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Mesenchymal stromal cell (MSC) therapy is a promising tool in the treatment of chronic

inflammatory diseases. This has been ascribed to the capacity of MSC to release

a large variety of immune-modulatory factors. However, all aspects of the mode of

therapeutic MSC action in different diseases remain unresolved, mainly because most

of the infused MSC are undetectable in the circulation within hours after infusion. The

aim of this study was to elucidate the fate of MSC after contact with plasma. We found

that upon contact with blood, complement proteins including C3b/iC3b are deposited

on MSC. Importantly, we also found that complement bound to MSC enhanced their

phagocytosis by classical and intermediate monocytes via a mechanism that involves

C3 but not C5. Thus, we describe for the first time a mechanism which might explain,

at least partly, why MSC are not found in the blood circulation after infusion. Our results

indicate that MSC immune-modulatory effects could be mediated by monocytes that

have phagocytosed them.

Keywords: MSC, phagocytosis, monocytes, complement, fate, plasma, live

INTRODUCTION

Mesenchymal stromal cells (MSC) have emerged as a possible new treatment for several chronic
inflammatory diseases including diabetes, graft versus host disease, andmultiple sclerosis (1). Their
immune-modulatory function has mainly been ascribed to paracrine mechanisms associated with
secretion of immunoregulatory mediators including cytokines and growth factors which modulate
inflammatory response and balance immune profiles (2). The soluble immune secretomes include
prostaglandin E2 (PGE-2), indoleamine 2,3-dioxygenase (IDO), or nitric oxide (NO)(3). In
numerous clinical trials, MSC have been infused to the circulation (4) but the infused cells have
been difficult to detect in the blood already at short time points after infusion (5). Furthermore,
tracing studies of injected MSC have revealed that only few MSC were detectable at the site of
injury or inflammation despite encouraging clinical outcomes (6–8). Hence, the actual modes of
action of intravenous infusion of MSC in several diseases remain unresolved.
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Previous studies have shown that MSC have a very short
half-life (9) and that their infusion leads to an instant blood
mediated inflammatory reaction (10). Indeed, hypotheses that
MSC may be trapped in the lungs where they would interact
with local macrophages are gaining in popularity (9, 11, 12).
Moreover, Galleu et al. have demonstrated that infused MSC
are subject to perforin-induced apoptosis through recipient
cytotoxic cells, which favor their phagocytosis by monocytes
(13). Also, complement activation by MSC plays a role in
immunosuppression of peripheral blood cells via a mechanism
that involves CD11b+ cells (14). On the other hand, another
study also suggested that MSC may get injured after contact with
blood compounds due to the complement system (15). Thus,
further studies are needed to understand the interactions of MSC
with different components of the immune system, in order to
shed light on their fate after infusion and their mechanisms
of action.

The complement system, which comprises more than 30
proteins, plays an important role in innate immunity during
inflammatory responses against foreign agents (16). It can
be activated through three different pathways; the classical,
the lectin and the alternative pathway. The classical pathway
which uses the circulating C1q molecule is mainly activated
by antibodies bound to the surface of a target cell. The lectin
pathway uses mannose-binding lectins that bind carbohydrate
molecules at the surface of various pathogens. The alternative
pathway is constitutively active at a low level in normal
serum via spontaneous hydrolysis of C3. Each of these three
pathways leads to the generation of labile C3 convertases, which
cleave C3 into C3a and C3b that can thereafter participate
in forming distinct complexes. Ultimately, the complement
cascade results in activation of C5 that initiates the formation
of the C5b-7 complex that finally forms the membrane attack
complex (MAC), resulting in cell lysis (17). Complement
activation is regulated by soluble and cell surface-bound
complement inhibitors, which limit uncontrolled complement
activation. These complement regulators, including CD46 and
CD55, prevent C3b which binds to the host surface, from
either forming C3 convertases or from initiating decay of
the complexes (18). Other complement regulators such as
CD59 prevent MAC assembly and pore formation in the cell
membrane (19).

Receptors for complement components have been previously
described in various cell types including monocytes. The
complement receptor 3 (CR3), comprising CD11b, and CD18,
is expressed by all monocytes and critical for facilitating
phagocytosis of complement-opsonized cells or pathogens
(20). In addition, an increased percentage of suppressive
cells including M2 monocytes was found in vivo after MSC
infusion (13, 21–23). Thus, we here hypothesized that
MSC interact with complement components in plasma,
which might facilitate their phagocytosis by monocytes,
explaining their disappearance directly after infusion. We
here demonstrate that live complement-opsonised MSC are
phagocytosed by classical CD14+CD16− and intermediate
CD14+CD16− monocytes via a mechanism that involves C3 but
not C5.

