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Plant growth performance under a stressful environment, notably in the agriculture

field, is directly correlated with the rapid growth of the human population, which

triggers the pressure on crop productivity. Plants perceived many stresses owing to

degraded land, which induces low plant productivity and, therefore, becomes a foremost

concern for the future to face a situation of food scarcity. Land degradation is a very

notable environmental issue at the local, regional, and global levels for agriculture.

Land degradation generates global problems such as drought desertification, heavy

metal contamination, and soil salinity, which pose challenges to achieving many UN

Sustainable Development goals. The plant itself has a varied algorithm for the mitigation

of stresses arising due to degraded land; the rhizospheric system of the plant has diverse

modes and efficient mechanisms to cope with stress by numerous root-associated

microbes. The suitable root-associated microbes and components of root exudate

interplay against stress and build adaptation against stress-mediated mechanisms. The

problem of iron-deficient soil is rising owing to increasing degraded land across the

globe, which hampers plant growth productivity. Therefore, in the context to tackle these

issues, the present review aims to identify plant-stress status owing to iron-deficient soil

and its probable eco-friendly solution. Siderophores are well-recognized iron-chelating

agents produced by numerous microbes and are associated with the rhizosphere. These

siderophore-producing microbes are eco-friendly and sustainable agents, which may

be managing plant stresses in the degraded land. The review also focuses on the

molecular mechanisms of siderophores and their chemistry, cross-talk between plant

root and siderophores-producing microbes to combat plant stress, and the utilization of

siderophores in plant growth on degraded land.
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INTRODUCTION

The adequacy of the agricultural soil deteriorates owing to
exposures to adverse environmental conditions such as salinity,
drought, heavy metal stress, etc., which induces plant stress
and reduces plant growth productivity which will trigger food
scarcity in the future. The nutrient discrepancy in the plant
is a common occurrence found in degraded land, and among
different plant nutrients, iron is the essential ingredient for
plant growth (Connorton et al., 2017). Rapid industrialization,
urbanization, unsuitable land use (IPBES, 2018), fast agricultural
practices (Keesstra et al., 2018), soil salinization (Edrisi et al.,
2021), soil erosion (Paul et al., 2020a,b), invasion of alien species
(Rai, 2021), poor governance management strategy (Gerber et al.,
2014), overexploitation of natural resources, excessive mining
(Upadhyay and Edrisi, 2021; Shakeel et al., 2022), etc., degrade
more than 33% of global land resources through direct and
indirect approaches (IPBES, 2018; Srinivasarao et al., 2021).

Iron deficiency is a communally observed phenomenon
in CaCO3 (calcium carbonate)-rich desert soil at high pH
(Alhendawi et al., 1997). The availability of iron in soil mostly
depends on the range of pH, and the character trait of saline (pH
7.2–8.5) and alkaline (pH > 8.5) soil (Upadhyay and Chauhan,
2022) showed iron deficiency due to less solubility of iron at high
pH (Mann et al., 2017). Flood and raised concentration of nitrates
and phosphates (exogenous use of synthetic fertilizers) in soil
reduces iron solubility, alters iron translocation, and induces iron
deficiency in the plant (Becker and Asch, 2005).

The plant growth reduction mediated stress due to nutrient
imbalance in degraded soil is a common phenomenon; the
increase of degraded soil due to salinity, drought, heavy metal,
etc. are reported by several workers (Ma et al., 2020; Upadhyay
et al., 2021). Out of numerous detrimental factors, the lack of
available iron for the plant is one of the major factors (Liliane
and Charles, 2020). Several pieces of research demonstrated
that plant growth-promoting rhizobacteria (PGPR) may be a
promising tool for mitigating the adverse effect of degraded
lands; for instance in saline soil (Upadhyay et al., 2009, 2011;
Upadhyay and Singh, 2015) drought conditions (Igiehon et al.,
2019), and heavy metal conditions (Bhojiya et al., 2022). Positive
association between rhizosphere and microbes play a crucial role
under iron-stressed degraded land owing to the secretion of iron-
chelating compounds i.e., siderophore (Dertz et al., 2006). Plant
root secretes siderophore to maintain the iron level for their
metabolic and physiological activities in iron-stressed degraded
soil, but is not attained at the perfect level (Herlihy et al., 2020).
On other hand, siderophore-producing microbes (SPM) produce
numerous iron-chelating compounds, which can cut short plant
stress under iron-stressed soil. Siderophore-producing microbes
produce siderophore and have activities of biofertilizers and
bio-control for the plant; thus SPM acts as a signature for
sustainable agriculture and is eco-friendly for crop production
in degraded land Table 1 (Alam, 2014). Siderophore-producing
microbes reduce Fe deficiency and enhance all physiological and
biochemical processes of the plant under saline soil (Sultana
et al., 2021), drought conditions (Kumar et al., 2016), and
heavy metal-stressed soil (Hofmann et al., 2021). Siderophore

