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Genome-scale metabolic models (GEMs) are comprehensive descriptions of cell

metabolism and have been extensively used to understand biological responses in

health and disease. One such application is in determining metabolic adaptation to

the absence of a gene or reaction, i.e., essentiality analysis. However, current methods

do not permit efficiently and accurately quantifying reaction/gene essentiality. Here, we

present Essentiality Score Simulator (ESS), a tool for quantification of gene/reaction

essentialities in GEMs. ESS quantifies and scores essentiality of each reaction/gene

and their combinations based on the stoichiometric balance using synthetic lethal

analysis. This method provides an option to weight metabolic models which currently

rely mostly on topologic parameters, and is potentially useful to investigate the metabolic

pathway differences between different organisms, cells, tissues, and/or diseases. We

benchmarked the proposed method against multiple network topology parameters, and

observed that our method displayed higher accuracy based on experimental evidence.

In addition, we demonstrated its application in the wild-type and ldh knock-out E. coli

core model, as well as two human cell lines, and revealed the changes of essentiality in

metabolic pathways based on the reactions essentiality score. ESS is available without

any limitation at https://sourceforge.net/projects/essentiality-score-simulator.

Keywords: constraint-based modeling, gene essentiality, genome-scale metabolic models, reaction essentiality,

systems biology

INTRODUCTION

Genome-scale metabolic models (GEMs) are congregations of biochemical reactions that occur
in an organism or cell/tissue (Mardinoglu and Nielsen, 2015). GEMs have become one of the
denominators in systems biology and have been extensively and successfully used in metabolic
engineering, synthetic biology, antibiotic design, understanding diseases, biomarker discovery, and
drug target identification (Zhang and Hua, 2015; Benfeitas et al., 2017; Bosley et al., 2017; Uhlén
et al., 2017; Mardinoglu et al., 2018; Turanli et al., 2018). GEMs for hundreds of gut microbiota,
healthy tissues and tumor samples have been generated in AGORA (Magnúsdóttir et al., 2017),
Human Metabolic Atlas (Pornputtapong et al., 2015) and Human Pathology Atlas (HPA)
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(Uhlén et al., 2015, 2017) efforts, respectively. These resources
may provide information for investigating the metabolic
capability with species or individual-tumor resolution, but also
raise the challenge of comparing and stratifying GEMs in large-
scale studies.

There are number of ways to compare GEMs, such as
network topology parameters (Doncheva et al., 2012; Vinayagam
et al., 2016). For instance, betweenness and degree centrality
are two topology parameters frequently used for comparing
node importance in a network (Koschützki and Schreiber, 2008).
However, topological analyses of GEMs neglect stoichiometric
balance and likely miss the required input or output of a
metabolic system (Zhang and Hua, 2015). A possible solution
would be weighting the stoichiometric properties for each
reaction/gene using Essentiality Analysis (EA) (Palumbo et al.,
2005, 2007). However, EA only provides binary information
about the essentiality of the reaction, and this is insufficient for
complex GEMs since there would be too little essential reactions.
In this case, a higher degree of EA such as Synthetic Lethality
Analysis (SLA) is necessary to provide additional information
about non-essential reactions/genes. Generally, it is very difficult
to interpret the results of SLA, since thousands to millions of
synthetic lethal (SL) combinations may be involved. An option
for interpretation of SLA result is using Degree of Essentiality
(DoE) (Suthers et al., 2009), but DoE scores ignore the difference
between reactions/genes involves in single and multiple SL
combinations.

In this study, we present Essentiality Score Simulator
(ESS), a tool that uses SLA’s results as input to calculate
reaction-/gene-specific Essentiality Score (EScore). Unlike
topology based methods, ESS relies on the highly valuable
biochemical stoichiometric information embedded in GEMs to
evaluate the structural properties of reactions/genes. In addition,
compared to the DoE, ESS makes the complete use of SLA results
and provides higher resolution scores for each reaction/genes.

MATERIALS AND METHODS

ESS
The main purpose of ESS is to qualitatively evaluate the
essentiality of reactions/genes based on stoichiometric balance.
The input for ESS includes a constrain based model either in
COBRA (Schellenberger et al., 2011) or RAVEN format (Agren
et al., 2013), the objective function and the maximal level of
SLA (denoted as level n hereafter) sought by the user. An n =

1 implies targeting of a single reaction/gene, whereas n > 1 test
for combinations of reactions/genes after excluding single lethal
reactions/genes. With these inputs, ESS identifies all essential
and synthetic lethal reactions/genes internally using an adapted
FastGeneSL (Pratapa et al., 2015; Zhang et al., 2015), and then
uses a unique algorithm to calculate the ES for each reaction/gene
based on the SLA results.