MATERIALS AND METHODS

MSC Donors, Isolation, and Expansion
The study was approved by the Stockholm regional ethics
committee. All patients provided written consent (ethical permit
number: DNR 2016/338-32-4). Human bone marrow (BM)
derived MSC were isolated from 12 healthy volunteer donors as
described previously (24). Briefly, under local anesthesia, 30–50
mL aspirate was obtained from posterior iliac crest bone marrow
(BM). MSC were isolated from the BM-mononuclear cell (MNC)
fraction by Percoll density gradient centrifugation. Cells were
washed and expanded in Dulbecco’s modified Eagle’s medium
(DMEM) low-glucose complete medium, supplemented with
10% heat inactivated fetal calf serum and antibiotic-antimycotic
(A/A; Gibco, Grand Island, NY), and plated at a density of 1.7
× 105 cells per cm2. Cells were prepared for harvest, washed
with phosphate-buffered saline (PBS) and detached with 0.05%
Trypsin-EDTA (Gibco, Grand Island, NY) for maximum 10min
at 37◦C, thereafter replated at a density of 3,400–4,000 cells
per cm2 and detached at a minimum confluence of 70%. Cells
were either replated or cryopreserved in 10% DMSO/DMEM
complete medium until further use, in liquid nitrogen. The
guidelines of the International Society for Cellular Therapy were
applied to analyse the MSC prior to use in research. For in
vitro assays, MSC from passage 2–4 were thawed in DMEM
complete medium on the day of experiments. Cultures were
performed under sterile conditions in humidified atmosphere at
37◦C in 5% CO2. Co-culture experiments were carried out in 96-
well-plates (Costar Ultra-low Cluster, Corning) in Roswell Park
Memorial Institute 1640 (RPMI) GlutaMAX R© (Gibco, Grand
Island, NY) complete medium, supplemented with 10% heat-
inactivated pooled human blood type AB serum or 10% FCS,
penicillin (100 U/mL) and streptomycin (0.1 mg/mL).

Plasma Preparation
Thrombin inhibitor Lepirudin (Refludan R©) was added
immediately to fresh peripheral blood samples obtained
from healthy volunteers. The samples were centrifuged at 2,000
× g for 10min at 4◦C. The plasma was removed and kept
on ice until further use. To focus on the complement system
and exclude the coagulation cascade, we used a thrombin
inhibitor in both the blood and plasma experiments. Heat
inactivated (HI) plasma (30min at 60◦C) or K3EDTA (final
concentration of 10mM, pH 7.3, Alfa Aesar) were used as
negative controls. C3 inhibitor (10µM, Compstatin, CP-
20 a generous gift from Professor John D. Lambris, Professor of
ResearchMedicine in the Department of Pathology & Laboratory
Medicine at the University of Pennsylvania, Philadelphia, PA,
USA) or C5 inhibitor (250µg/mL, Eculizimab, Soliris, Alexion
Pharmaceuticals) were used in order to inhibit the binding of
complement factor C3 or C5 to the cell surface.

Blood-Chamber and Blood Isolation
Procedure
The blood chamber technique has been previously described
(25). Briefly, thrombin inhibitor Lepirudin (final concentration
50µg/mL [50mg in 1mL NaCl]) (Refludan R©) was added
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immediately to fresh peripheral blood obtained from healthy
donors, and collected in pre-heparinized tubes. As a negative
control K3EDTA (pH 7.4) was added at a final concentration of
10mM. Blood was added into pre-heparinized chambers, where
MSC were added and incubated on a rotator at 37◦C at different
time points. The experiment was stopped by adding K3EDTA
(pH 7.4). In selected experiments one fraction of MSC was
exposed to 10µg/mL complement inhibitors (all fromBiolegend)
for 30min at 4◦C. The effect of fresh blood on MSC was assessed
for viability and C3b/iC3b binding [revealed using anti-C3c FITC
which binds to C3b and iC3b fragments on MSC (14)] using
FlowSight system (Merckmillipore). Lysis buffer (BD Pharm
Lyse R©, BD Biosciences) was used to remove red blood cells before
antibody staining.

MSC Expansion and Differentiation
MSC were thawed and seeded in DMEM culture for 1 week.
MSC were trypsinised, washed and cultured in DMEM (Gibco)
containing 50% plasma ± 10mM K3EDTA, HI plasma or
DMEM complete medium alone for 1, 3, or 24 h. Cells were
centrifuged, washed and plated in fresh DMEM complete
medium, and thereafter examined for adhesion to plastic and
expansion for 6 days. Expanded MSC were used for subsequent
in vitro experiments. Retained differentiation capacity of MSC
was assessed using media and instruction protocols from
either adipogenic (Stempro, Invitrogen) or osteogenic (Miltenyi
Biotech, GmbH). Adipocyte and osteocyte differentiations
were evaluated by Oil Red O (Sigma-Aldrich) and alkaline
phosphatase (Sigma Fast, BCIP/NBT), respectively. Presence of
lipid vacuoles or calcium deposits was analyzed under a wide field
optical microscope.

