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Abstract

Bioinformatics techniques to analyze time course bulk and single cell omics data are

advancing. The absence of a known ground truth of the dynamics of molecular changes

challenges benchmarking their performance on real data. Realistic simulated time-course

datasets are essential to assess the performance of time course bioinformatics algorithms.

We develop an R/Bioconductor package, CancerInSilico, to simulate bulk and single cell

transcriptional data from a known ground truth obtained from mathematical models of cellu-

lar systems. This package contains a general R infrastructure for running cell-based models

and simulating gene expression data based on the model states. We show how to use this

package to simulate a gene expression data set and consequently benchmark analysis

methods on this data set with a known ground truth. The package is freely available via Bio-

conductor: http://bioconductor.org/packages/CancerInSilico/

This is a PLOS Computational Biology Software paper.

Introduction

Time course bioinformatics analysis techniques are emerging to delineate cellular composition

and pathway activation from longitudinal genomics data [1,2]. However, benchmarking their
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performance is challenged by a lack of ground truth of the processes occurring in those data-

sets. For example, even relatively simple covariates, such as cellular density and proliferation

rates impact experimental measures at a given time point, such as therapeutic sensitivity in

cancer [3]. The interactions between these processes will introduce additional correlation

structure between genes measured with genomics technologies. Simulated data can enable

robust benchmarking of bioinformatics analysis methods for omics data. Statistical methods

that utilize expected gene expression profiles from reference datasets to model the error distri-

bution of bulk and single cell sequencing data are prominent [4–6]. Yet, there are few time

course omics datasets to use as a benchmark and even fewer with known cellular-molecular

dynamics. Therefore, new simulation systems with known ground truth are needed to bench-

mark the performance of emerging time course bioinformatics algorithms for bulk and single

cell datasets.

Mathematical models of cellular dynamics are maturing in systems biology and can be used

to track the state of the processes occurring in each cell in complex biological systems, such as

cancer [7–13]. Some models simulate cell growth at a cellular level, where the population

behavior is driven by the laws governing the individual cells and their interactions [14,15]. To

further capture the complexity of biological systems, numerous multiscale and hybrid models

linking cellular signaling to the equations of the cellular composition are emerging [16–18].

These models often require numerous parameters to simulate high throughput proteomic and

transcriptional data and therefore often have similar complexity to real biological systems.

Thus, mathematical models provide a robust framework from which to develop simulated

time course datasets that are reflective of biological systems.

In this paper, we present a new software package to simulate time course transcriptional

data. This is done by developing a general software framework to integrate mathematical mod-

els of cellular growth with statistical models of genomics data. The software is implemented in

the R/Bioconductor package CancerInSilico. We simulate pathway activity based upon the sim-

ulated distribution of growth factor, state in the cell cycle, and cellular type. We couple a math-

ematical model from [14] with a statistical model from [19] to simulate transcriptional data

based upon simulated pathway activity. We simulate data from microarrays and single cell

RNA-seq using established platform-specific error distribution models [4,19,20]. Finally, we

demonstrate how this framework can be used to benchmark time course analysis tools for

genomics data.

Design and implementation

Software architecture

CancerInSilico is designed with an R user interface so that it is familiar to the bioinformatics

community. The components of the simulation such as cell types and pathways are imple-

mented as S4 classes in R [21]. The cell model component of the simulation is implemented as

an S4 class hierarchy, where features such as cell geometry (on-lattice vs off-lattice) form the

basis for a set of models that individual implementations can inherit from. This allows differ-

ent levels of the cell model to be considered separately so that the user can examine the effects

of not just a single model but a whole class of models. The hierarchy also simplifies the number

of parameters the user must interact with. Each level of the hierarchy contains its share of the

overall parameters, so if the user wants to modify the low level implementation parameters,

they can do so without worrying about any effects to the parameters upstream. This object ori-

ented design simplifies the workflow by allowing each component of the model to be specified

separately. In order to run the simulation, the user just needs to pass in any desired compo-

nents along with a few high-level parameters.

