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Abstract. Longitudinal pharmacometric models offer many advantages in the analysis of
clinical trial data, but potentially inflated type I error and biased drug effect estimates, as a
consequence of model misspecifications and multiple testing, are main drawbacks. In this
work, we used real data to compare these aspects for a standard approach (STD) and a new
one using mixture models, called individual model averaging (IMA). Placebo arm data sets
were obtained from three clinical studies assessing ADAS-Cog scores, Likert pain scores, and
seizure frequency. By randomly (1:1) assigning patients in the above data sets to “treatment”
or “placebo,” we created data sets where any significant drug effect was known to be a false
positive. Repeating the process of random assignment and analysis for significant drug effect
many times (N = 1000) for each of the 40 to 66 placebo-drug model combinations, statistics of
the type I error and drug effect bias were obtained. Across all models and the three data
types, the type I error was (5th, 25th, 50th, 75th, 95th percentiles) 4.1, 11.4, 40.6, 100.0,
100.0 for STD, and 1.6, 3.5, 4.3, 5.0, 6.0 for IMA. IMA showed no bias in the drug effect
estimates, whereas in STD bias was frequently present. In conclusion, STD is associated with
inflated type I error and risk of biased drug effect estimates. IMA demonstrated controlled
type I error and no bias.
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INTRODUCTION

The use of nonlinear mixed effect models has become a
standard in drug development as evidenced by best practice
documents generated by companies (1, 2) and guidances
issued by regulatory agencies (3, 4). While the use of models
initially focused on the characterization of pharmacokinetics
in the patient population, it is nowadays used to answer a
multitude of questions. Among these, relationship between
treatment and response is of particular interest. In an
assessment of the value brought to the organization from
various modeling activities, model-based characterization of
the treatment effect is featured in a majority of the examples
(5). With adequate models, model-based analyses of longitu-
dinal data can typically provide analyses where the treatment
effects can be more precisely estimated and identified with
much higher power compared to analyses of end-of-treatment
data (6, 7). Despite these potential advantages, model-based
analyses represent a minority of the analyses that address the

primary questions about treatment effects in drug develop-
ment (8). Concerns regarding model selection bias and model
misspecification are primary impediments for the more
widespread use of model-based analyses.

A data-driven model-building process can lead to model
selection bias that exaggerates the treatment effect. To avoid
such problems, model averaging based on a preselected set of
drug effect models has been suggested (9–11). These are
promising techniques to address the issue of selection bias;
however, the problem of model misspecification with model-
based analyses may be aggravated from the selection among a
small number of predefined models. The main concerns
regarding model misspecification include the risk of a biased
drug effect estimate and the incorrect conclusion that a drug
is efficacious, when it is not. The latter is typically quantified
as the type I error rate of a test where the null hypothesis is
no drug effect and the alternative is a drug effect associated
with treatment. Several investigations have focused on the
gains from model-based analyses when drug effects are
present, but fewer have addressed the risk of incorrect
conclusions regarding the treatment effect when there is no
drug effect. In this work, we try to assess such risks. While
there are many designs in which treatment effect character-
ization is the primary objective, we focus here on a simple
parallel group two-arm design where the aim is to compare
treatment with placebo. The main evaluations from such a
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study are the drug effect estimate and whether this estimate is
statistically significantly different from zero. Additional
evaluations to assess commercial viability may also be
included (12) but will not be the focus here.

In addition to evaluating the standard (STD) modeling
strategy for assessing drug effects, based on the treatment
arm having an estimated component, the drug effect, absent
in the placebo arm, we will also introduce and assess a new
approach, “individual model averaging” (IMA). In this
approach, two submodels (placebo alone and placebo plus
drug effect) are simultaneously fitted to each individual’s
data. The probability for individuals to be explained by one
or the other submodel is then estimated through a mixture
model, using the allocation arm (placebo or treatment) as
predictor. The standard full model is a special case of this
model, namely, when the estimated probability to be de-
scribed by the placebo alone model is one in the placebo arm
and zero in the treatment arm.