T Cell Stimulation and Suppression Assay
PBMCs were freshly isolated from buffy coats using density
gradient centrifugation on Ficoll-Isopaque (Lymphoprep R©;
Axis-Shield, Norway), according to the manufacturer’s protocol.
Human CD3+ T cells were isolated by negative selection
(Miltenyi Biotec; Human Pan T Cell Isolation Kit) according
to the manufacturer’s instructions. CD3+ T cells (purity
>95%) were then stained with carboxyfluorescein succinimidyl
ester (CFSE) (Invitrogen) and activated using anti-CD3/CD28
microbeads (Miltenyi Biotec) for 5 days. Using flow cytometry
(BD Fortessa LSR-II), proliferation of T cells was assessed in
the presence or absence of MSC. All antibodies used for T cell
staining are presented inTable 1. Depending on conditions, MSC
were treated for 1 h with plasma or heat-inactivated plasma prior
to co-culture with T cells. Data were analyzed using FlowJo
software (Ashland, OH).

Cell Surface Staining
MSC treated with plasma as described above were stained with
MSC markers described in Table 1. Briefly, after 20min of
incubation at 4◦C with specific antibodies, cells were centrifuged
for 5min at 400x g at 4◦C. The supernatant was removed and
the cell pellet of each well was taken up in 200 µL PBS. The
contents of each well were then acquired using flow cytometry

TABLE 1 | Antibodies used in the current study.

Target Fluorochrome Clone Dilution Company

C3c FITC 1:100 Dako

CD3 APC-Cy7 OKT3 1:100 BD Biosciences

CD3 PerCP-Cy5.5 OKT3 1:100 BD Biosciences

CD4 PE-Cy5 OKT4 1:200 BD Biosciences

CDS Alexa488 RPA-T8 1:400 BD Biosciences

CD11b FITC M1/70 1:100 Biolegend

CD14 PerCp-Cy5.5 HCD14 1:200 Biolegend

CD16 PE-CF594 3G8 1:400 BD Biosciences

CD32 PE FUN-2 1:100 Biolegend

CD46 FITC MEM-258 1:100 Biolegend

CD55 PE-Cy7 JS11 1:100 Biolegend

CD59 PE p282(H19)L 1:200 Biolegend

CD64 PE-Cy7 10.1 1:200 Biolegend

CD73 APC-Cy7 AD2 1:100 Biolegend

CD73 FITC AD2 1:100 Biolegend

CD73 APC AD2 1:100 BD Biosciences

IDO Alexa Fluor 488 1:100 RD systems

IL-6 PE-CF594 MQ2-1 1:100 BD Biosciences

LIVE/DEA DTM Fixable V525 1:1,000 Invitrogen

7AAD PerCp-Cy5.5 1:100 BD Pharmingen

(BD LSRFortessa, BD Biosciences) and data were analyzed using
the FlowJo software (Ashland, OH).

Licensing Assay
MSC production of interleukin (IL)-6 and Indoleamine 2,3-
dioxygenase (IDO) in response to licensing by proinflammatory
stimuli was assessed after exposure to plasma. MSC were thawed
and exposed to 50% plasma ± 10mM K3EDTA or 50% heat
inactivated plasma. As negative control, MSC were cultured in
DMEM complete medium only for 1 h as described for previous
experiments. Cells were washed, replated and thereafter licensed
with 10 ng/mL tumor necrosis factor (TNF)-α, and 100 U/mL
interferon (IFN)-γ for 72 h. For detection of intracellular IL-6 or
IDO, GolgiPlugTM (BD Biosciences) was added 5 h prior to the
end of the experiment (according to manufacturer’s protocol).
Cells were acquired using flow cytometry (BD LSR Fortessa, BD
Biosciences) and data were analyzed using the FlowJo software
(FlowJo, Ashland, OH).

Complement Lysis Assay
Freshly thawed MSC were loaded with calcein red-orange
acetoxymethyl ester (calcein RO AM) (Molecular Probes) at a
concentration of 2.5µg/mL in PBS, and incubated for 10min
at 37◦C. Cells were then centrifuged and resuspended in PBS
(control), in 50% plasma or in 50% heat-inactivated plasma as
negative control. The blocking antibodies CD46, CD55, or CD59
against complement regulators (Table 1) were added and the
experiment was analyzed after 1 h incubation at 37◦C. Staining
for flow cytometry was performed as described above.
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Phagocytosis Assay
Freshly thawed MSC were stained with 51 nmol/L pHrodo
succinimidyl ester (Molecular Probes) in PBS for 10min at
RT, centrifuged at 500 × g for 7min and resuspended in
DMEM. Cells were incubated for 1 h at 37◦C with either of
the following conditions: control DMEM complete medium, or
medium with 50% plasma, 50% HI plasma or 50% plasma with
10mM K3EDTA. MSC under each condition were also divided
up in the following fractions: MSC alone, MSC with C3 inhibitor
(10µM, Compstatin) or MSC with C5 inhibitor (250µg/mL,
Soliris) added, respectively. One further fraction was exposed
to complete medium with added C3 complement protein (15
mg/mL, Sigma C2910). MSC were washed and resuspended in
complete DMEMmedium. The cell line THP-1 or freshly isolated
PBMCs containing monocytes were used as phagocytes. To
increase the phagocytic activity of THP-1 cells, 15 ng/mL phorbol
12-myristate 13-acetate were added for 15min at 37◦C. Further,
10µg/mL Cytochalasin D (Sigma-Aldrich) was added to negative
control cells in order to block phagocytosis for a minimum of
30min at 37◦C. MSC were co-cultured with phagocytic cells at
1:1 ratio and incubated for 2 h at 37◦C. Thereafter, cells were
centrifuged at 400x g for 5min and stained on ice for analysis
by flow cytometry (BD LSRFortessa, BD Biosciences). Monocytes
were identified by forward scatter/side scatter (FSC/SSC) and
gating on CD14+ cells. Phagocytosis was detected by pHrodo
fluorescence. The positive gate was set based on the negative
control with Cytochalasin D. Cells were acquired using flow
cytometry (BD LSRFortessa, BD Biosciences) and data were
analyzed using the FlowJo software (FlowJo, Ashland, OH).