also changes the oxidation states of heavy metals such as Cd,
Cu, Ni, Pb, Zn, Th, U, and Pu and makes them less toxic
(Schalk et al., 2011). Siderophore has a strong affinity for iron-
chelating compounds, induces a bioremediation process, and
enhances nutrient uptake and plant growth (Rajkumar et al.,
2010). A bacterial strain like Pseudomonas fluorescence produces
pyoverdines siderophore that increases mobility and reduces the
toxicity of heavy metals under uranium mines (Edberg et al.,
2010). Sharma and Johri (2003) isolated Pseudomonas from
rhizospheric soil of Zea mays L., which produces a siderophore
that showed a high affinity to chelate of Fe3+ ions. Ahmed
and Holmstrom (2014) and Huo et al. (2021) reported that the
use of SPM is a suitable approach for reducing plant stress
on degraded soil. Bioavailability of iron reduces the saline soil
condition which leads to iron deficiency in a plant, and thus
the plant faces both salinity stress and iron deficiency (Sultana
et al., 2021). To combat iron deficiency under saline conditions,
Sultana et al. (2021) isolated four salt-tolerant plant-growth
promoting bacteria from rice rhizosphere, Bacillus aryabhattai
MS3, which showed maximum siderophore producing ability at
200mM NaCl concentration than the control. The siderophore-
producing ability of B. aryabhattai MS3 increased due to the
activation of entD gene by salinity, and entD gene has to be
responsible for siderophore biosynthesis (Sultana et al., 2021).
Streptomyces tendae F4 reduces cadmium translocation from
rhizosphere to plant in heavy metal polluted soil (Dimkpa et al.,
2009). Similarly, Sadeghi et al. (2012) observed that the isolate C
(Streptomyces) increased siderophore production in the presence
of a high concentration of NaCl (300mM), and also produced
auxin, solubilized tricalcium phosphate. Inoculation of isolate C
(Streptomyces) increased iron content in the shoot of wheat plants
in saline soil (Sadeghi et al., 2012). Therefore, in this context,
the present article aims to provide recent updates on plant
mechanisms under iron-stressed degraded soil, nexus between
plants siderophores and siderophore producing bacteria, and
developing sustainable use of siderophore-producing bacteria for
plant growth under degraded soil.

PLANT STRESS UNDER IRON DEFICIENT
DEGRADED LAND

Soil degradation is a natural and anthropogenic phenomenon
that reduces soil nutrients (Abiala et al., 2018; Upadhyay and
Chauhan, 2019; Bhojiya et al., 2022; Shakeel et al., 2022),
mediated by soil salinization (Qadir et al., 2014; Machado
and Serralheiro, 2017; Abiala et al., 2018; Upadhyay and
Chauhan, 2022), drought (Bartels and Sunkar, 2005), and heavy
metals contamination (Paul et al., 2020b,c). The occurrence
of an available form of Fe lacks in almost all types of soil
(neutral, acidic, and alkaline) due to several factors such as
soil pH, deposition of CaCO3, saline and desert conditions,
etc. (Alhendawi et al., 1997). Degraded soil adversely impacts
the growth and output of plants through an imbalance of
many nutrients and metabolic pathways (Figure 1) and induces
the unfavorable fitness of soil for plant growth. Despite
several detrimental factors of degraded soil, the present review
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TABLE 1 | Recent studies (2016–2021) showing the main effects on plants exerted by siderophore-producing rhizobacteria alone or in combination in degraded soil

conditions.

SPRB Types of

siderophore

Condition Plants Performances References

Fluorescent

pseudomonads

Pyoverdines Iron-Limited

conditions

Arabidopsis thaliana Potential for plant growth and increased

immunity

Trapet et al. (2016)

Bacillus spp. Catecholate and

salicylate

Field experiments Potato and banana Bacillus niabensis (PT-32-1), Bacillus

subtilis (SWI16b), Bacillus subtilis (HPC21)

from Phototo rhizosphere induces plant

growth and Bacillus mojavensis (JCEN3)

inhibits the pathogens of wilting disease in

banana

Kesaulya et al.

(2018)

Pantoeadispersa MPJ9

and Pseudomonas

putida MPJ2

Catecholate Iron limiting condition Vigno radiata Both MPJ9 and MPJ2 increased 89.9 and

85.3% siderophore production,

respectively, and enhances iron 100.3

ppm, 0.52 (g/g) protein, and 0.67 (g/g)

carbohydrates content in Vigna radiata

plant under pot experiment

Patel et al. (2018)

Bacillus MG214652

and Aspergillus niger

MH844535

Catecholate and

hydroxymate

Iron deficient condition Phaseolus vulgaris,

Pisum sativum, Vivia

faba and Alfa alfa

Bacillus (MG214652) and Aspergillus niger

(MH844535) are potential catecholate and

hydroxymate types of siderophore

producers, respectively that enhance plant

nutrients and soil health and promote plant

growth

Osman et al. (2018)

Bacillus subtilis Endophytic

siderophore

Drought condition Triticum aestivum Enhances the survivability and potential

growth of wheat plant drought condition

Lastochkina et al.

(2020)

Streptomyces sp. S29 Desferrioxamines and

hydroxamate

Drought condition Lupinus oreophilus Desferrioxamines siderophore prevent

from fungal disease while Hydroxamate

types of siderophore enhance iron content

Jarmusch et al.

(2020)

Bacillus megaterium

and Pantoeaallii

Hydroxymate Alkaline conditions – Highest iron-chelating ability was reported

in Bacillus megaterium followed by

Bacillus subtilis and Azotobacter vinelandi,

respectively, at pH = 9, which indicates

that these bacterial isolates can reduce

iron deficiency in plant and mitigate

chlorosis under saline soil

Ferreira et al. (2019)

Bacillus subtilis and

Rhizobium radiobacter

Catecholate Alkaline conditions

Azotobacter vinelandii Both satecholate and

Hydroxymate

Alkaline conditions

Penicillum

chrysogenum,

Aspergillus sydowii and

Aspergillus terreus

Hydroxymate Pot experiments Cymbidium

aloifolium

Enhances the nutrient uptake and

resistance against plant pathogens in

crops

Chowdappa et al.

(2020)

Dermacoccusbarathri

MT2.1T, D.profundi

MT2.2T, and D.

nishinomiyaensis

DSM20448T

Catecholate and

hydroxymate

Saline condition Lycopersicon

esculentum

Increased tomato seedling and plant

growth

Rangseekaew et al.

(2021)

Bacillus subtilis LSBS2 Bacillinbactin Iron limiting condition Sesamum indicum Increased HCN, IAA, ammonia, and

siderophore production that enhanced the

nutrients including iron in sesame plant

Nithyapriya et al.