To study the impact of model misspecification, we
utilized real data examples where all patients received the
same treatment, placebo or standard of care. This was
preferred over simulating data, as there is typically a limited
understanding on the origin of model misspecification and it
is therefore difficult to realistically simulating it. With real
data where all participants receive placebo, it is possible to
mimic trials of “treatment” versus “placebo” by random arm
allocation for each patient. Doing so, each subject is assigned
an arm in a trial for which appropriate analyses should not
indicate differences between “treatment” and “placebo”
beyond what can happen by chance.

METHODS

NONMEM version 7.4.3 and PsN version 4.9.1 were
used to analyze the clinical data, and the post-processing of
the results was performed with R version 3.6.0. The
estimation methods used were FOCE for the continuous data
and LAPLACE for the categorical data.

Data

The comparisons between the STD and the IMA
methods were performed using three placebo data sets:
ADAS-Cog scores treated as continuous data, categorical
Likert pain score, and seizures count data. For each data set,
three different designs were created using different number of
subjects. Table I presents a summary of the data used in this
study.

ADAS-Cog

The ADAS-cog (Alzheimer’s Disease Assessment Scale–
Cognitive) scale scores the severity of the disease between 0
and 70. Due to the high number of categories, the data were
considered as continuous. The data were collected from the
ADNI data base (www.adni-info.org); a detailed description
is available elsewhere (13). The recruited individuals were
aged between 55 and 90 years old: 229 cognitively normal
elderly, 188 presenting early Alzheimer disease, and 405 with
mild cognitive impairment. The follow-up duration was
respectively 3, 2, and 3 years, with ADAS-cog evaluation at

0, 6, 12, 24, and 36 months. For convenience, the data set was
reduced to 800 individuals.

Likert Pain Score

The Likert pain score is an 11-point pain scale ranging
from 0 to 10. The data were recorded from 231 patients with
painful distal diabetic neuropathy randomized in the placebo
arm of three phase III studies. Pain scores and allowed intake
of acetaminophen, a rescue medicine, were recorded daily. A
description of the data initially gathered is available else-
where (14, 15). We reduced the data to weekly records,
keeping an even number of individuals (230).

Seizure

The seizure count data included daily seizures count
from patients (551) with medically refractory partial seizures,
obtained during the screening phase (12 weeks), of a larger
study where each patient was screened maintaining his
standard antiepileptic treatment (same brand, formulation,
and dosage) (16). We reduced the data to weekly records,
keeping an even number of individuals (500).

Definition of the STD and IMA Methods

In both methods, the likelihood ratio test (LRT)
discriminates between the null hypothesis (H0), i.e. a base
model without the treatment information, and the alternative
hypothesis (H1), i.e. a full model accounting for the treatment
information. The two approaches are summarized in Table II,
and code examples are given in the electronic supplemental
material ESM 1.

Standard Method

This approach is the current method used to test if a
treatment has a significant impact on a clinical outcome,
compared to another intervention such as placebo or
standard of care. In this approach, the base model
describes the observations without specific parameter for
the studied treatment intervention (Eq. 1), and the full
model adds a drug effect model to quantify the effect of
the studied treatment intervention based on the arm
assignment (Eq. 2):

y ¼ b θB;ηB; γð Þ⋄p t; θPLB;ηPLB; γð Þ ð1Þ

y ¼ b θB; ηB;γð Þ⋄p t; θPLB;ηPLB;γð Þ⋄d t; θDRUG;ηDRUG; γ;ARMð Þ ð2Þ

where y is the individual predictions for continuous data and
the probability of observing a given discrete event for
categorical data. b is the function describing the observations
at baseline, p is the function describing their evolution
without treatment effect (i.e. placebo model), d is the the
function describing the impact of the treatment (i.e. drug
model), and ⋄ any arithmetic operation (addition or multi-
plication). t is the time; θX and ηX, respectively, are the fixed
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and random effects of the functions; γ is the covariate vector;
and ARM is the binary assignment with the individual
treatment information: 0 when not treated, 1 when treated.