Statistical Analysis
Statistical analysis using paired t-test or one way ANOVA
(described in figure legends) were performed using Graph Pad
Prism (Graph Pad Prism Software Incl. San Diego, USA). p <

0.05 was considered statistically significant.

RESULTS

Survival and Function of MSC Upon
Contact With Plasma
Due to the fast clearance of MSC from blood circulation after
i.v. infusion, it remains unclear whether MSC die after contact
with plasma. To test this, we incubated MSC with freshly
isolated plasma in different time periods stretching from one
up to 24 h (Figures 1A–C) and data not shown. It has been
recently demonstrated that the anti-human C3c antibody detects
C3b/iC3b deposition on the surface of MSC after incubation
with serum (14). To check for potential MSC interaction with
the complement system, we stained for the presence of the
complement components C3b/iC3b on the surface of MSC by
using the same antibody (Figures 1A–C). MSC from different
healthy donors displayed heterogeneity in C3b/iC3b deposition,
ranging from 10 to 60% after 1 h of incubation with plasma
(Figure 1C). Heterogeneity of C3b/iC3b deposition was also
observed when we used purified C3 protein together with MSC
(Figure 1C). Using flow cytometry, we found thatMSC incubated
with plasma displayed the same shape and granularity with

no significant changes in viability compared to control MSC
(Figure 1D). This was also observed when MSC were incubated
with all blood compounds using the blood chamber technique
(25) (Figure 1B and data not shown). It should be noted that
the intact coagulation system was inhibited in all experiments
by the addition of a thrombin inhibitor. Altogether, these results
indicate that MSC survive in vitro during the first hours when
they interact with plasma.

Moreover, we found that MSC pre-treated with plasma
suppressed the proliferation of activated CD3+ T cells similarly
to MSC pre-treated with heat inactivated (HI) plasma or non-
treated MSC, suggesting that the immune-suppressive properties
of MSC are not altered after interaction with plasma compounds
(Figure 1E). In response to high concentrations of IFNγ, and
TNFα, MSC pre-incubated with plasma still produced substantial
levels of IL-6 and IDO (Figure 1F). Using the appropriate media
for MSC differentiation, we found that MSC pre-incubated with
plasma differentiate to adipocytes and chondrocytes similarly
to control MSC suggesting that the differentiation capacity
of MSC was maintained (Data not shown). Interestingly,
expression levels of the complement regulators CD46, CD55,
and CD59 were not affected following contact between MSC
and plasma (Figure 1G). Altogether, these results indicate that
MSC survive and are fully functional, after contact with plasma
and that this protection might be due to the expression of
complement regulators.

Effects of Blocking Complement
Regulators on MSC Pre-treated With
Plasma
We tested whether expression of complement regulators CD46,
CD55, and CD59 is important for the survival of MSC following
incubation with plasma.MSCwere labeled with calcein which is a
cytosolic dye that leaks out if the membrane of MSC is damaged
by the membrane attack complex (26). MSC were treated with
specific blocking antibodies, washed, then incubated later with
plasma. Thereafter, MSC were stained for C3b/iC3b deposition
on their surface (Figures 2A–C). Addition of an anti-CD59
specific antibody but not anti-CD46 nor anti-CD55 resulted
in calcein leakage when MSC were pre-treated with plasma
(Figures 2A–C). Importantly, blocking of any complement
inhibitor did not induce calcein leakage when MSC were pre-
treated with HI plasma or untreated MSC (Figure S1). The shape
and granularity of MSC were dramatically changed with an
accumulation of cell debris when MSC were pre-treated with
plasma and antibodies blocking the complement inhibitor CD59
(Figure S2). Moreover, inhibition of CD59 led to a pronounced
increase of C3b/iC3b deposition on the surface of MSC pre-
treated with plasma compared to controls (Figures 2A–C). Using
FlowSight, we found that blocking of CD59, but not other
complement regulators resulted in cell death as shown by 7-AAD
staining (Figure 2D) and data not shown. Similarly, using flow
cytometry, we found that almost all MSC stained positive for the
dead cell marker after pre-treatment with complement inhibitor
CD59 and plasma (Figure 2E). CD59 was expressed at a much
higher levels compared to CD46 and CD55 on the surface of
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FIGURE 1 | Survival and function of MSC after their contact with plasma. (A) Contour plots from flow cytometry analysis of MSC stained with anti-C3c FITC or