Computational modeling of gene expression with CancerInSilico
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All components of the simulation, including the cell model hierarchy, have a mirrored class

structure in C++. While the classes in R contain the necessary parameters, the C++ classes also

include the necessary routines to efficiently simulate a cell model. This architecture essentially

allows the user to see a snapshot of the model in R and trust that the C++ backend will run it

exactly as they prescribe. Moreover, this combines a simple user interface in R with a powerful,

efficient backend in C++. The C++ library is exposed to R using the Rcpp package from

CRAN.

The statistical model for gene expression simulation is written in R and exists outside of the

previously mentioned class structure. It is intended to be an independent component that only

needs the output of a cell simulation and a set of parameters in order to run. This way it is

agnostic to any implementation details of the cell simulation, as well as any components that

may be added to the cell simulation (Fig 1). The needed parameters are provided as an S4 class

for convenience, allowing them to easily be saved alongside the simulation results.

Implementation details

The cellular growth simulation is driven by the cell model hierarchy and the peripheral com-

ponents that can be added such as drugs and cell types. The CellBasedModel class at the

top of the hierarchy specifies the relationship between a cell model and any peripheral compo-

nents. It makes no requirements on the cell geometry or updating procedure of the model. In

most cases, the user will be modifying parameters at this level. The model-component relation-

ship is implemented with virtual functions in C++ so individual model implementations can

override the default behavior. This top level class also uses pure virtual functions to specify the

functions a cell model must implement. We note that the CellBasedModel has an associ-

ated Cell class to separate cell-level logic with model-level logic. This is a design pattern seen

across all levels of the hierarchy.

Any class that fully implements the specification of a CellBasedModel can be used in

CancerInSilico, however it is convenient to define an intermediate class between the top-level

CellBasedModel and an actual implementation. This layer describes a certain set of cell

models, usually by specifying cell geometry, e.g. off-lattice vs on-lattice. This is a useful abstrac-

tion since the most computationally expensive aspects of a cell model often stem from the cell

population data structure. If every model implementation required designing this data struc-

ture from scratch it would put an enormous burden on the developer. By having a pre-defined,

efficient data storage and access API, new cell dynamics can be quickly prototyped and will

come with an expected level of performance.

The intermediate layer specifies the cell geometry and structure, but the updating procedure

must be handled by the actual cell model implementation. This lowest-level of the hierarchy is

responsible for actually enforcing the desired cell mechanics. This is typically done by specify-

ing some total energy function on the full cell population. Updating then involves several

kinds of changes that are either accepted or rejected with a probability based on the total

energy function. Most cell models in the literature [12, 14] can be identified by how they han-

dle this updating procedure. By isolating this layer within the CancerInSilico architecture, such

models can be easily implemented.

While the cellular growth simulation is an important part of CancerInSilico, the main fea-

ture of the package is the gene expression simulation. The connection between this simulation

and the cellular growth simulation happens through user defined pathways that are then asso-

ciated with gene expression changes in a corresponding set of genes. We define an intermedi-

ate variable (P) that is a continuous value between zero and one that records how active each

biological pathway is within each modeled cell. The value of P in a given cell at a given time is

Computational modeling of gene expression with CancerInSilico
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Fig 1. Visual representation of CancerInSilico. (a) Overview of association between mathematical and statistical modeling to generate simulated time course gene

expression data. (b) Each component of the software is shown with arrows indicating how it is related to the rest of the components. R input arguments shown in pink,

R software components shown in blue, and C++ components shown in green.

https://doi.org/10.1371/journal.pcbi.1006935.g001
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determined by a user defined function in R. This allows for many types of pathways to be con-

sidered and for a great deal of expressiveness in how each pathway behaves. CancerInSilico
also comes with some pre-defined pathways so that the burden is not entirely on the user to

design the pathway behavior. Along with this user defined function, each pathway also has a

set of genes annotated to it. Each gene in this set has a pre-specified expression range (Gmin to

Gmax), determined either from a reference dataset or according to a specified distribution.

