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Abstract

Cognitive function relies on both molecular levels and cellular structures. However, systematic relationships between these two
components of cognitive function, and their joint contribution to disease, are largely unknown. We utilize postmortem neuro-
imaging in tandem with gene expression and DNA methylation, from 222 deeply-phenotyped persons in a longitudinal aging
cohort. Expression of hundreds of genes and methylation at thousands of loci are related to the microstructure of extensive
regions of this same set of brains, as assessed by MRI. The genes linked to brain microstructure perform functions related to cell
motility, transcriptional regulation and nuclear processes, and are selectively associated with Alzheimer’s phenotypes. Similar
methodology can be applied to other diseases to identify their joint molecular and structural basis, or to infer molecular levels in
the brain on the basis of neuroimaging for precision medicine applications.
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Introduction

Molecular activity and brain structure influence each other
(West and Greenberg 2011), and both affect cognitive function
(Bishop et al. 2010). Progress towards a systematic molecular
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basis for neuroimaging findings indicates that regional vol-
umes are shaped by genetic factors (Hibar et al. 2015), and
that spatial patterns of gene expression correspond to cell type
distributions (Krienen et al. 2016), structural (Fulcher and
Fornito 2016) and functional connectivity patterns
(Hawrylycz et al. 2015; Richiardi et al. 2015; Vértes et al.
2016; Wang et al. 2015). While these studies suggest that gene
expression and aspects of brain microstructure have similar
spatial patterns, it is unclear to what extent they covary within
a particular brain region or across regions.

The relationships of molecular and neuroimaging features
with brain disease or other phenotypes have been studied in-
dependently. For instance, identifying brain structures that co-
vary with disease status is a common focus of neuroimaging.
Likewise, identifying covariation of gene expression with dis-
ease status is a common focus of molecular biology. However,
studies which span these two approaches to test the covaria-
tion of gene expression and brain structure are limited. Efforts
to unite molecular biology with neuroimaging in the context
of disease through “imaging genetics” have identified a small
number of polymorphisms tied to variation in brain structures
(Hibar et al. 2015; Munafo et al. 2008; Stein et al. 2012)
including a subset of AD GWAS variants (Braskie et al.
2011; Erk et al. 2011; Kohannim et al. 2013; P. Zhang et al.
2015). However, variation in gene expression or other omics
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in the brain has not been measured concurrently with neuro-
imaging in the same set of persons. The increasing body of
evidence that molecular maps of the brain correspond to struc-
tural and functional brain maps (Hawrylycz et al. 2015;
Krienen et al. 2016; Richiardi et al. 2015), and the tight inte-
gration of gene expression and epigenetics with cellular func-
tion (Bishop et al. 2010; West and Greenberg 2011), indicate
the potential for a unified “imaging omics” perspective on
disease, using omics and imaging obtained from the same
set of brains.

We followed an imaging omics approach to discover rela-
tionships between omics and neuroimaging, using ~200 brains
with paired omics and ex-vivo neuroimaging (Dawe et al. 2014;
Dawe et al. 2009; Dawe et al. 2016; Kotrotsou et al. 2014;
Kotrotsou et al. 2015), from two longitudinal cohort studies
of aging (A Bennett et al. 2012; Bennett et al. 2005). Our
approach to finding relationships between brain omics and
structure is analogous to typical neuroimaging studies and im-
aging genetics studies (Fig. 1). However, instead of using ge-
netic polymorphisms, we use gene expression and methylation
data generated from the dorsolateral-prefrontal cortex (DLPFC)
as our molecular trait of interest, and map it onto the brain, just
as traits are mapped to the brain in a typical neuroimaging study
(overview and comparison of approach in Fig. 1).