specific isotope control to detect C3b/iC3b deposition after exposure to plasma, heat inactivated (HI) plasma or untreated MSC. (B) FlowSight images of MSC

incubated with blood compounds in the presence or absence of 10mM EDTA for 30min. MSC were stained with C3c-FITC and CD73-PE. Brightfield image of MSC

is shown in the left part of the image. (C) Percentage of C3c-FITC binding to MSC after exposure to different conditions (media, EDTA-plasma, HI-plasma, plasma,

purified C3 protein) for 1 h. (D) Representative contour plot showing FSC and SSC of MSC after their exposure to plasma. Bars represent percentage of live (aqua live

dead negative) MSC after 1 h incubation in control vs. plasma from two different experiments. Data shown are representative of two experiments of five different MSC.

(E) Inhibition of proliferation of 5 days activated T cells (n = 3) in the presence of MSC (n = 7) at the indicated ratios. Data shown are means and SD of two

independent experiments. (F) Intracellular IDO or IL-6 expression was measured by flow cytometry in MSC exposed to control media, inactive complement plasma

(+ EDTA, 10mM) or active complement plasma for 1 h, thereafter washed and treated with TNF-α and IFN-γ for 72 h. Data shown are representative from four MSC.

(G) Expression of complement regulatory proteins CD46, CD55, and CD59 on MSC cultured in complete medium, HI plasma or plasma was analyzed by flow

cytometry. Mean fluorescent intensities of MSC from five MSC in two different experiments are displayed with mean and SD.

all analyzed MSC. Thus, the different expression levels of CD46,
CD55, and CD59 do not exclude the possibility that both CD46
and CD55 may also be important for protection. Furthermore,

although this result is interesting, it should be noted that blocking
of CD59 by this specific IgG2a isotype may also induce killing of
MSC through the activation of the classical pathway (27). Thus,
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FIGURE 2 | Effects of blocking complement regulators on MSC pre-treated with plasma. (A) Representative contour plots of calcein RO-stained MSC exposed to

plasma, HI plasma or medium for 1 h in the presence or absence of blocking antibodies against complement inhibitors CD46, CD55, or CD59. (B) Percentage of

calcein leakage, and (C) percentage of C3b/iC3b binding to MSC pre-treated with anti-CD46, anti-CD55, and anti-CD59 blocking antibodies in the presence of active

plasma. Data shown are means and SD (n = 4). (D) FlowSight images showing C3b/iC3b binding and 7-AAD (death marker) on MSC in the presence or absence of

anti-CD59 blocking antibody in the blood chamber experiments. (E) Percentage of live cells (aqua live dead negative) of MSC pre-treated with plasma in the presence

or absence of anti-CD59 blocking antibodies. Data shown are means and SD (n = 4). Data are representative of two independent experiments. Statistical significance

was determined using paired t-test *p = 0.05 and ***p = 0.0001.

at this stage, our results which suggest that CD59 may protect
MSC from complement lysis should be considered as suggestive,
but not conclusive.

Complement Factors Enhance
Phagocytosis of MSC by Monocytes
Phagocytosis is considered to be an important pathway for
removal of complement-opsonized cells from circulation (28).
We hypothesized that MSC are phagocytosed via a mechanism
that involves complement proteins. To address this, we labeled
MSC with the pH-sensitive dye pHrodo, which has a low
fluorescence at neutral pH that increases with decreasing pH,
for instance upon entering phagolysosomes where the pH is
significantly reduced (29). This approach allows to clearly address
active phagocytosis of MSC by monocytes. As a negative control,
Cytochalasin D (CytoD) was added to the co-culture in order
to inhibit phagocytosis. We initially used the monocytic cell line
THP-1, which has been extensively used in phagocytosis studies
(30). Although the phagocytic capacity of THP-1 cells was not
high, we consistently observed higher phagocytosis if MSC were
pre-treated with plasma, compared to heat inactivated plasma or

medium alone (Figures 3A,B). Therefore, we set-up experiments
using fresh PBMC from healthy donors (Figures 3C–E) and
gated on CD14+ cells in order to analyze phagocytosis by
monocytes (Figure 3C). After 2 h of co-culture, around 15% of
monocytes showed a higher pHrodo fluorescence indicating that
MSC are phagocytosed by monocytes in the absence of plasma
(Figures 3D,E). Interestingly, almost half of the monocytes
phagocytosed MSC if they were pre-incubated with plasma
and washed prior to co-culture (Figures 3D,E). When MSC
were pre-incubated with HI plasma, we observed a significant
decrease in phagocytosis of MSC by monocytes compared
with plasma (Figures 3D,E). These results suggest that plasma
factors interacting with MSC are responsible for the increased
phagocytic capacity of monocytes.

