us to handle studies with minimum counts of data points. The model

feeds from changes in expression instead of expression levels themselves, still we can model

the sign of the state that emitted the observation. Thus, the two hidden state transition graph is

capable of modelling the desired dynamics without increasing the model complexity.

Methods

Feature selection with a hidden Markov model

The Feature Selection with a hidden Markov model (FSHMM) strategy starts with an already

normalized gene expression matrix, a vector of time points, the biological conditions, the

number of replicates and if necessary a set of parameters to customize the model estimation.

Data is rearranged into matrices, one per each condition. Then, it is necessary to remove the

offset value of each feature by computing the differences in gene expression between consecu-

tive time points. Therefore, instead of using the expression level of each feature for the model

parameters, it will receive the change in expression from two consecutive times.

The selected model is a HMM with two hidden states as proposed in Adams et al [8] and

Zheng et al [14]. However, in the proposed model the states represent a non-relevant change
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in expression (N) and a relevant change (C). The former has the function of a null-hypothesis

where most of the features will reside, while the later is the alternative hypothesis. The observa-

tions are assumed to be drawn from a multivariate normal distribution with dimensionality

equal to the number of biological replicates or a univariate normal distribution if the replicates

are summarized. The proposed model is shown in Fig 2. Parameters are estimated using the

Expectation-Maximization algorithm and the path of hidden states X for each feature per con-

dition is decoded using the Viterbi algorithm. Each feature decoded path is compared to the

null-hypothesis that is represented by a sequence of non-relevant changes; if the feature rejects

it, then it is selected as relevant. Finally, each relevant feature is ranked by the number of

changes, the magnitude of each change and the biological replicates behaviour.

Hidden Markov model

Hidden Markov models are stochastic processes based on Markov chains, where the states X1:T

and Xt 2 x1:N are connected through a transition matrix. Each state Xt can produce a measur-

able observation Yt. These observations only depend on the system’s present state, P(Yt|Xt)

[31] [32]. Unlike the Markov chains, the state variables in the HMM are hidden, this means

that they cannot be measured. However, it is assumed that they follow a Markov chain and the

transition probability matrix follows a multinomial distribution. If the observations are cate-

gorical, then they also follow a multinomial distribution. However, if they are continuous they

are assumed to follow a univariate or multivariate normal distribution. Each hidden state has

its own mean vector and variance/convariance matrix.

Decoding—Viterbi algorithm

The decoding function is used to get the hidden states that were traversed by the Markov

chain. To decode the states in a hidden Markov model the most commonly used algorithms

are the posterior decoding and the Viterbi algorithm [31] [33]. The Viterbi algorithm is a greedy

optimization approach to get the most probable path traversed by the Markov chain. The algo-

rithm computes the best set of hidden states that can explain the present observation, starting

from the first one. As it greedily tries to get the best path, it looks for the previous hidden state

that maximizes the current joint probability. The algorithm continues to get the best values for

each observation until the full sequence has been analyzed. Once it has the most probable

Fig 2. Feature selection hidden Markov model. The state transition graph has two hidden variables: N—Non-

relevant expression change and C—relevant expression change. Each state can emit an observation vector with

dimensionality equal to the number of biological replicates and it follows a multivariate normal distribution. The

model parameters depicted are the transition probabilities and the emission probability of each state.

https://doi.org/10.1371/journal.pone.0223183.g002
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outcome, it retraces back its path and outputs it as the most probable path that generated the

observation sequence.

Expectation-maximization algorithm

The Expectation-Maximization (EM) algorithm is applied when there is missing data, or an

optimization problem does not have an analytical solution but can be simplified by assuming

the existence of hidden variables. The EM algorithm objective is to maximize the complete

data set log-likelihood in a two-step procedure. In the first step, it computes the function’s

expected value to fill the missing data. And in the second step the algorithm maximizes the

model parameters given the complete data set. The process is iterated until the convergence cri-

teria are met [34].

Computational pipeline

The proposed strategy was divided in three stages as stated in Fig 1, each one fulfills a specific

objective and are sequentialy executed. These stages are explained below.

Data preprocessing. The first step in the pipeline is the data rearrangement and transfor-

mation. Each condition is organized in a 3D matrix. Each feature g is represented as a matrix

with the time points as columns and replicates as rows, Eq 1. The arrangement differs from the

usual 2D matrices where the rows contain the features and the columns have time-points and

biological replicates. In this strategy an innovative arrangement is proposed, where each con-

dition is organized in a 3D matrix with time points as columns, replicates as rows and as many

slices as genes or features are included. With this data arrangement, the few samples limitation

that arise in genomic experiments is overcome, given that each feature will be a different obser-

vation sequence to fit the model. For a finer parameter estimation, the replicates can be treated

as they are or can be summarized by taking the mean or median of them per time measure-

ment.

gi½ � ¼

gi
ðt1 ;r1Þ

. . . gi
ðtT ;r1Þ

..