The function inSilicoGeneExpression combines the results of a call to inSili-
coCellModel and a list of user defined pathways to simulate the requested type of transcrip-

tional data. The first step is to create a matrix of mean expression values. This is done by

evaluating each gene according to the specified behavior from the list of pathways. The

expected expression value for each gene and each sample is given as:

gi;j ¼
1

N
PN

k¼1
PkG

k
max þ ð1 � PkÞG

k
min; ð1Þ

where i indexes each gene, j each sample, and k each pathway. We note that while the mean

used in Eq (1) is provided as the default, CancerInSilico allows for user defined functions to

combine pathway specific expression values. In bulk data, Pk is determined by computing the

average value for pathway activity in a random set of N sampled cells, whereas in single cell

data the value of Pk for each of the N sampled cells is used directly. The simulated gene expres-

sion value is obtained using a platform specific measurement error based on this expectation.

A normal error model is used to simulate log transformed microarray data and a negative

binomial error model, adapted from the code for LIMMA voom [20], is used to simulate bulk

RNA-sequencing data. Measurement error for simulated single cell RNA-sequencing data are

generated using the error and drop out models from Splatter [4].

Results

The CancerInSilico workflow

Running a cell simulation with inSilicoCellModel. The first step when simulating gene

expression data with CancerInSilico is to create a cell simulation to serve as a reference point.

This cell simulation will represent the underlying cellular processes driving the gene expres-

sion profiles. In order to run a cell simulation, we must call inSilicoCellModel. The

three required arguments to this function are the initial number of cells in the simulation, the

number of hours to simulate, and the initial density of the cell population. Optionally, it is pos-

sible to select the underlying mathematical model. A full description of the optional parame-

ters is included in the supplemental material (S1 Text). An example call to the function might

look like:

> cellModel = inSilicoCellModel(100, 72, 0.01, “DrasdoHohme”)
Defining pathways. Before we can move on to simulating gene expression data, it is nec-

essary to define the pathways which link the cell model state to the activity among a set of

genes. CancerInSilico comes with a set of default pathways, however we can also explicitly

define new pathways. In order to create a new pathway we must specify the names of the genes

in the pathway and activity function which takes a cell model as an argument and returns a

value between zero and one based on how active the pathway is at the current time point.

Once a pathway is defined it must be calibrated either to a real data set or using a statistical dis-

tribution. This calibration step is important so that the range of the gene expression values is

reasonable. Here is an example of calibrating a default pathway with a distribution. The mean

expression levels for all genes is exponentially distributed and the range of expression values

per gene is normally distributed.

Computational modeling of gene expression with CancerInSilico

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006935 April 19, 2019 5 / 12

https://doi.org/10.1371/journal.pcbi.1006935


> data(samplePathways) # load pwyMitosis, pwySPhase
> pwyMitosis = calibratePathway(pwyMitosis, lambda = 20,

stddev = 2)
> pwySPhase = calibratePathway(pwySPhase, lambda = 20,

stddev = 2)
> pathways = list(pwyMitosis, pwySPhase)
Simulating gene expression data with inSilicoGeneExpression. Now that we have a

defined set of pathways and a completed cell simulation, we are able to simulate a gene expression

data set. This step involves computing the mean level of expression in all the pathway genes and

applying a statistical error model based on the type of data being generated. There are a few

parameters that control this part of the simulation. sampleFreq and nCells specify how

often samples are drawn and how many cells are in each sample. RNAseq and singleCell are Bool-

ean parameters that specify the type of data to generate. A full description of the parameters can

be found in the supplemental material (S1 Text). An example call to the function might look like:

> params = new(“GeneExpressionParams”, nCells = 50, RNAseq =
TRUE)
> exp = inSilicoGeneExpression(cellModel, pathways, params)