Phagocytosis of MSC Is Mediated by
Classical and Intermediate Monocytes
In humans, monocytes can be divided into three subsets
based on the expression of CD14 and the Fcγ receptor III
CD16 (31), including classical monocytes (CD14+ CD16−),
intermediate monocytes (CD14+ CD16+) and non-classical
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FIGURE 3 | Complement enhances phagocytosis of MSC by monocytes. MSC were labeled with pHrodo and incubated with or without active plasma for 1 h,

washed and co-cultured with THP-1 cells (A,B) or PBMC (D,E). Phagocytosis was analyzed after 2 h co-culture. Phagocytosis inhibitor Cytochalasin D (CytoD) was

added as a negative control. (A) Representative plots of flow-cytometric analysis of phagocytosis by THP-1 cells. pHrodo bright fluorescence indicates cells that have

phagocytosed labeled MSC. (B) Pooled data of THP-1 cell phagocytosis, bars represent means with SD (n = 4) from two independent experiments. (C) Gating

strategy of CD14+ monocytes in freshly isolated PBMC. (D) Representative plots of flow-cytometry analysis of phagocytosis by monocytes. pHrodo bright

fluorescence indicates cells that have phagocytosed labeled MSC. (E) Pooled data from MSC phagocytosis by monocytes, bars represent means with SD (n = 4) of

two independent experiments. Statistical significance was determined using ANOVA followed by Holm-Sidak’s multiple comparisons test *p = 0.05, **p = 0.001.

monocytes (CD14− CD16+). Here, we made use of the CD14
and CD16 surface markers to identify these three subsets in our
assays (Figure 4A). We addressed whether MSC phagocytosis,

mediated by plasma factors, involves a specific subset of
monocytes. Indeed, monocytes with phagocytosedMSC (pHrodo
Bright) were mainly classical CD14+ CD16− and intermediate
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FIGURE 4 | Phagocytosis of MSC is mediated by classical and intermediate monocytes. (A) Gating strategy on different subsets of monocytes in freshly isolated

PBMC. Classical monocytes (CD14+ CD16−), intermediate monocytes (CD14+ CD16+), and non-classical monocytes (CD14− CD16+). (B) Representative flow

cytometry plots showing distribution of different subsets of monocytes on gated pHrodo Bright and pHrodo Low. (C) Distribution of the three monocyte subsets within

the pHrodo Bright population. Bars represent mean values with SD (n = 4 PBMC) of pooled data from two different experiments.

CD14+ CD16+ monocytes while non-classical CD14− CD16+

monocytes did not phagocytose MSC (Figures 4B,C) and
Figure S3. Since intermediate monocytes represent only a small
fraction of the total number of monocytes, the majority of
pHrodo bright cells were classical monocytes (Figures 4B,C).
The distribution of monocyte subsets that phagocytose MSC pre-
treated with plasma was similar when we compared them to non-
treated MSC or MSC treated with HI plasma (data not shown).

Mechanism of MSC Phagocytosis by
Monocytes
To better understand which plasma components are involved in
the phagocytosis by monocytes of MSC pre-treated with plasma,
we first tested whether complement factors may play a role in
this process. The complement factors C3 and C5 were selected
due to their important roles in monocyte-mediated phagocytosis
(17, 20, 32). As anticipated, inhibition of complement factors C3
or C5 did not change the percentage of phagocytosis of control
MSC or MSC pre-incubated with HI plasma (Figures 5A,B).
However, we observed a significant decrease in the phagocytosis
of MSC pre-incubated with plasma in the presence of a C3
inhibitor. On the other hand, inhibition of C5 had no effect on
monocyte phagocytosis (Figures 5A,B). Following subtraction
of basal phagocytosis of MSC (phagocytosis which is observed
in plasma free medium), ∼80% of plasma-mediated increase of
phagocytosis was due to C3 binding (Figure 5C). In addition,
a significant positive correlation between C3b/iC3b binding

and the percentage of pHrodo bright monocytes was detected
(Figure 5D). Altogether, these results indicate that C3 is an
important mediator for phagocytosis of MSC by monocytes
(Figure 6). Further investigations are required to unravel the
exact molecular mechanisms underlying the role of C3 in
phagocytosis of MSC by monocytes.

DISCUSSION

The current consensus in the field of MSC therapy has hitherto
been that intravenous infusion ofMSC leads to quick clearance of
MSC from the blood circulation. The remaining debate has been
focused on the fate of administrated MSC (5). Here, we report
that MSC survive and conserve their phenotypic and functional
activities if they are in contact with complement active plasma.
Furthermore, our results demonstrate that the complement
factor C3 facilitates phagocytosis of live MSC by classical and
intermediate monocytes.