IMA Method

In the individual model averaging approach, a mixture
model is used to describe the data for each patient via two
submodels: submodel 1, with drug effect (Eq. 3), and
submodel 2, without drug effect (Eq. 1). In the base model,
the probability of each subject is given by the study
randomization (P(1) =P(2) = 0.5, where P(1) and P(2) are
the probabilities for submodel 1 and 2, respectively). In the
full model, this proportion is estimated conditioned on the
arm assignment (Eq. 4):

y ¼ b θB; ηB; γð Þ⋄p t; θPLB;ηPLB; γð Þ⋄d t; θDRUG;ηDRUG; γð Þ ð3Þ

P 1ð Þ ¼ ARM⋅θmix þ 1−ARMð Þ⋅ 1−θmixð Þ
P 2ð Þ ¼ 1−P 1ð Þ ð4Þ

where ARM∈ {0, 1} according to the randomization and θmix

∈[0, 1] is the estimated mixture proportion. For a mixture
model with n individuals and m subpopulations (m = 2 for
IMA), the objective function value (OFV) is the sum of the
individual likelihood (ILi), computed weighting the individual
likelihood of each mixture submodel (ILi, k) with the mixture

proportion (Ppop, k) (17):

OFV ¼ ∑
n

i¼1
OFVi ¼ ∑

n

i¼1
−2ln ILið Þ ð5Þ

ILi ¼ ∑
m

k¼1
ILi;k � Ppop;k ¼ ∑

m

k¼1
exp −OFVi;k=2
� � � Ppop;k ð6Þ

where i is the ith individual with i∈ {1, 2,…, n} and k is the
kth submodel with k∈ {1, 2}.

Type I Error Computation

The type I errors of the LRT between the full and base
model for the STD and the IMA approach were investigated
using the real placebo data sets. To compute the type I error
rate, the individuals were randomized (1:1) repeatedly (N =
1000) between a placebo reference arm and a treated arm,
creating N permutations of the random bivariate assignment
vector (0, non-treated arm, and 1, treated arm), mimicking N
parallel group studies controlled with placebo. The number
of degrees of freedom used for the LRT was the number of
parameters estimated in the drug model for the STD
approach, whereas it was 1 in IMA, corresponding to the
estimation of the mixture proportion. The type I error rate
was assumed to be adequate if it was within the 2.5th and
97.5th percentiles of a binomial distribution with a probabil-
ity of success of 5% on N=1000 trial replicates: [3.73-6.54].

Table I. Summary of the Placebo Data Sets Used for the Different Designs in This Study

Data sets Number of subjectsa Total observation count Follow-up durationb

800 3519 24 months (1–36)
ADAS-cog 400 1732 24 months (1–36)

200 894 24 months (1–36)
230 3226 119 days (0–119)

Likert pain score 120 1671 119 days (0–119)
60 788 119 days (0–119)
500 6397 77 days (21–224)

Seizure 250 3135 77 days (49–168)
50 646 77 days (63–154)

aRandomly sampled from the initial data set
bMedian (min–max)

Table II. Null and Alternative Hypothesis Description for the Standard and the Individual Model Averaging Approaches

Approach Null hypothesis (H0) Alternative hypothesis (H1)

STD BASE+PLB (Eq. 1) BASE+PLB+DRUG×ARM (Eq. 2)
IMA Submodel 1: BASE+PLB+DRUG (Eq. 3)

Submodel 2: BASE+PLB (Eq. 1)
P(1)=0.5
P(2)=1−P(1)

P(1)= ARM ∙ (1−θmix)+ (1−ARM) ∙θmix

P(2)=1−P(1)

STD, standard approach; IMA, individual model averaging approach; BASE, baseline model; PLB, placebo model; DRUG, drug model; P(1),
probability of allocation to submodel 1; P(2), probability of allocation to submodel 2; θmix, estimated mixture probability
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This procedure was repeated with different combinations
of placebo and drug effect models (40 combinations for the
Likert pain score and the seizure count data, 66 for the
ADAS-cog data), to explore the robustness of the methods
towards model misspecifications. The equations correspond-
ing to the placebo and the drug model used for each data set
are detailed in the electronic supplemental material ESM 1.