. . .
. ..

.

gi
ðt1 ;rRÞ

. . . gi
ðtT ;rRÞ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð1Þ

Then, each feature expression value its transformed to get the expression change by sub-

stracting the two consecutive time points, Eq 2. With this transformation, the offset value is

removed. It is necessary to remove this value because there are features with the same time

profile but are shifted given its initial expression value. Thus, without the offset, they can be

compared and analyzed as the same profile, Fig 3. However, as result from the transfomation,

the observation matrix columns are reduced from size T to T − 1. For the next step, as it esti-

mates the model parameters, the order of the features may bias the estimation. Therefore, a

randomization step is done to shuffle them. This process is based on the preprocess of the sub-

sampling cross-validation approach to avoid overfitting [35].

gi
Dðt;tþ1;rÞ ¼ gi

ðtþ1;rÞ � gi
ðt;rÞ ð2Þ

Feature selection. After the data has been organized, the shuffled features are used to esti-

mate the model parameters. With the HMM fitted to the data, the Viterbi algorithm is applied

to each feature in each condition, Fig 4. Once each gene has its hidden path decoded, they are
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compared. In the case of multiple conditions, if at least one condition has a change, but the

control is flat, the feature is considered as relevant. And in the case of only one condition with-

out a control or baseline to compare with, all the features that have a flat behavior are dis-

carded, Fig 5.

Score and ranking. After the dataset has been filtered. Each relevant variable is evaluated

with three different scores:

1. Number of changes across time (#Chi). Represents the number of changes that occurred in

the time series, in a multiple condition experiment it also considers the feature in each one

(Z). The greater the number of changes decoded by the Viterbi algorithm (X = C), the better

Fig 3. Feature transformation. Different features may have the same time profile, but their initial expression value

may shift them. The offset removal makes them comparable and more manageable when analyzing them in the next

steps of the proposed strategy.

https://doi.org/10.1371/journal.pone.0223183.g003
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Fig 4. Feature selection embedded technique. The full set of shuffled features is used as the input of the EM algorithm

to estimate the HMM parameters. Then the features from the gΔ matrix are input to the Viterbi Algorithm, and each

gene is assigned with the path hidden states traversed by each condition. By comparing he condition’s path, a subset of

relevant features is proposed.

https://doi.org/10.1371/journal.pone.0223183.g004

Fig 5. Case-control hidden state path comparison. If there is a change in expression between consecutive times, then

the Viterbi algorithm will set this Δ value in the Change state. When the case is compared, the feature is deemed as

relevant only if the control value is decoded as a No Change state.

https://doi.org/10.1371/journal.pone.0223183.g005
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the score will be, Eq 3.

#Chi ¼
XZ

z¼1

XT� 1

t¼1

1ðXi
zt
Þ; 1ðXÞ ¼

( 1 ifX ¼ C

0 otherwise
ð3Þ

2. Magnitude of change (kΔik). It represents how much each relevant variable changes. Even

if the feature has only one change in time, if it was very large, this variable will have a good

score, Eq 4.

k D
i
k¼
XZ

z¼1

XT� 1

t¼1

XR

r¼1

jgizDðt;rÞ j ð4Þ

3. Quality of replicates (scoreRi). It represents the variability between biological replicates. The

greater the difference, the lower the value of this score, Eq 5.

scoreRi ¼
XZ

z¼1

XT

t¼1

XR

r¼2

jgiz;t;1 � giz;t;rj ð5Þ

With these scores, variables are ordered and their place in the list represents their rank. The

rank serves as filter to find the most important genes within the selected ones.
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its relevant genes.
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S6 Table. Enriched GO terms with in TGP microarray data. Table with the over repres-

sented GO terms using the relevant features found in the TGP CCl4 microarray data and
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its relevant genes.
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S7 Table. Enriched KEGG pathways in the TGP microarray data. Table with the over

repressented KEGG pathways using the relevant features found in the TGP CCl4 microarray

data and KEGG. The table has the KEGG pathways, its description, the p-value, adjusted p-
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Supervision: Claudia Rangel-Escareño.

Validation: Edith A. Fernández-Figueroa.

Writing – original draft: Roberto A. Cárdenas-Ovando, Edith A. Fernández-Figueroa, Héctor
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