(2021)

Bacillus subtilis

MF497446 and

Pseudomonas korensis

MG209738

Hydroxamate Green house and field

condition

Zea mays Significantly increases catalase (CAT),

peroxidase (POX), and polyphenol oxidase

(PPO) activities, plant chlorophyll and

carotenoids that increase crop yields

compared to control

Ghazy and

El-Nahrawy (2021)

Streptomyces

ciscaucasicus strain

GS2

Ferrioxamines In vitro condition Malus domestica Prevents the apple replant disease and

enhances plant growth and yields

Armin et al. (2021)

Pseudomonas

fluorescens SBW25

Hydroxymate Iron-Limited

conditions

Brachypodium

distachyon

Phytosiderophore provides defense under

stress conditions of plant growth

Boiteau et al. (2021)

(Continued)
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TABLE 1 | Continued

SPRB Types of

siderophore

Condition Plants Performances References

Bacillus subtilis Catecholate Pot experiments Coriandrum sativum Significantly acts as a biofertilizer that

enhances seed germination and plant

growth

Kumari et al. (2021)

Pseudomonads Pyoverdine Field experiment Pisum sativum Enhances root and shoot length Lurthy et al. (2020)

Fluorescent

Pseudomonas

Hydroxymate In vitro condition Zea mays Inhibits fungal pathogen Fusarium

oxysporum and enhances the iron uptake

in plants

Deori et al. (2018)

Bacillus licheniformis

DS3

Hydroxymate Field experiment Vigna mungo (L.) Biological agents that control several

fungal pathogens like Aspergillus niger,

Alternaria solani, Fusarium solani, and

Fusarium oxysporium

Silpa et al. (2018)

Pseudomonas species Hydroxymate Field experiment – Siderophore acts as a biofertilizer Joshi et al. (2018)

Proteobacteria,

Actinobacteria,

Bacteroidetes, and

Firmicutes

Hydroxymate and

catecholate

Spider cave and

Lechuguilla cave

– Acts as bioremediation agents Duncan et al. (2021)

Bacillus subtilis

(LSBS2)

Bacillibactin Field experiment Arachis hypogaea Enhances the immunity of peanut plant Latitha and

Nithyapriya (2020)

Pseudomonas sp. Hydroxymate and

catecholate

Field experiment Cicer arietinum,

Capsicum

frutescens, Punica

granatum, and

Allium cepa

Potential to increase plant growth Parveen and Latha

(2019)

Pseudomonas

furukawaii,

Pseudomonas

plecoglossicida,

Pseudomonas

alcaligenes,

Pseudomonas

oleovarans, Leclercia

adecarboxylata,

Citrobacter youngae,

Enterobacter cloacae

Hydroxymate and

catecholate

Field experiment Phaseolus vulgaris,

Helianthus, Triticum

aestivum, Oryza

sativa

Antagonistic activities against different

phytopathogens like Rhizoctonia solani,

Phythium sp., Fusarium oxysporum

Khaing et al. (2021)

Enterobacter species,

Azotobacter species,

and Pseudomonas

species

Hydroxymate and

Catecholate

In vitro condition Gossypium hirsutum Potentially act as biocontrol agents against

harmful plant pathogens

Patel and

Minocheherhomji

(2018)

Pseudomonas

citronellolis strain SLP6

Hydroxamate Salinity stress

condition

Helianthus annuus Significantly enhances chlorophyll content,

antioxidant enzymes production, and plant

growth

Silambarasan et al.

(2020)

Rhizobium sp. strain R1 Catecholate Drought Glycine max L Significantly enhances the soybean seed

germination

Igiehon et al. (2019)

discusses iron homeostasis and its possible ability to meet
plant sustainability. Iron deficiency hinders several metabolic
and physiological aspects in plants and human beings. The
crucial role of iron has been well-acknowledged for several
redox reactions of different physiological mechanisms of plants
like respiration- and photosynthesis-mediated electron transport
systems. Iron also participates in several enzymatic activities
such as peroxidase, catalase, cytochrome, oxidase, etc. (Tripathi
et al., 2018). Also, Fe plays the role of a co-factor in the
synthesis of many plant hormones like ethylene and ACC
deaminase (Siedow, 1991). Iron plays a crucial role in chlorophyll
biosynthesis by maintaining electron flow in CO2 fixation

through (PS)-II-b6f/Rieske (PS)-I complex (Ermakova et al.,
2019). Iron plays a remarkable co-factor in the electron transport
chain of plant photo-system. In photosystem (PS)-I , iron is
required to form three 4Fe-4S in clusters, Cytochrome-b6f
(Cyt-b6f) requires iron for Rieske subunits as a cluster of
2Fe-2S (Fukuyama et al., 1980; Hurt and Hauska, 1981), and
photosystem (PS)-II requires iron as a cofactor for cytochrome
(Ben-Shem et al., 2003). Iron is essential for leghemoglobin and
nitrogen-fixing machinery in the leguminous plant (Brear et al.,
2013). The deficiency of Fe leads to several disorders in the
plant by altering the redox and enzymatic reactions and shows
primarily a symptom of wilting and chlorosis (Bashir et al.,
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FIGURE 1 | Plant stress responses such as (1) wilting and chlorosis, (2) altered stomatal activities, (3) inhibition of enzymatic activities (4) nutrient imbalance (5)

increased ROS, (6) altered electron transport system, and (7) DNA damage under iron-deficient/degraded soil.

2016), which leads to a lowering of plant growth and productivity
(Figure 1). Several researchers reported that root growth of the
plant is hindered under Fe deficient soil (Satbhai et al., 2017),
altering the function of the gene responsible for iron uptake
(Colangelo and Guerinot, 2004). Iron stress also triggers a plant’s
reactive oxygen species-mediated Fenton reaction (Tewari et al.,
2013; Dumanovic et al., 2021). The Fenton reaction elaborates
the interplay of Fe2+ and H2O2 (hydrogen peroxide) to generate
hydroxyl radical (OH∗), which is one of the reactive oxygen
species (Kar and Chattopadhyaya, 2017).