Figure 1 provides examples of level 2 ESS calculations for
two sample cases to elucidate the concept. The first pathway
(Figure 1A), with 5 reactions and an objective reaction, shows
that every non-objective reaction could be essential or synthetic
lethal in 4 cases for level 2 SLA (i.e., single C knockout, or

FIGURE 1 | Toy model examples (A,B) showing the principal of ESS. Circles

and arrows represent metabolites and reactions, respectively. The value in the

ith row and jth column of the blue matrix is 1 if knockout of reaction i and j lead

to zero flux OBJ reaction; otherwise it is 0. Diagonal elements (orange)

represent single gene essentialities; all others represent double knockouts. The

ES for each reaction (red row) is presented in the matrix and mapped to the

pathway (right).

double knockouts CA, CB, or CD). For instance, reaction C is not
essential per se, but double knockout of CDwould be essential. As
a result of the weighted scores, the ESS of C is 0.25. In this case,
only the true SL combinations would be considered in order to
eliminate redundancy, and that is why CA was neglected since
single deletion of A would be lethal. It should be noted that
the EScore for an essential reaction (e.g., reaction A) is always
1 regardless of the level of ESS. Figure 1B shows that reaction D
has an EScore that is higher than reaction B and C. This is because
reaction D is overrepresented and involved in two SL pairs, while
reactions B and C are only involved in one. In other words, ESS
could identify the hot-spots in the model. This also explains why
reaction D has a higher EScore in Figure 1B than in Figure 1A.
As topological view, it can also be explained by the shortest path
to the objective function.

It is noteworthy that, this principle could be applied to higher
level SLA. The increase of SLA level could give a higher resolution
of the EScore. Furthermore, the principle could be implemented
for calculation of EScore for genes. To calculate EScore for a
specific reaction/gene in any level, all possible synthetic lethal
combinations involving a reaction/gene should be introduced
for normalization purpose. For example, in the case of the
4 reaction/gene model of Figure 1A, the number of possible
combination for reaction/gene A in level 2 ESS is 4 [A(A), AB,
AC, and AD]. For level 3 ESS it would then be 16 [A(AA), A(A)B,
A(A)C, A(A)D, . . . AD(A), ADB, ADC, and AD(D)]. Note that,
there are repetition in the population [e.g., A(A)D and AD(A)],
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and this give weight to different combination. Since this number
is the same for every reaction/gene in the same model for a given
n, we could calculate EScore of a reaction as follows:

ESi = yi1 +

n
∑

j=2

(

yij
(

j− 1
)

!

Xj−1

)

where ESi represents the EScore of reaction/gene i, yij represents
the number of combination that reaction/gene i is SL (or
essential) at level j. X represents number of reactions/genes in
the model. In this equation, ESi for an essential reaction/gene is
always 1 since for any j> 1, yij would be 0; otherwise, ESi is always
no more than 1. In addition, a comparison of EScore among
different models is possible since EScore is normalized by the
model’s X. We used level 3 ESS throughout this study considering
the balance between accuracy and computational cost.

Generating the Networks and Calculation
of Centrality Parameters
Regarding the Bidkhori et al. method (Bidkhori et al., 2018),
we generated directed Metabolite-Metabolite network (MMN),
directed Reaction-Reaction network (RRN), and directed Gene-
Gene network from GEMs (GGN). The currency metabolites
(Khosraviani et al., 2016) such as cofactors, coenzymes and H2O
were removed before generating RRN and GGN. The importance
of the nodes (metabolites in MMN, reactions in RRN and
genes in GGN) was scored by computing centrality topological
parameters i.e., betweenness, eccentricity, closeness, and degree
(Bidkhori et al., 2018). The nodes were ranked in the basis of
each node’s topological measures. The ranking and scoring were
calculated for each node in the largest connected component in
each generated network.

Experimentally Measured Cell Line
Essentiality Scores
Genome-wide CRISPR gene essentiality scores (CERES) were
retrieved from Avana public datasets 18Q2 (Meyers et al., 2017).
In brief, essentiality of each gene in cancer cell lines were
tested using lentiviral vectors expressing the Cas9 nuclease and
calculated by a computational method developed in that study.
The CERES scores are used to benchmark the computationally
estimated EScore in this study.

Model and Simulation
The E. coli core model was reconstructed based on a previous
study (Orth et al., 2010) and retrieved from BiGG database (King
et al., 2016). The original constraints and objective function are
used for simulations of wild-type E. coli. The model for ldh
knockout E. coli mutant is obtained by removing the reaction
“LDH_D” in the wild-type model. The EScore of “LDH_D” for
mutant model is set the same as in wild-type model for fair
comparison with the wild-type model. The reaction “ATPM” is
excluded from the ESS calculation since it is a pseudo reaction
that presents a mandatory function of the model.