Example: Simulating time-course bulk data

Using the workflow described in the previous section, we simulate a microarray data set across

43 time points. The underlying mathematical model for cellular growth in this case is an off-lat-

tice, cell-center model from Drasdo and Höhme [14]. We model pathways related to the phase

transition from G to S and G to M, as well as a pathway related to contact inhibition. For the G

to M and G to S pathways, the pathway activity is either zero or one at the current time point

depending on whether or not the cell is transitioning phases. The contact inhibition pathway

activity is defined by the “local density” of the cell, which is the proportion of surrounding area

of a cell that is occupied by other cells. We run the cell model for 168 hours, enough for the cell

population growth to slow down due to the density of the cells, and simulate gene expression

for 150 genes. We generate a heatmap of the data using the heatmap.2 function in R (Fig

2A). We also run PCA on the resulting microarray data set and show that, as expected, time

and cell phase are the processes driving the simulated gene expression (Fig 2B and 2C).

Example: Simulating time-course single-cell data

CancerInSilico also encodes an option to simulate single cell RNA-sequencing data to generate

omics data that reflects the heterogeneity of the sample population. To model this heterogene-

ity, CancerInSilico allows us to label each cell as being from a distinct cell type. We have control

over the distribution of cell-cycle lengths within each cell type through a user defined function

in R. We apply this framework to model two distinct cell types, one with a mean cell cycle

length of 12 hours and standard deviation of 4 hours (type A) and one with a mean cell cycle

length of 36 hours and standard deviation of 4 hours (type B). This simulation models the

pathway activity and corresponding gene expression changes for each cell with a negative

binomial error model and dropout model adapted from Splatter [4]. The model then randomly

samples a pre-specified number of cells. We apply this technique to simulate single cell RNA-

sequencing data from a simulation of a population equally distributed between the two types

described above (Fig 3). Each cell type is labeled as a pathway with binary values for activity to

activate a gene set that corresponds to cellular identity. In this simulated single-cell RNA-seq

data, we observe strong separation between cell types (Fig 3A) and time (Fig 3B) and observe

a mixture between cell cycle phases (Fig 3C).

Computational modeling of gene expression with CancerInSilico
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Example: Benchmarking analysis tools

We can use the wide range of simulation conditions in CancerInSilico to benchmark time

course gene expression analysis methods. Moreover, by starting with biological parameters as

opposed to statistical parameters, we can benchmark analysis methods on conditions we

Fig 2. PCA of simulated time course microarray data. (a) Heatmap of microarray data. Plot of first two principal components colored by (b) time and (c) cell

phase.

https://doi.org/10.1371/journal.pcbi.1006935.g002

Fig 3. T-SNE of simulated time course single cell RNA-sequencing data for a population with cells of types A and B. Points colored by (a) cell type, (b) time,

and (c) cell cycle phase.

https://doi.org/10.1371/journal.pcbi.1006935.g003
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actually care about. CancerInSilico is particularly useful when the cellular processes underlying

the simulation of interest have complex relationships with each other. This complexity is han-

dled by the underlying cellular growth simulation, and while it does not perfectly capture the

dependence between cellular processes, it does provide a standardized, justifiable method. Fur-

thermore, CancerInSilico allows for the underlying cellular growth model to be easily swapped

out so the benchmark itself can be tested for sensitivity to a particular model.

Here we explore the effects of dependent cellular processes when using Independent Com-

ponent Analysis (ICA), implemented in the R package fastICA, to analyze our simulated

RNA-seq data set. We define two cell-types which have identical properties and provide an

associated pathway for each one. We also define a third pathway which is proportional to the

growth rate of a cell. We have two datasets, one in which all pathways have a distinct set of

genes, and one where the growth pathway contains all of the genes in each cell type specific

pathway. In this way, the growth pathway is confounding the cell type specific pathways. We

can see that ICA with two components perfectly separates the cells (Fig 4A) and temporal

dynamics (Fig 4B) of the simulated data with no confounding. When the overlapping pathway

is introduced some of the cells can no longer be separated by type (Fig 4C) although the tem-

poral dynamics are still separable via ICA (Fig 4D). Thus, this provides one example of the

utility of CancerInSilico to benchmark the sensitivity of a time course analysis algorithm to its

underlying mathematical assumptions. Additional parameters may be varied and further cell

cycle pathways introduced to the data to increase the complexity of these simulations and

more closely mirror the complexity of the analysis tasks in real, time course genomics data.