Iron stress also leads to necrosis in tissue, blackening of
roots, and an overall decrease in plant growth (Rai et al.,
2021). Degraded soil due to salinity increases ionic and osmotic
stress and reduces plant growth and productivity (Upadhyay
et al., 2012; Orozco-Mosqueda et al., 2020). Ionic stress induces
the influx of Na+ ions, resulting in the efflux of K+ ions
in soil (Yang et al., 2009; Orozco-Mosqueda et al., 2020),
while osmotic stress accumulates the NaCl concentration in the
rhizospheric soil (Egamberdieva et al., 2019). Soil salinity induces
nutrient imbalance (Upadhyay and Chauhan, 2022) and iron
deficiency (Rabhi et al., 2007; Sultana et al., 2021). Both iron
and NaCl stresses induce reactive oxygen species (ROS), which
directly causes injury to the plant tissue (Rabhi et al., 2007;
Jha and Subramanian, 2020; Kamran et al., 2020), and salinity
damages the base and cross-correlation of double-stranded DNA
(Santoyo and Strathern, 2008; Orozco-Mosqueda et al., 2020).
More salinity and iron deficiency affect the morphological
traits such as a decrease in root length, plant size, variety of
leaves, flowering of plants (Rabhi et al., 2007; Kapoor and
Srivastava, 2010; Mallahi et al., 2018), decrease in the plant’s
pigment chlorophyll content, resulting in reduced photosynthesis

(Ashraf et al., 2017); hence poor plant growth reduces the crop
productivity (Palaniyandi et al., 2014; Machado and Serralheiro,
2017).

Rapid changes in climatic conditions alter the cycle of
atmospheric rain, precipitation, and biogeochemical cycle,
leading to an increase in Fe deficient soil and degraded land,
developing water-deficit soil environment, etc. (Morrissey and
Guerinot, 2009; Lal, 2012; Fuentes et al., 2018; Sileshi et al., 2020).
Therefore, drought stress is noticed at a global level (Takahashi
et al., 2020), and a substantial decrease in plant growth and
productivity has been observed under drought stress-mediated
iron-deficient soil (Tripathi et al., 2018). Heavy metals are found
in degraded land, which poses hazardous environmental stress
that arises both naturally and anthropogenically (Wasi et al.,
2012; Bernard et al., 2018). An increase in the concentration
of heavy metals in the soil creates various problems for flora
and fauna (Alengebawy et al., 2021). Leskova et al. (2017)
reported that Fe deficiency is a common phenomenon in soil
contaminated with heavy metals. In the purview to tackle
these issues, it is, therefore, necessary to develop a sustainable
approach that improves plant growth and productivity under
iron-stressed/degraded soil. The following section of this review
discusses the possible application of siderophores-producing
bacteria for plant growth under iron-deficient soil.

SIDEROPHORE-PRODUCING BACTERIA

Siderophore-producing rhizobacteria that promote plant
growth were demonstrated by several researchers, for example,
Bacillus subtilis, B. licheniformis, B. coagulanse, B. circulance,
Pseudomonas koreensis, P. fluroscence (Ghazy and El-Nahrawy,
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2021), P. aeruginosa (Subramanium and Sundaram, 2020; Singh
et al., 2021a), Pseudoalteromonas tetraodonis, Bacillus cereus,
Psychrobacter pocilloporae, Micrococcus, aloeverae, Pseudomonas
weihenstephanensis (Sinha et al., 2019), Pseudomonas sp. (Singh
et al., 2022), Enterobacter genera, Bacillus, and Rhodococcus
(Sah and Singh, 2015), Bacillus megaterium (Singh et al., 2020a),
Pantoae cypripedii (Singh et al., 2021b), Kosakonia radicincitans
(Singh et al., 2020b), and Pantoae dispersa (Singh et al., 2021c).

The environmental conditions such as pH, temperature,
nutrient sources, aerobic/anaerobic, etc. influence the production
of bacterial siderephores. Sinha et al. (2019) isolated Enterococcus
casseliflavus and Psychrobacter piscatorii from Kerguelen Islands,
and P. astetraodonis, B. cereus, P. pocilloporae, Micrococcus
aloeverae, and P. weihenstephanesis were isolated from Prydz
Bay. Isolates from Prydz Bay-produced either hydroxamate
or catecholate types of siderophores at 15–25◦C and 8.5
pH. Pseudomonas fluorescens synthesizes pyoverdine type of
siderophores that enrich the ferric iron as nutrients in Solanum
lycopersicum plants enhancing photosynthetic pigments and
biomass of the plant (Nagata et al., 2013); B. subtilis produces
hexadentate triscatecholamide bacillibactin which has an affinity
to chelates the iron (Dertz et al., 2006); P. aeruginosa and P.
fluorescens are capable of producing siderophore that increases
the rate of phytoextraction and phytoremediation of heavy
metals (Braud et al., 2009a). Essen et al. (2007) reported that
Pseudomonas strtzeri 36,651 produces ferrioxamine type of
siderophore under both aerobic and anaerobic conditions, and
non-sulfur bacterium Rhodopseudomonas palustris str. CGA009
produces two types of siderophore rhodopertobactin under both
aerobic and anaerobic conditions (Baars et al., 2018).