One of the first lines of innate defense of the immune
system is the complement system, which during infection
or entry of foreign cells will bind to their cell surface and
amplify a cascade of enzymatic reactions (16). To prevent
uncontrolled complement activation, cells express a number of
complement regulators at their surface (18). Based on our and
other previous reports showing that MSC express complement
inhibitors including CD46, CD55, and CD59 (14, 15, 33),
we hypothesized that MSC are protected from complement
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FIGURE 5 | Mechanism of MSC phagocytosis by monocytes. MSC were labeled with pHrodo and incubated with or without active plasma for 1 h in the presence or

absence of the C3 inhibitor compstatin or the C5 inhibitor soliris. Cells were washed and co-cultured with PBMC for 2 h. (A) Representative plots of flow-cytometric

analysis of phagocytosis by monocytes. pHrodo bright fluorescence indicates cells that have phagocytosed labeled MSC. (B) Pooled data from two independent

experiments using a total of four different MSC. Bars represent mean values with SD (n = 4). Statistical significance was determined using ANOVA followed by

Holm-Sidak’s multiple comparisons test **p = 0.001. (C) Percentage of reduction in phagocytosis in the presence of C3 or C5 inhibitor calculated from the data

shown in (B) and the percentage of phagocytosis observed in plasma free medium was subtracted. (D) Correlation between percentage of C3b/iC3b binding to MSC

and percentage of pHrodo bright monocytes from HI plasma and plasma in the phagocytosis experiments.

attacks. Our results suggest that CD59 might protect MSC from
complement lysis. However, this result must be taken with
caution since the specific isotype (IgG2b) of the anti-CD59

antibody used within the present study may lead to the
activation of the classical complement pathway as previously
reported (27).
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FIGURE 6 | Model of MSC fate after interaction with blood. (A) Increase in C3 binding and decrease in the survival of plasma pre-treated MSC in the presence of

anti-CD59. (B) C3 binds to the surface of MSC, probably through the alternative complement pathway. CD59 blocks the membrane attack complex from forming.

MSC are phagocytosed by classical and intermediate monocytes, mainly mediated by the presence of C3 on the MSC surface. The receptor binding to C3 and

inducing the phagocytosis remains unknown.
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On the other hand, our results are also in accordance with
Feng et al. who demonstrated that CD59 plays an important
role in protection against complement-mediated cytotoxicity
(15). However, the same report also suggested a role for CD55,
which we did not observe in our study. The latter could
be due to different expression levels of CD46, CD55, and
CD59 on the surface of MSC. Furthermore, it has also been
shown that despite CD59 and CD55 expression, MSC were
injured after complement binding, as revealed by release of the
fluorescent dye bis-carboxyethyl-carboxyfluorescein (BCECF)
from MSC (15). In our study, we did not observe calcein
leakage when MSC were treated with plasma suggesting
that MSC were not injured. Thus, it is plausible that the
different dyes used to detect cytotoxicity might be the reason
for the different results obtained. Indeed, calcein has been
reported to display higher sensitivity and less spontaneous
leakage than BCECF (34). Moreover, plasma pre-treated MSC
stained negative for all the three commonly used cell death
markers in both flow cytometry and FlowSight techniques
and displayed full functional capability favoring the hypothesis
that MSC survive after contact with plasma. Our data are in
accordance with mouse and human in vivo tracing experiments,
which identified MSC in different organs hours to days after
infusion (7, 8, 21, 35).

We observed an increase in C3b/iC3b deposition on MSC
after CD59 inhibition. Here again, we are not excluding the
clear possibility that this could be due to the activation of the
classical complement pathway (27). However, recent findings
suggest a role for CD59 not only as a major controller of
the membrane attack complex (19) but also in C3 regulation
(36, 37). Furthermore, although CD55 was suggested to regulate
C3 (36), we did not observe any significant changes in
C3b/iC3b deposition when CD55 was blocked on MSC. More
experiments are therefore required for further clarification.
It should be noted that interaction with complement is not
unique to bone marrow MSC as adipocyte stromal cells have
been shown to interact with complement in rat peritonitis
model (38).

Complement deposition on the cell surface serves as target
for complement receptors present on mononuclear phagocytic
cells in particular monocytes and macrophages (28). Our results
revealed that live MSC were targeted by monocytes via a
mechanism that involves complement. Such a mechanism might
explain in part the observed rapid clearance of MSC when
infused to the circulation. Indeed, only 2 h of incubation led to
phagocytosis of complement-opsonized MSC by more than 45%
of monocytes. A recent study by the Hoogduijn research group
used umbilical cord MSC (uMSC) labeled with the lipophilic
membrane dye PKH26, which were mixed with monocytes
in blood. They found PKH26-labeled uMSC fragments on
monocytes 3 h after co-culture (22). Also, Braza et al. found in
an asthma model in mice that injected PKH26-labeled MSC were
engulfed by lung macrophages within 24 h following i.v. injection
(21). However, the use of PKH26 may be disadvantageous since
it also could incorporate itself into other cells (in this case to
monocytes or macrophages) through a cell-to-cell membrane
transfer process called trogocytosis, giving rise to false positive