Availability and future directions

We develop a new R/Bioconductor package CancerInSilico that couples mathematical models

of cellular growth with statistical models of technical noise. Using this coupling to model

changes in gene sets annotated to cell signaling pathways [4,19,20] enables simulation of time

course bulk omics data. The modeling of individual cells in this system also enables simulation

of time course, single cell RNA-sequencing data. CancerInSilico provides a wide range of

parameter spaces for the user to explore when simulating time-course gene expression data

and the modular design makes it possible to swap different cell models in and out of an exist-

ing simulation. Thus, this package provides software that can be used to benchmark the perfor-

mance of methods for time course bioinformatics analysis from a known ground truth that is

lacking in real data. We note that, to our knowledge, this is the first software package designed

to simulate time course gene expression data.

The modular design of the package allows the user to explore the sensitivity of the simulated

data to the choice of underlying cellular growth model. We note that the model from Drasdo

and Höhme [14] was chosen as the first model to be implemented because it was a cell-center

model with a simple cell geometry. This provides a convenient model representation for the

pathway simulation component of the model. For future work it is important to explore the

effects of many different classes of growth models and benchmark the results of spatially het-

erogeneous simulations, which will be most sensitive to the choice of cellular growth model.

Other promising areas of future work lie in mathematical models that have been developed to

model the dynamics of regulatory networks that lead to transcriptional changes [22,23].

Hybrid, multi-scale approaches that combine these network-based models with the cellular-

scale models more accurately model the complexity of system-wide dynamics [16–18]. How-

ever, the complexity of these gene regulatory models and extensive parameterization will limit

the straightforward validation of omics algorithms that is possible from the simplified statisti-

cal models employed in CancerInSilico.

Computational modeling of gene expression with CancerInSilico
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The statistical models used to simulate gene expression data from pathway activity in Can-
cerInSilico mirror the process by which omics tools estimate that activity. Namely, pathways

are assumed to activate discrete sets of genes annotated to a common function based upon the

Fig 4. Benchmarking ICA when cell type pathways are confounded with third pathway. ICA with no confounding colored by

(a) cell type and (b) time. ICA with third pathway confounding colored by (c) cell type and (d) time.

https://doi.org/10.1371/journal.pcbi.1006935.g004
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modeled cellular state. Default parameters for the model yield omics profiles with strong sepa-

ration between signaling pathways that are greatly simplified relative to those observed in real

data. Therefore, applying omics algorithms to these default simulations may result in under

estimation of the accuracy of their performance for real time course data. We note that the

complexity of the time course data simulated with CancerInSilico can be tuned by modifying

the overlap between genes in simulated pathways, altering cell type specific cell growth param-

eters, or increasing the variation in parameter values across cells. These statistical models are

also sensitive to parameter choosing, and so we recommend benchmarking time-course omics

data analysis algorithms on simulated data generated from a wide range of parameter values to

fully assess their performance.

CancerInSilico is available as an R package on Bioconductor bioconductor.org/packages/

CancerInSilico/ and the source code is made available at github.com/FertigLab/

CancerInSilico. A live tutorial (vignette) is provided in the R package and link to a pre-ren-

dered version is available in the GitHub README. CancerInSilico is supported and tested on

Windows, Mac, and Linux. The source code to generate the figures seen in this paper can be

found at github.com/FertigLab/CancerInSilico-Figures.

Supporting information

S1 Text. CancerInSilico supplemental material.

(PDF)
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