SIDEROPHORES: CHEMISTRY AND
MECHANISM

Siderophores facilitate several functions of plants such as
respiration (Aznar and Dellagi, 2015), photosynthesis (Nagata
et al., 2013), bioremediation (Saha et al., 2016), plant growth
promotion (Yadav et al., 2011; Ghazy and El-Nahrawy, 2021),
and phytoremediation of heavy metals (Kong and Glick, 2017;
Leguizamo et al., 2017; Ustiatik et al., 2021). Siderophores are
also produced by non-ribosomal peptides bonds (Hu and Xu,
2011) andmultidentate iron-chelating compounds that solubilize
and chelate organic and inorganic forms of compounds in soil
(Singh et al., 2017). The term is derived from the Greek words
sidero meaning “iron” and phore meaning “carriers” or iron-
bearing compounds that uptake insoluble iron from different
environmental sources (Nagoba and Vedpathak, 2011). Primarily
siderophore-producing bacteria release iron-binding proteins,
such as permeases and ATPases, that chelate the ferric iron (Fe3+)
and transport Fe3+ ions in the cell membrane in gram-positive
bacteria (Ahmed and Holmstrom, 2014). Gram-negative bacteria
have a complex mechanism for the transportation of ferric
iron (Fe3+) mediated by many enzymes, periplasmic binding
proteins, outer membrane receptors, and cytoplasmic membrane
proteins which make Fe3+ available for plant cells (Ahmed and
Holmstrom, 2014; Schutze et al., 2015).

Siderophores are classified based on many criteria such
as the source of siderophore, cyclic and linear structure of
siderophore, and the chemical nature of functional groups
of the siderophore, as shown in Figure 2. On the basis of
functional groups, siderophores are classified as hydroxamate-
type siderophore, catecholate-type siderophore, carboxyalate-
type siderophore, and mixed ligand siderophore (Ito and
Butler, 2005; Zawadzka et al., 2006; Butler and Theisen, 2010).
Hydroxamate siderophores are a group of C(=O) N-(OH)R,
where R is either amino acid or a derivative of amino acids, which
contains two oxygen molecules to form bidentate ligand with
iron ions; therefore, each siderophore is able to form hexadentate
ligands, octahedral complex compounds with Fe3+ ions at a
different range between 1,022 and 1,032 M−1 (Winkelmann,
2007). During the combination of hydroxamate with Fe3+

ions, hydroxamate functional group loses a proton from the
hydroxylamine (-NOH) group to form a bidentate ligand
(Fiestner et al., 1993).

Some bacterial species have the potential to hydroxamate
siderophore production, including P. aeruginosa, which is
able to produce pyoverdin hydroxamate type of siderophore
under limited iron conditions (Meneely and Lamb, 2007).
Catecholate, commonly known as phenolate (2, 3–dihydroxy
benzoate) siderophore is an orthoisomer of three molecules of
isomeric benzenediols (Sah and Singh, 2015). The functional
group of catecholate siderophore loses two protons and
forms a five-member ring structure with Fe (Kraemer,
2004). Bacterial species are the most dominant species for
catecholate types of siderophore production (Dave et al.,
2006). The common bacterial species are Escherichia coli,
Salmonella typhimurium, and Klebsiella pnemoniae which
dominantly produce enterochelin subtypes of catecholate types
of siderophore production (Dertz et al., 2006). The bacterial
species Azotobacter vinelandii is the source of various types of
catecholate siderophores such as monocatecholate aminochelin,
dicatecholate azotochelin, and tricatecholate protochelin under
iron-limiting conditions (Wittmann et al., 2001).

Carboxyalate-type siderophore is a unique class of
siderophore, which bears hydroxyl and carboxyl compounds
(Dave and Dube, 2000); carboxyalate-type siderophore is
neither related to hydroxamate nor phenolate ligands. Bacterial
species such as Staphylococci, Rhizobium meliloti, and Mucorals
are the sources of Staphyloferrin A and B, rhizobactin, and
rhizoferrin carboxylate siderophores, respectively. Many
siderophoral species such as lysine derivative, ornithine
derivative, and histidine derivative contain mixed ligands with
Fe3+ ions. Mycobactins are lysine derivative siderophores that
bear 2-hydroxy phenyl oxazoline compounds which recover
iron. Mycobactin siderophore is produced by Mycobacteria
bacterial species, therefore, called mycobactin, which consists
of two hydroxamate, one phenolate, and another oxazoline
nitrogen. Pyoverdine is a dihydroxyquinoline compound, and
structurally every pyoverdine siderophore differs from each
other, while chromophore (1S)-5-amino-2,3-hydro-8,9-dihydro-
8,9-dihydroxy-1H-pyrimido[1,2-a] quinoline-1 carboxylic acid
shows similarities with azobactin that secretes by A. vinelandii.
Pyoverdines and pseudobactins are isolated by pseudomonas
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FIGURE 2 | Chemical nature of commonly identified siderophores and their iron (Fe3+) chelating binding sites.

bacterial species and are applicable in agriculture sectors and
as human pathogens (Kloepper et al., 1980). The anguibactin
siderophore is a histamine derivative mixed ligands siderophore;
structurally anguibactin siderophore is a ω-N-hydroxy-ω-[[2′-
(2",3"-dihydroxyphenyl) thiazolin-4′-yl]-carboxy] histamine.
The anguibactin siderophore is applicable in living cells as an
inducer for iron uptake.