Previously we conducted expression-wide and
methylation-wide association studies, testing for relationships
to the transverse relaxation rate (R,) in cognition-associated
brain regions, controlling for the effects of common age-
related brain neuropathologies (Yu et al. 2017). We found four
genes associated with R,, the inverse of T,. In the present
study, we extend this prior work by examining molecular sys-
tems defined by DLPFC expression and methylation data in
relation to a wide range of white-matter brain regions. We then
use tractography to identify cortical regions connected via the
white-matter regions and associated DLPFC molecular sys-
tems. Finally, we take the molecular systems that are related
to brain microstructure, and examine their associations with
AD clinical and pathologic traits. Based on these tests, we
demonstrate the existence of several associations between mo-
lecular systems and brain microstructure. We map the spatial
extent of these relationships, the genes involved and their
functional characteristics, and the relevance of these imaging
omics associations to common age-related neuropathologies
and cognitive decline - the core clinical feature of AD.

Methods
Parent study and substudy characteristics
We evaluated data from two prospective cohort studies: the

Religious Orders Study (ROS) (A Bennett et al. 2012), and the
Rush Memory and Aging Project (MAP) (Bennett et al.
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2005). ROS and MAP were designed to have consistent data
acquisition and processing and are analyzed jointly in numer-
ous publications (Arfanakis et al. 2016; Boyle et al. 2016;
Buchman et al. 2012; Lim et al. 2017; Nag et al. 2015), and
this extends to neuroimaging and omics assays acquired
across both cohorts. ROS enrolls older religious clergy from
across the United States since 1994, while MAP started in
1997 and enrolls older residents from Chicago-area retirement
facilities and subsidized housing, and other older residents
through church groups and social service agencies. The parent
cohort studies and substudies were approved by Rush
University Medical Center Institutional Review Boards.
Participants provided written informed consent and all partic-
ipants signed an Anatomic Gift Act for brain donation.

A subset of participants in ROS and MAP underwent post-
mortem structural neuroimaging. RNAseq and/or DNA meth-
ylation assays were performed on DLPFC brain tissue. Data
from 222 participants were used in this study, with a mean age
of 89.8, of which 153 were female. These participants exhib-
ited a typical distribution of cognitive function for their age
(mean MMSE proximate to death =19.5, median = 23). Full
clinical and demographic characteristics are found in Table 1.

Neuropathology protocols

Details on clinical and neuropathological methods in ROS and
MAP have been extensively published (Bennett et al. 2006b;
Schneider et al. 2012; Schneider et al. 2004) and data access
links are provided in supplementary methods. Due to their
impact on structural brain imaging we assess levels of micro
and macroscopic infarcts, 3-amyloid load, paired helical fila-
ment (PHF) tau tangle density, and Lewy bodies in multiple
brain regions. Neurofibrillary tangles were also quantified
using Braak staging and neuritic plaque frequency, according
the Consortium to Establish a Registry for Alzheimer’s
Disease (CERAD). Separately, a composite measure of
plaques and tangles assesses global burden of AD pathology
(Bennett et al. 2004). Details of all other neuropathology mea-
sures are shown in supplementary methods.

Cognitive function assessment and clinical diagnoses

Cognitive function in ROS and MAP participants is assessed
annually along multiple dimensions with 21 cognitive tests.
Seventeen tests are used to create composite scores of global
cognition as well as five cognitive domains of episodic mem-
ory, semantic memory, working memory, perceptual speed
and visuospatial abilities. Participants are evaluated by a cli-
nician who used cognitive and clinical data to identify AD and
other dementias. Detailed methods are published (R. Wilson et
al. 2010; R. S. Wilson et al. 2015; R. S. Wilson et al. 2007)
and are provided in Supplemental Methods. The clinical eval-
uation was done in a three stage process that involved a
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Fig. 1 Schematic of imaging omics, a combination of brain omics and
neuroimaging, with parallel methodology to other types of imaging
studies. The current study identifies brain regions whose microstructure

computer generated actuarial decision tree, followed by a clin-
ical diagnosis by a neuropsychologist which identified the
presence of cognitive impairment, followed by a clinician
who identified the presence of dementia and its causes. MCI
refers to those persons with cognitive impairment without
dementia. Details have been previously published (Bennett
et al. 2006a; Bennett et al. 2002). After death, a neurologist
reviews all clinical data blind to pathologic data and makes a
summary clinical diagnosis. Of the 222 participants in this
substudy, 60 had no cognitive impairment, 49 had MCI, 106
had AD and 6 had other dementia.