Cell line specific GEMs, iIPC298 and iNCIH1299, were
reconstructed based on the RNAseq gene expression data
downloaded from CCLE public dataset 18Q2 as RPKM

(Barretina et al., 2012) and using a previously developed task-
driven model reconstruction (tINIT) algorithm in RAVEN
toolbox (Agren et al., 2014). The tINIT algorithm employs
defined metabolic tasks for imposing constraints on the
functionality of the reconstructed models. In this specific
case, we changed the input of the growth task from Ham’s
media to RPMI1640 which was used in the experiments. The
constraints for the cell GEMs calculated based on the RPMI1640
composition are provided as supplementary (Table S1). The
adapted metabolic tasks, the RNA-Seq data and a generic GEM
for human cancer from our previous study (Uhlén et al., 2017)
were used as inputs for the tINIT algorithm, and as a result, cell
line specific GEMs have been generated.

All linear programming and mixed integer linear
programming problems are solved by the freely available
“mosek” solver version 8 obtained from https://www.mosek.
com/downloads/. All computational times reported in this paper
are for a single core CPU with 6 GB RAM in server.

Availability
ESS is a method build in Matlab (version R2017b) environment,
and the source code and models (including the cell line models)
are available at https://sourceforge.net/projects/essentiality-
score-simulator/. In addition, SBMLlib (Bornstein et al., 2008)
and COBRA/RAVEN toolbox (Schellenberger et al., 2011; Agren
et al., 2013) are also required to import SBML format GEMs.

RESULTS

Case 1: Benchmark ESS Using E. coli Core
Model
To demonstrate the advantage of ESS compared to topology
based method, we firstly employed the core metabolic model of
E. coli with 95 reactions as a proof of concept case. We calculated
and compared the EScores and betweenness centralities (BCs)
which is one of the most used topology based method for all
reactions in the core model (Table S2). Within the 95 reactions,
there are 10 reactions that display zero scores for both EScores
and BCs, and 49 reactions that have non-zero scores for both
EScores and BCs. Spearman correlation between EScores and
BCs for the 49 reactions was found substantially low (r = 0.0994;
P > 0.1), suggesting inconsistency between two metrics although
both methods classify these reactions as essential to a certain
extent. There are 16 reactions that have non-zero EScores and
zero BCs, and 15 of them are responsible for exchanging of very
important or essential metabolites, including carbon dioxide,
oxygen, glucose, ethanol, formate, lactate, proton, ammonium,
phosphate, and succinate. Moreover, among these exchange
reactions, those for glucose, proton and ammonium exchange
have the maximum EScores (equal to one), which means they
are essential for growth of E. coli in the given condition. This
highlights the limitation of topology based methods which
missed uptake of glucose as essential because of neglecting
stoichiometric info as previously reported (Zhang and Hua,
2015). In addition, there is also another reaction, RPI (ribose-
5-phosphate isomerase), that is also missed by betweenness
(BC = 0), and this reaction has been already experimentally
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validated as essential in E. coli in previous study (Neidhardt
and Curtiss, 1999) which further proves the advantage of ESS
compared to betweenness. On the other hand, there are 20
reactions that showed non-zero scores uniquely in betweenness
analysis. These reactions are mainly involved in glycolysis and
TCA cycle, including FBP (fructose-bisphosphatase), AKGDH
(2-oxogluterate dehydrogenase) and SUCOAS (succinyl-CoA
synthetase). The observation that other reactions show both
significantly higher BCs and EScores (Student t-test; P < 0.05)
suggests that these 20 reactions are possibly not metabolically
important. Moreover, some of them have been reported to be
non-essential experimentally, which is the case of FBP in E. coli
(Fujita et al., 1998).

Case 2: Benchmark ESS Using Human Cell
Line GEMs
In order to further test the efficiency and accuracy of ESS in
actual genome-scale model cases, we reconstructed two novel
human cell line specific GEMs for IPC298 and NCIH1299,
named iIPC298 and iNCIH1299, respectively. We selected these
two cell lines based on availability of transcriptomic data
and experimentally derived CRISPR essentiality scores (CERES
algorithm, see section Materials and Methods), and both are
cultured in the same medium, RPMI1640. The iIPC298 includes
3414 reactions, 2102 metabolites, and 1827 genes, whereas
iNCIH1299 includes 3550 reactions, 2117 metabolites and 1906
genes. Then, we applied level 3 ESS to these two human cancer
cell line GEMs to calculate EScores for genes. The computational
costs for this analysis were much lower compared to greedy
search which was used in most EA analysis (Table 1). We also
applied several frequently used topology methods to these two
GEMs including Betweenness Centrality, Closeness Centrality,
Eccentricity Centrality and Degree (Table S3). To check how
much ESS can identify experimentally derived gene essentialities,
we calculated the Spearman’s correlation between all in silico
predicted essentiality or centrality scores and the CRISPR derived
CERES scores for all genes with non-zero EScores (Table 2).