ACTION AND STRATEGIES OF
SIDEROPHORES

Several microbes such as bacteria, fungi, algae, and
dicotyledonous plants (Das et al., 2007) are involved in
siderophoral activities that solubilize Fe3+ ions in the simple
form and which are transported through specific receptos
proteins in cells (Diaz de Villegas, 2007). This mechanism
involves the reduction of a complex form of iron (Fe3+) to a
simple form of iron (Fe2+) (Butler and Martin, 2005; Hopkinson
and Morel, 2009). The transport systems of Fe-siderophore in
Gram-negative and Gram-positive bacteria are different, the
outer membrane transporters are broadly absent in Gram-
positive bacteria, while they are found in Gram-negative bacteria
and play an impressive role in the transport of Fe-siderophore.
In Gram-negative bacteria, the Fe-siderophore passes on to the
periplasmic binding protein-mediated TonB-ExbBD complex

(Ferguson and Deisenhofer, 2002; Koebnik, 2005), and the
bound Fe-siderophore with surface-binding-proteins are then
imported into the cytoplasm via the possible siderophore-
permease-ATPase system. The role of the surface periplasmic
binding protein, ATPase, and permeases in Gram-positive
bacteria is similar as in Gram-negative bacteria mediated by
periplasmic surface binding protein permease with the ATP
system (Fukushima et al., 2013). The movement of siderophore
across the bacterial cell membrane owing to chemiosmotic
potential is mediated by a complex of three membrane-spanning
proteins (TonB, ExbD, and ExbB; Ferguson and Deisenhofer,
2002). TonB-dependent outer membrane receptors are involved
in the adhesion of Fe3+ siderophore complexes on the bacterial
cell surface (Schalk et al., 2012). Then Fe3+ siderophore complex
is transported from outside of the outer membrane to the cell
through the outer membrane of a bacterial cell by energy-
dependent system and reaches the periplasm (Schalk et al.,
2012). Afterward, Fe3+ siderophore complex ions bind with
periplasmic binding protein (PBP) (Noinaj et al., 2010; Ribeiro
and Simoe, 2019; Figure 3). Iron (Fe3+) siderophore complex
is transported from the periplasm to the cytoplasm across the
inner membrane by ATP binding cassette system and reaches the
cytoplasm due to the reduction in Fe3+ ions to form Fe2+ ions.
With this process being repeated in the bacterial cell, Fe+2 ions
are directly absorbed by the rhizosphere of plants that promote
the growth of plants (Ahmed and Holmstrom, 2014). In the case
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FIGURE 3 | Mechanism of siderophore in plant growth-promoting gram-positive and gram-negative bacteria mediating iron uptake in plants under

iron-deficient/degraded soil. Bacterial siderophore (BS), periplasmic binding protein (PBP), reduction strategy (RS-I), chelation strategy (CS-II), and plant siderophore

(PS). Iron regulated transporter 1 (IRT), Yellow Stripe-Like Transporter of Oryza sativa (OsYSL15), ATP-binding cassette transporter (ABC) G37, translocase of outer

membrane 1 (TOM) (Modified as sources of Fukushima et al., 2013; Seyoum et al., 2021).

of gram-positive bacteria, due to the lack of an outer membrane
all the processes occur in the periplasm and cytoplasm, Fe3+

siderophore complex ions adhere to the surface of periplasm,
and the establishment of Fe2+ ions occurs in the cytoplasm
(Faraldo-Gomez and Sansom, 2003; Fukushima et al., 2013;
Schalk and Guillon, 2013; Ribeiro and Simoe, 2019; Figure 3).

Two strategies have been reported in the rhizospheric
region to maintain iron uptake mediated by siderophore
under iron-deficient soil. The first is a reduction strategy
(RS-I), and second, a chelation strategy (CS-II) (Rai et al.,
2021; Figure 3). Among both strategies, chelation strategies are
common under stress conditions and tolerate a change in pH
as compared to reduction strategy (Ahmed and Holmstrom,
2014), while in rice plants, both the strategies are reported
(Krohling et al., 2016). RS-I is common in non-grass plants
under low iron conditions in the rhizosphere where H+-
ATPase AHA2 releases H+ and reduces the pH of the soil
and induces the solubility of Fe3+. Iron once in apoplast
gets chelated by phenolic compounds of the coumarin family
and is transported by transporter ABCG37 (Mladenka et al.,
2010). Ferric chelate reductase (Ferric Reduction Oxidase-
2) reduces Fe3+-Fe2+ in the plasma membrane (Ahmed
and Holmstrom, 2014). IRT1 (Iron Regulator Transporter-1)
transports Fe2+ in the epidermal cell of plant root (Barberon
et al., 2014).

Microorganisms such as bacteria/fungi and grasses follow the
mechanism of CS-II. This strategy is commonly found in alkaline
soil where acidification of rhizosphere is too difficult, thus
bacteria are remarkable agents for their application in alkaline
soil as well as stressed soil. This strategy (CS-II) is based on
biosynthesis, secretion of siderophore such as phytosiderophore
(PS)/bacterial siderophore (BS) that chelates Fe3+ and form
Fe3+-BS/Fe3+-PS complex and transported through YS/YSL
(Yellow Stripe/Yellow Stripe-Like) and TOM1 transporter family
to the root (Dai et al., 2018).