Drug Effect Estimates

The computation of the bias and the precision in the
drug estimates was adapted to the drug effect parameteriza-
tion and the approach. The typical drug effect computation
was using the typical drug estimates (θdrug) only for STD,
whereas for IMA it was a function of both the typical drug
estimates and the mixture proportion (θmix) as described in
Table III. A θmix estimate of 0.5 (0 or 1) implied no
relationship (a strong relationship) between the arm assign-
ment and the submodel probability which only differ by the
presence of a drug effect.

RESULTS

Figure 1 showed that across all three data sets, the type I
error rate of the STD approach (minimum, 25th, 50th, 75th
percentiles, and maximum, 2.5, 11.4, 40.6, 100.0, 100.0) was
high and not controlled, contrary to the type I error rate of
the IMA approach (0.3, 3.5, 4.3, 5.0, 6.5). Additional
information regarding the fit of these models (base model
OFV, mean full model OFV, and number of successful
minimizations) are provided in the electronic supplemental
material ESM 3.

For the STD approach, the false positive rate was the
highest with the Likert pain score data (4.5, 40.7, 97.0, 100.0,
100.0), the lowest with the ADAS-cog data (3.6, 8.8, 26.4,
100.0, 100.0), and the seizure count data had intermediate
performances (2.5, 16.4, 37.6, 100.0, 100.0). For the ADAS-
cog data, the type I error rate was minimum with the offset
drug model and maximum with the linear drug models
including inter-individual variability (IIV). The placebo
model without IIVon baseline had worse performances when
combined with the offset drug models with IIV. For the Likert
pain score data, the models (placebo or drug) adding a
second IIV parameter resulted in worst type I error
performances, the offset placebo model with IIV combined
with offset drug models, and linear placebo model with IIV
combined with linear drug models being the only exceptions.

For the seizure count data, the drug models including
IIV tended to have worse type I error. The offset drug model
with IIV had a better controlled type I error when used with a
placebo model including two IIV parameters. The use of the
linear placebo model with two IIV parameters performed
poorly in combination with offset drug models but had better
performance when combined with the linear drug model with
IIV and a controlled type I error in combination with a linear
drug model.

For the IMA approach, the type I error was well
controlled, 2.5, 4.3, 5.1, 5.6, and 6.3, for the Likert pain score
data; 3.2, 4.4, 4.8, 5.2, and 6.5 for the seizure count data; and
for most combinations lower than the 5% confidence interval
for the ADAS-cog data (0.3, 2.2, 3.5, 4.3, 5.8). None of the
placebo drug model combination tested for the three data sets
had a type I error above the 95th confidence interval of the
0.05 proportion (3.73–6.54%), but 43/66, 4/40, and 2/40 were
below it for the ADAS-cog data, the Likert pain score, and
the seizure count data, respectively. For the ADAS-cog data,
the combinations including a linear drug model had lower
type I error rates. For the Likert pain score data, all the
combinations with a very low type I error included a drug
model without IIV.

Figure 2 illustrates the bias and the precision of the drug
effect estimates. With the IMA approach, no bias was
observed in the typical value of the drug effect estimate,
and the offset models provided a better precision. For the
STD approach, the precision had a similar magnitude as the
IMA approach, but the typical value was often biased. The
bias was observed only with the linear drug models for the
ADAS-cog data but independently of the model used for the
Likert pain score and the seizure count data.