CERES scores are normalized essentiality scores of genes
where the median values for essential and non-essential genes
are −1 and 0, respectively. Therefore, the correlation between
EScores and CERESs should be negative if they agree with each
other. Indeed, the respective correlations between EScores and
CERESs for iPC298 and iNCIH1299 are−0.194 and−0.205, and
both of them being statistically significant (P < 0.05), whereas,
as shown in Table 1, the correlations between network topology
based parameters for these genes and CERESs for iPC298 or
NCIH1299 could not meet the same statistical significance. These
suggest that the EScores calculated by ESS are accurate and
correlate better with experimental data compared to topology
based method.

Case 3: Comparison Between Wild-type
and LDH Knockout E. coli Core Model
As a proof of concept, we applied the method to the core
metabolic model of E. coli of wide-type and ldh knockout mutant
and calculated the EScores for all reactions in both models to
demonstrate the usage of ESS in model comparison. The full
results of level 3 ESS for wild-type and mutant E. coli core

TABLE 1 | Computational costs of ESS and greedy search for level 3 synthetic

lethality analysis for human cell line GEMs.

Tested GEMs Benchmark methods

ESS Greedy search*

iIPC298 29.3 h 704.7 d

NCIH1299 45.0 h 800.1 d

*Computational cost for greedy search are estimated based on number of linear programs

needed, and each linear programs takes 0.06 s in the estimation.

TABLE 2 | Spearman correlation between experimentally derived CERES scores

and the in silico methods.

Methods iIPC298 iNCIH1299

Correlations P-values Correlations P-values

Essentiality scores −0.194 0.014 −0.205 0.007

Betweenness centrality −0.074 0.354 −0.138 0.070

Closeness centrality −0.026 0.746 −0.065 0.396

Eccentricity centrality −0.046 0.563 −0.011 0.883

Degree 0.070 0.376 −0.009 0.911

model are provided as Table S4. First of all, we found 48 and
4 reactions which respectively display larger and lower EScores
in the knockout, and the average EScore is increased after ldh
knockout. This suggests that the mutant metabolic model is less
robust in terms of growth, which is expected since deletion of
metabolic genes probably decreases the metabolic potential of
the bacteria. Moreover, the metabolic pathways with the highest
increases in EScore increases are acetaldehyde dehydrogenase
(ACALD), oxidative phosphorylation (NADH16 and CYTBD),
uptake of oxygen (EX_o2_e and O2t) and formate transportation
(FORt2 and EX_for_e). ACALD and formate transportation
are key alternatives for LDH_D in the model which explains
these EScore increases. In addition, LDH_D is an important
reaction for anaerobic growth, and therefore its deletion will
surely increase the importance of aerobic metabolic function.
This explains why oxidative phosphorylation and oxygen uptake
have the highest increase in EScore since they are key pathways
in aerobic growth for E. coli. On the other hand, the reactions
with top EScore decreases are D_LACt2 and EX_lac__D_e, both
of which are responsible for transportation of lactate. These two
reactions are downstream of LDH_D in the model, and their
EScores decreased since they become dead-end reactions in the
mutant model.

DISCUSSION

In this study, we proposed a novel method name ESS, which
shows as an accurate and efficient method for quantifying
reaction and gene EScores. This method was implemented in
Matlab and that requires standard constraint-based modeling
toolboxes (COBRA or RAVEN). While gene and reaction
essentiality have extensively been examined using GEMs, we
here introduce a comprehensive scoring system for determining
essentiality for single and combined reactions or genes. ESS
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employs logical transformation of model to refine the gene-
protein-reaction relationships, avoiding the potential problem
caused by redundant enzymes during the essentiality analysis.
We benchmarked ESS against topology based methods and
using experimentally derived essentiality scores for reference
pan-essential and non-essential genes, and observed that ESS
displays higher accuracy than topology-based methods. It should
be noted that essentiality in GEMs is dependent on the inputs
and objective function. Therefore, EScores could be different
for the same GEMs given different inputs and/or objective
function. As we showed in the last case study, the proposed
method could be easily used to compare GEMs generated from
the same reference model. Therefore, it could be a promising
tool for future studies that investigate the relationships among
gut microbiota, different cells and tissues using resources such
as AGORA and HPA where models were generated from a
common reference. In this context, we are confident that ESS
will have a great application in biotechnology and systems
medicine.
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