GENETIC MECHANISMS AND
REGULATION OF SIDEROPHORES

The key enzyme “non-ribosomal cytoplasmic synthase” produces
siderophore by utilizing the precursors such as citrate, amino
acids, dihydroxybenzoate, and N5-acyl-N5-hydroxyornithine,
and their genes have been identified in several microorganisms
(Paul et al., 2014; Paul and Dubey, 2015). In microbes such as
bacteria, Aspergillus fumigates, yeast siderophore operon consists
of several genes namely sidA, sidD, sidG, sidF, sidC and sidL
which are located on different chromosomes (Blatzer et al., 2011;
Khan et al., 2018; El-Maraghy et al., 2020).
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The sidC gene, highly conserved among fungi, is characterized
as non-ribosomal peptide synthetase (NRPS) and required for
the biosynthesis of both ferricrocin (FC) and hydroxyferricrocin
(HFC) (Schrettl et al., 2007). The sidF and sidG genes are
characterized as acetyl transferase having the role of TAFC
biosynthesis. The sidA gene encodes an L-ornithine N5-
monooxygenase which initiates siderophore production (Seifert
et al., 2008) whereas sidL gene which is located in cytoplasm and
is a constitutively active N5-hydroxyornithine-acetylase required
for FC biosynthesis (Blatzer et al., 2011). The siderophores uptake
is facilitated by siderophore uptake genes i.e., sit1,mirB andmirC
(Silva-Bailao et al., 2014). In contrast to fungi, the biosynthesis
of different siderophores in bacteria has been governed by
different genes such as entB gene (enterobactin biosynthesis),
iroB gene (salmochelin biosynthesis), entS gene (enterobactin
synthesis) (Watts et al., 2011; Paul and Dubey, 2015). In E.
coli, the enterobactin synthesis operon consists of entCDEBAH
genes whereas, for enterobactin uptake and utilization, fepA,
fepB, fepC, fepD, fepE, fepG, fes, and entS genes are responsible
(Peralta et al., 2016). In the gram-negative Yersinia pestis
bacterium, the siderophore type yersiniabactin is synthesized
by irp1 and irp2 genes (Guilvout et al., 1993). Etchegaray
et al. (2004) reported that siderophores in Xanthomonas species
are synthesized by non-ribosomal peptide synthetase from a
precursor such as polyamine derivatives. Najimi et al. (2008)
identified asbG, asbF, asbD, asbC, asbB, and asbI genes encoding
proteins similar to components of the siderophore biosynthetic
machinery in Aeromonas salmonicida bacteria. In P. aeruginosa,
the siderophore pyochelin is synthesized by the genes pchDCBA
and pchEF, and pyochelin precursors such as salicylate and
dihydroaeruginoate (Dha), are clustered with the pyochelin
regulatory genes pchR on its genome (Reimmann et al., 2001).
Searle et al. (2015) developed multiple primers to screen
environment samples for the presence of different microbial
siderophores such as Enterobactin (entA, entB, entC, entE,
fepA genes), Salmochelin (iroB, iroC, iroD, iroE, iron genes),
Yersiniabactin (irp1, irp2, irp3, irp4, & 5, fyuA genes) and
Aerobactin (iucA, iucB, iucC, iucD, iutA genes). Hofmann
et al. (2020) reported that the gene grdesA from Gordoniarub
ripertincta CWB2 and psdes A from Pimelobacter simplex
VkMAC-2033D encodes lysine decarboxylases presumed to be
involved in the synthesis of desferrioxamine siderophores. Wang
et al. (2021) identified a novel Non-ribosomal Peptide Synthetase
(NRPS) cluster in the bacteria Burkholderia seminalis strain R456
which is responsible for the production of a novel undescribed
siderophore, along with previously reported ornibactin and
pyochelin type siderophores, and also it is a crucial component
in regulator protein Fur which regulates siderophore production.

SUSTAINABLE APPLICATION OF SPM FOR
PLANT GROWTH IN IRON DEFICIENT
DEGRADED LAND

Siderophore-producing microbes reduce the Fe deficiency
and enhance all physiological and biochemical processes
of crops in saline soil (Table 1). Siderophore-producing

microbes B. aryabhattai MS3 are the most applicable in
rice plants that enhance 60 and 43% of crop production
under non-saline and saline (200mM NaCl) conditions,
respectively (Sultana et al., 2021). Siderophore-producing
microbe B. subtilis DR2 act as a biofertilizer and promotes
seed germination and plant growth in Coriandrum sativum
(Kumari et al., 2021). Rangseekaew et al. (2021) reported
that a specific bacterial strain of deep-sea Dermacoccus
barathri MT2.1T and D. profundi MT2.2T strain have the
ability to promote seedling in tomato plants under 150mM
concentration of NaCl as compared to the terrestrial strain
D. nishinomiyaensis DSM20448T, due to the production of
many plant-growth promoting attributes such as siderophore
production, indole-3-acetic acid, and phosphate solubilization.
Nadeem et al. (2012) reported that rhizospheric bacterial
species Variovorax paradoxus (JN858091), P. fluorescens
(JN858088), and B. megeterium (JN858098) have potential
PGP attributes such as siderophore production, phosphate
solubilization, exopolysaccharides production, indole acetic
acid production, and ACC deaminase activity under both saline
and normal conditions that alleviate the negative impacts of
salinity and enhance the nutrients uptake for plant growth in
cucumber plants.

Siderophore-producing microbes can produce plant growth-
promoting attributes such as plant hormones, phosphate
solubilization, secondary metabolites, etc., and provide suitable
environments in stressed soil that enhances plant growth such
as drought (Vivas et al., 2003; Breitkreuz et al., 2021). B.
subtilis produce iron-chelating compounds that enhance the
nutrient level in soil resulting in the growth of wheat plants
under drought conditions (Lastochkina et al., 2020). Two
siderophore-producing rhizobacterial species such as P. putida
and B. amyloliquefaciens have the tolerance ability under drought
stress due to the secretion of PGP attributes like siderophore
production, hormone production, mineral solubilization, biofilm
formation, and ACC deaminase activity, ameliorating the
negative effects of drought and ensuring potential growth ofCicer
arietinum L. under drought stress (Kumar et al., 2016). Several
plant growth microbes survive under drought stress enhancing
plant growth and yields; the inoculation of Bacillus sp. in lettuce
increases the nitrogen, phosphorous, and potassium nutrients
under drought stress conditions (Vivas et al., 2003). Siderophore-
producing microbe Pseudomonas strains enhance the soil
nutrients and other activities, including phosphate solubilization,
potassium solubilization, and siderophore production under
drought conditions (Breitkreuz et al., 2021).