DISCUSSION

The results showed the overall superiority of IMA over
STD: STD presented inflated type I error and generally
biased typical drug effects, whereas IMA had controlled type
I error and unbiased typical drug effects. Similar results were
observed for smaller sample sizes of the same data sets (see
electronic supplemental material ESM 4).

The hypotheses tested using the STD and IMA ap-
proaches differ, and the results can be understood from these
differences. For STD, the hypothesis test answers the
question whether an additional model component can signif-
icantly improve description of the treatment arm data. It does
not answer the question whether there is a systematic

Table III. Computation of Drug Effect Estimates

Drug model Data Drug effect parameterization Typical drug effect

Offset Likert pain score BASE+PLB+ (θdrug+ηdrug) (θmix∗2−1)∗θdrug
Seizure count BASE*PLB*e

 
θdrug þ ηdrug

!
(θmix∗2−1)∗θdrug

ADAS-cog BASE+PLB− (θdrug+ηdrug) (θmix∗2−1)∗θdrug
Linear Likert pain score BASE+PLB+ (θdrug+ηdrug)∗ t (θmix∗2−1)∗θdrug∗ tlast

Seizure count BASE*PLB*e θdrugþηdrugð Þ *t (θmix∗2−1)∗θdrug∗ tlast
ADAS-cog BASE+PLB− (θdrug+ηdrug)∗PLB (θmix∗2−1)∗θdrug∗PLB

BASE, baseline model; PLB, placebo model; θdrug, drug effect parameter; ηdrug, drug effect inter-individual variability normally distributed (0
for models without inter-individual variability); θmix, mixture probability (1 for the standard approach); tlast, time at the end of the study
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difference between the data in the treatment and placebo
arms. In STD, it is assumed, but not tested, that the same
additional model component would not improve the descrip-
tion of the data in the placebo arm. The inflated type I error
of the STD approach, and the bias in the drug effect
estimates, can thus be explained by misspecification of the
placebo models combined with an ability of the drug effect
model to improve the description of data even in the absence
of a true drug effect. Thus, in the absence of a true drug
effect, a significant test may result from any situation where
the drug effect component can compensate for a misspecified
placebo model. Naturally, this probability increases with the
inadequacy of the placebo model and the ability of the drug

effect model to compensate for this inadequacy. It can be
seen in the results that drug effect models that have the same
functional form as the placebo models lead to less inflation of
the type I error. The ability to compensate is less when the
functional form of the drug model is the same as for placebo
model. In addition, it can be seen that the more flexible drug
effect models that include IIV more often lead to higher type
I errors.

For IMA, the hypothesis test answers the question
whether, without changing the model structure, the treatment
allocation information can improve the description of the
data. Thus, it is expected that if there is no systematic
difference between data in the two arms, the test would not
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Fig. 1. Comparison of type I error between the standard (STD) and the individual model averaging (IMA) approaches for different
combination of placebo and drug models, with continuous ADAS-cog data (a), categorical Likert pain score data (b), and seizure count data
(c)
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and seizure count data (c). The plot is facetted by placebo models
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show any inflation in the type I error rate regardless of model
misspecifications. This is also the finding of our study, where
in no case, type I errors are inflated or drug effect estimates
are biased, not even when the drug model clearly can
improve the description of data above that of the placebo
model. Such properties of a modeling approach are always
desirable but especially so for situations where the model(s)
to be used needs to be predefined as is typically the case for
primary analyses in order to avoid subjective model-building.

The full IMA model estimates one more parameter, θmix,
than the full STD model. There are two considerations that
extend from the STD approach: setting of initial estimates
and calculation of drug effect from the model parameter
estimates. A natural set initial estimates for the full IMA
model are the final estimates from the base IMA model
together with an initial estimate of θmix at 0.5. Thus, no new
parameters need to be introduced, and the starting point
assures that the fit is at least as good as the base IMA model.
An alternative, complementary, starting point for the full
IMA model would be a model close to the full STD model by
setting θmix to a value close to one and other parameters as in
the full STD model. In this case, a fit at least as good as the
full STD model is assured. The calculation of the estimated
drug effect from the full IMA effect always requires
consideration of θmix in addition to the standard drug effect
parameters. In the simplest case, this can be done as outlined
in Table III, but in the presence of more complex drug effect
models and/or the calculations of drug effect metrics that also
integrates variability parameters, this may require additional
calculations.