signals without phagocytosis (39, 40). In the current study,
MSC were labeled with pHrodo, which has the advantage that
it is only fluorescent under acidic conditions, consequently
it will only be fluorescent in phagolysosomes (pH 4) but
neither outside of the cell nor in the cytoplasm where the
pH is around 7 (29, 41). Thus, our data demonstrated that
live complement-opsonized bone marrow MSC were indeed
phagocytosed by monocytes. Intriguingly, we showed that MSC
were also phagocytosed by monocytes in the absence of plasma
albeit to a lesser extent. These observations are consistent with
the paradigm that MSC can be engulfed by cancer cells in the
absence of plasma (42). One possible explanation might be that
MSC express adhesion molecules that allow a tight contact with
monocytes, which could facilitate their phagocytosis (28, 43).
A recent study suggested that apoptosis of MSC is induced by
cytotoxic T cells which favor their engulfment by phagocytic
cells (13). Our data complement this study and reveal that
live MSC can also be subjected to phagocytosis by monocytes.
This might explain recent pre-clinical studies showing positive
effect of living MSC in the treatment of sepsis (44, 45).
Nevertheless, a comparative study on the immunomodulatory
potential of monocytes which phagocyte apoptotic vs. live MSC
is required.

With further evaluation of the mechanism of complement-
mediated phagocytosis, we found that addition of compstatin,
which blocks the activation of complement at the C3 level
(32) significantly affected phagocytosis of MSC by monocytes.
Adding the C3 inhibitor reduced C3b/iC3b deposition on
the surface of MSC suggesting that binding of C3 at the
surface of MSC is associated with complement activation
confirming previous observations (14). However, the exact
mechanisms underlying how C3 deposition triggers phagocytosis
remain to be investigated. An interesting question, which
needs further investigation, is which receptor on monocytes
is involved in MSC phagocytosis. Monocytes express receptors
for different C3 derivative fragments including CR1 (CD35),
CR2 (CD21), CR3 (CD11b/CD18), and CR4 (CD11c/CD18)
(46). Among these receptors, CR1 and CR2 on monocytes
are involved in phagocytosis via interactions with the C3
complement during infection (47). Thus, a similar mechanism
might occur for MSC. Interestingly, phagocytosis mediated
via complement receptors is not always associated with
inflammation (47). Therefore, it is reasonable to speculate
that monocytes might be the final destination of MSC
after their infusion into the circulation without inducing
an excessive inflammation. This might partly explain the
mild inflammation detected after intravenous infusion of
MSC (48).

Another question addressed in our study is which type of
monocytes phagocyte MSC. Moll et al. showed that depletion
of CD14+CD11bhigh monocytes was associated with strong
decrease in the immunosuppressive function of MSC in vitro
in both alloantigen- and PHA-stimulated mixed lymphocyte
reactions (14). We found that classical CD16− CD14+ and
intermediate CD16+ CD14+ monocytes were first in engulfing
MSC supporting recent findings (22). However, we did not
see any significant changes in expression of the other Fc
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receptors CD32 or CD64 on phagocytic monocytes which
have been involved in complement-mediated phagocytosis
during certain infection (data not shown). However, kinetic
experiments are needed to see whether non-classical CD16+

CD14− monocytes are also involved in the phagocytosis
of MSC at a later time point. Indeed, de Witte et al.
suggested that 24 h after engulfment of uMSC, monocytes
polarize from CD14+ CD16− to CD14+ CD16+ expressing
cells (22).

In conclusion, we propose that complement opsonization
plays a crucial role in the fate of MSC after intravenous infusion
(Figure 6). It mediates their rapid phagocytosis by classical and
intermediate CD14+ monocytes. MSC are protected against
complement injury through CD59, which is in contrast to the
previous dogma that MSC disappear from circulation due to
destruction. Our results provide new insights on the fate of
MSC after intravenous infusion, which needs to be taken into
consideration in order to improve the therapeutic role of MSC
in various diseases.
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Figure S1 | Complement inhibitors CD46, CD55, or CD59 are not toxic on MSC.

Representative contour plots of calcein RO stained MSC and exposed to plasma,

HI plasma or medium for 1 h in the presence or absence of complement inhibitors

CD46, CD55, or CD59. Data is representative of 5 MSC of two independent

experiments.

Figure S2 | Representative contour plots showing shape (FSS) and granulosity

(SSC) of MSC after incubation for one hour with or without active plasma, in the

presence or absence of complement inhibitor anti-CD59. Data are representative

of at least three different experiments.

Figure S3 | Phagocytosis of MSC is mediated by classical and intermediate

monocytes. Presence of non classical monocytes among other subsets on gated

pHrodo Low MSC. Pooled data of two different donors (PBMC = 4).
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