Siderophore changes the oxidation states of heavy metals
including Cd, Cu, Ni, Pb, Zn and Th4+, U4+, and Pu4+ to make
them less toxic in nature (Schalk et al., 2011). Siderophores also
bind different toxic metals such as Cr3+, Cu3+, Pb2+, Cu2+, V4+,
and Al3+, while the binding capability of siderophores to Fe is
more as compared to toxic heavy metals (Baysse et al., 2000;
Braud et al., 2009b). Siderophores bind to toxic heavy metals, and
thus toxic heavy metals do not hinder the efficiency of plant cells
(Braud et al., 2009b). Therefore, the toxic heavymetal detoxifying
and binding capability of siderophore plays a remarkable role in
plant growth under heavy metal polluted land.
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Siderophore has a strong affinity for the formation of iron-
chelating compounds that help in the bioremediation process
enhancing nutrient uptake and plant growth (Rajkumar et al.,
2010). Bacterial strain P. fluorescence produces pyoverdine-
type of siderophore that enhances mobility and reduces the
toxicity of heavy metals in uranium mines (Edberg et al.,
2010). Sharma and Johri (2003) reported that plant growth-
promoting rhizobacterial genus Pseudomonas isolated from Zea
mays L. secretes siderophores that have the potential to mobilize
iron and have a high affinity to chelate Fe3+ ions resulting
in heavy metals uptake. Pseudomonas strain GRP3 producing
siderophore enhances the chlorophyll level in siderophore-
treated mung bean plants (Sharma and Johri, 2003), and
phytosiderophore enhances the iron efficiency of barley and
wheat. Vishnupradeep et al. (2022) reported that two bacterial
species Providencia sp. (TCR05) and Proteus mirabilis (TCR20)
reduce the Cr toxicity from Cr(VI) to Cr(III) and enhanced plant
pigments, protein, phenolics, and relative water content, while
proline, lipid peroxidation, and superoxide dismutase decreased
in Zea mays under heavy metal contaminated and drought
conditions. Siderophore-producing microbes have the potential
for phytoremediation of heavy metals and can overcome
iron deficiency (Rajkumar et al., 2010). Dimkpa et al. (2009)
reported that PGP rhizobacterial species Streptomyces tendae
F4 phytoremediated cadmium (Cd) and enhanced the uptake
of metals in heavy metals polluted lands. Enterobacter cloacae
rhizospheric bacteria isolated from Spilanthes acmella Murr
(toothache plant) of Shivalik hills region secretes PGP attributes
including, exopolysaccharides (EPS) and 1-aminocyclopropane-
a-carboxylic acid (ACC), acts as a biocontrol and biofertilizer
under drought stress conditions (Thakur et al., 2021). Symbiotic
association among plant and SPM is potentially involved in
heavy metal uptake, SPM Rhizobium strains promoted Cu uptake
while Pseudomonas strain promoted Cu and Fe uptake by
Phaseolus vulgaris plants (Carrillo-Castaneda et al., 2007), and
S. acidiscabies SPM secretes hydroxamate types of siderophores
responsible for the solubilization and uptake of nickel and iron by
Vigna unguiculata plants under nickel stress condition (Dimkpa
et al., 2008). Symbiotic association of SPM Kluyvera ascorbata
and plants decreased the toxicity of heavy metals (Burd et al.,
2000) and suppressed the phytopathogens (Glick, 2012).

Siderophores maintain iron starvation in plants (Sayyed
et al., 2019) and suppress the phytopathogens (Shaikh et al.,
2014; Saha et al., 2016; Sayyed et al., 2019) like Phytophthora
parasitica (Seuk et al., 1988), Phythium Ultimum (Hamdan
et al., 1991). Ghazy and El-Nahrawy (2021) reported that
bacterial strains such as B. subtilis MF497446 and P. koreensis

MG209738 produce siderophores and induce disease resistance

against Cephalosporium maydis in maize crops. Brevibacillus
brevis GZDF3 (PGPR strain) isolated from the rhizosphere of
Pinellia ternate plants play an important role in antagonistic
activity against Candida albicans fungal disease by siderophore
production (Mohammed et al., 2020; Sheng et al., 2020);
P. flurescens and P. aeruginosa bacterial strain act as a
biocontrol agent against Ralstonia solanacerum of tomato
wilt. Siderophore-producing microbes, namely gram-negative
bacteria Escherichia coli, secretes secondary metabolites such

as siderophores that enhance iron uptake and plant growth
performances under iron stress conditions (Neilands, 1995), and
gram-negative bacterial genus Streptomyces acts as a biofertilizer
that enhances the plant nutrients (Fe, P, and N), significantly
increasing the germination rate, shoot length, and dry weight of
wheat plant under saline stress condition (Sadeghi et al., 2012;
Upadhyay et al., 2019).

CONCLUSION AND WAY FORWARDS

A proportional relation exists between growth performance and
yield of plants; however, a big challenge arises in this proportional
relationship due to the rapid rise in degraded land across the
globe. The utilization of degraded land for agricultural practices
becomes an issue for researchers to meet global food production
for the future with eco-friendly and sustainable technology.
Degraded land poses several detrimental impacts on plant growth
and induces plant stress by less cycling of available nutrients and
disruption in the metabolic function of the plant. The review
discussed the influence of iron-deficient soil on plant and their
management through eco-friendly products i.e., siderophores.
The diverse chemical nature of siderophores can chelate Fe3+,
which is produced by siderophore-producing rhizobacteria, and
plant roots commonly known as bacterial siderophore (BS) and
plant siderophore (PS).

In the rhizospheric microenvironment, both BS and PS
synergistically facilitate iron uptake in the plant from iron-
deficient soil mediated by reduction and chelation strategies.
The utilization of siderophore-producing rhizobacteria can
effectively maintain the iron level in plants and induce plant
growth performances under degraded soil effectively when their
selections meet compatibly with plant roots specifically. Future
research requires the selection of the perfect candidate for
siderophore-producing rhizobacteria, for a specific plant in
degraded soil that would be useful for plant stress management
and plant productivity at the field level.
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