For both STD and IMA approaches, the LRT was used
to test for the presence of a treatment effect. The LRT
assumes that, in the absence of a drug effect, the difference in
OFV between the reduced and the full models follows a chi-
squared distribution of n degrees of freedom, n being the
difference in number of parameters between the two models.
For the STD approach, the addition of a parameter with the
drug model does not always correspond to an additional full
degree of freedom. Examples of such situations are param-
eters set at a boundary in the base model (e.g., variance
parameters), nonlinear functions (e.g., sigmoid Emax model),
redundancies between parameters (e.g., disease-modifying
drug effect when disease progression is negligible), or

boundaries in the parameter space. A consequence when
having fewer actual than nominal degrees of freedom is a
lower type I error rate and lower power. With the IMA
approach, the only difference between the two models is the
estimation of the mixture proportion, θmix, in the full model,
conditioned on the arm allocation. Hence, the comparison
between the full and base IMA models constitutes a full
degree of freedom. Only in the case when the two submodels
are the same, or essentially the same, would the comparison
constitute less than a full degree of freedom. An example
when the two submodels are almost the same is for ADAS-
Cog when the linear, disease-modifying, effect is applied and
the disease progression rate is close to zero. It can be noted
that the type I error in those cases is systematically below the
nominal 5% level (Fig. 1a, IMA approach). For the avoid-
ance of misunderstanding, note that the situation studied here
is quite different from the addition of a covariate effect on a
parameter. In this case, only post-baseline predictions will be
influenced, and also in other respects, these additional
functions often contain time dependencies. The results
presented here should therefore not be interpreted as
informative on type 1 error and estimation bias for standard
parameter-covariate relations.

The ability of drug effect models to improve the data
description, because of model misspecification in the placebo
model, is the reason for the inflated type I error and biased
drug effect estimate of STD in the studied examples. The
drug effect model typically provides additional flexibility in
the description of the time-course of the response; therefore,
defects in the placebo model in the description of the
response time-course would be the most concerning feature.
In relation to this investigation, if the placebo models used
were too simple and/or the drug effect models unusually
complex or tailored to capitalize on the placebo model
misspecification, the results may not be representative.
However, we believe the placebo time-course models tested
are representative of common practice. Further, standard
goodness-of-fit assessments for the best of the placebo models
tried in this study for each data set indicate acceptable data
description (see visual predictive checks and goodness-of-fit
plots in the electronic supplemental material ESM 2). It
should be noted that also for those “best” placebo models,
type I error was inflated. Further, the drug models of this

Build placebo model on placebo data

Add drug model in fit to placebo data

dOFV between 1
and 2 significant ? Cont inue with STD

Append tried drug model to
placebo and restart from 1

Try other drug models until
dOFV is not significant

Fit the drug model to the
whole data allowing for

estimates per arm
Use IMA

No

Yes

A B C D

1

2

Fig. 3. Alternative workflow for the standard approach. STD, standard approach; IMA, individual
model averaging; dOFV, difference in objective function value
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investigation were also tested on the published models and
data sets according to the standard approach, and the result
show inflation of type I error rate (see electronic supplemen-
tal material ESM 5). For the Likert pain score data, the
published model run time was not manageable; hence, the
dOFV (difference in OFV) for one randomization is shown
instead. These results show also that the inclusion of
significant covariates (ADAS-cog data) or over-dispersion
parameter (seizure count data) did not decrease the type I
error rate. The published data set of the seizure count has
daily records contrary to the weekly data used in this
investigation; hence, richer data did not help to decrease the
type I error. Finally, as shown by Tessier et al, in a context
without model misspecification (simulated data), no type I
error inflation was observed for STD. These conclusions
strongly suggest for model misspecification as the culprit for
the observed type I error inflation with the STD approach.

The current study focused on type I error of combination of
placebo and drug models without the context of multiple testing
that often happens during the model-building step. As multiple
testing is also a major cause of type I error inflation, it is
interesting to note that in the case of STD, it is a negligible
problem because of the very high type I error rate of the placebo
and drugmodel combinations individually. However, since IMA
showed a controlled type I error at this level, the type I error
inflation due to multiple testing is expected to be significant. It is
hence advisable to follow the health authorities’ guidelines on
the topic which recommends a priori model specification to
avoid multiple testing and its caveats. Nonetheless, it can be
noted that since, contrary to STD, IMA showed robustness
towards model misspecification, it should not be impacted by
model pre-specification. Further, IMA allows assessment of
different placebo and drug effect models without introducing
information on the treatment allocation. The full IMA could
then be compared to the refined base IMA model. Whether
suchmodel refinement also inflates type I error is another line of
investigation that could be performed.

While dose–response or exposure–response analyses are
more common in pharmacometrics, this study focuses on
treatment–response analysis. It is the most basic settings to
test for drug effect, hence a good starting point to assess a
new method which should be able to recognize the absence of
drug effect in such scenario. Dose– or exposure–response
models can enhance the power of the pharmacometric
analysis compared to treatment–response models. Nonethe-
less, regarding the type I error, when working on data without
drug effect, drug– or exposure–response analyses are not
expected to lower the type I error compared to treatment
response analyses.

While the IMA approach appears promising and deserv-
ing further investigation, the results also point to modifica-
tions, or variants, of the STD approach that seem warranted.
If we consider one variant of the STD approach as (1) build a
placebo model on the placebo data, then (2) fix the placebo
parameters and build the drug model with the drug data, and
(3) estimate all the parameters with the whole data set. This
process is subject to selection bias in the drug effect estimate
because of the multiple models tried, especially in step 2, and
to model misspecification, which always is present. The latter
problem has different consequences depending on the part of
the model impacted: misspecifications in the placebo model

are likely to inflate the type I error, while misspecifications in
the drug model are likely to decrease the power to identify a
drug effect, and misspecifications in either are likely to bias
drug effect estimates. The contrast between the performances
of STD and IMA suggests some good practices when it comes
to modeling drug effect using the STD approach. Figure 3
outlines alternative workflows, such as fitting drug models on
placebo data to check for placebo model misspecification as
described in A and B or allowing the estimation of the “drug”
effect in all arms with different values as described in C and
D.

This investigation focused on the use of STD and IMA for
assessing treatment effects in the situation of analysis of real
data when there is no drug effect present. This focus was
selected as concern for falsely identifying a positive treatment
effect is an important hindrance for use of pharmacometric
models in primary analyses. A complementary question of
interest is how the power of identifying an existing drug effect
compares between the STD and IMA approaches. There are
also many other aspects of implementation of the IMA
framework in drug development that would benefit from study.
These situations include the use in studies with other designs,
such as different allocation ratio, multiple arm studies like dose–
response studies, or studies with crossover components. Further,
the incorporation of IMA in other types of analyses, such as
exposure–response or “classical” model averaging (9–11), may
require additional considerations. All these related investiga-
tions have been pursued and will be reported separately.

CONCLUSIONS

The STD approach is associated with inflated type I
error and risk of biased drug effect estimates. This is a
consequence of placebo model misspecification. As model
misspecification always occurs, standard model-building pro-
cedures ought to incorporate a step in which the drug model’s
ability to improve the fit to placebo data is explored.

The IMA approach demonstrated controlled type I error
and no bias. These are desirable properties in any model-
based analysis that could prove to be particularly important
when a model-based analysis is to serve as a primary analysis
and form the basis for decisions in drug development or drug
usage.
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