Generation of RNAseq and methylation data

Details on RNAseq and methylation data are published (De
Jager et al. 2014; Ng et al. 2017). Briefly, RNA from 168

Table 1 Clinical characteristics of imaging omics cohort. Full
classification criteria shown in supplementary data, and raw data
available to download through www.radc.rush.edu

w/ RNAseq w/ DNA methylation

n 168 222

age at death (mean, sd) 89.74 (6.10) 89.75 (5.96)
female (n, %) 114 (67.9) 153 (68.9)
years of education (mean, sd) 15.92 (3.52) 15.77 (3.59)
MMSE, last visit (mean, sd) 20.54 (9.35) 19.50 (9.68)
Clinical dementia (n, %) 75 (44.6) 112 (50.5)
MCI (n, %) 44 (26.2) 50 (22.5)
NCI (n, %) 49 (29.2) 60 (27.0)
AD (n, %) 70 (41.7) 106 (47.7)
Global AD pathology (mean, sd)  0.69 (0.60) 0.75 (0.62)
Amyloid score (mean, sd) 4.62 (4.45) 4.82(4.52)
Tangles score (mean, sd) 6.43 (8.45) 6.89 (8.18)

Presence of gross infarctions (n, %) 53 (31.5) 72 (32.4)
Presence of microinfarcts (n, %) 46 (27.4) 57 (25.7)
Presence of Lewy bodies (n, %) 30 (17.9) 45 (20.3)
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Brain-phenotype comparison: Results:
Where in the brain do Regions associated
phenotypes and MRI covary? with given phenotype
Phenotype ! \
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with gene expression

T T
Individual brain scans

(as measured by MRI) are associated with brain omics data, such as gene
expression or methylation, in a manner parallel to typical neuroimaging
studies

individuals was extracted from DLPFC with the miRNeasy
mini kit (Qiagen, Venlo, Netherlands) and the RNase free
DNase Set (Qiagen, Vento, Netherlands). RNA concentration
was quantified using Nanodrop (Thermo Fisher Scientific,
Waltham, MA), and RNA quality was assessed using an
Agilent Bioanalyzer. RNAseq was performed using Illumina
HiSeq with 101 bp paired-end reads with an average depth of
90 m reads. The trimmed reads were aligned to the reference
genome using Bowtie and the expression FPKM values were
estimated using RSEM; see supplement for normalization
details.

DNA from 222 individuals was extracted from
DLPFC using the Qiagen QIAamp DNA mini protocol.
DNA methylation data were generated using Illumina
Infinium HumanMethylation450k Bead Chip assay.
Raw data were further processed using Methylation
Module v1.8 from the Illumina Genome Studio software
suite to generate a beta value for each cytosine guanine
dinucleotide (CpG); see supplement for normalization
details.

Covariates

Age is calculated from birth date and date of death; sex and
years of education were self-reported from the baseline eval-
uation, and their effects were removed from the R, signal with
a linear model.

Omics data processing

For both gene expression and methylation, we follow the stan-
dard practice of reducing the dimensionality of gene expression
and methylation, by collapsing them into a smaller number of
molecular systems, identified via gene coexpression or
comethylation. Gene coexpression is a standard methodology
for identifying functionally related gene sets, in a manner that is
strictly data-driven, and which can be related to any other
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phenotype recorded for the cohort, such as neuroimaging. This
fundamental approach, which has now been used in numerous
studies (Langfelder and Horvath 2008; B. Zhang and Horvath
2005), helps to identify more robust signals in gene expression
data compared to single gene approaches, and reflects the activity
of multiple regulatory mechanisms (Gaiteri et al. 2014).
Coexpressed gene sets are sometimes referred to as “modules”,
because they are detected as clusters in the gene-gene
correlation matrix. The gene coexpression methodology
has been extended to DNA methylation, identifying loci
and nearby genes whose methylation level fluctuate in
sync, across many subjects (Numata et al. 2012). To ro-
bustly identify coexpressed or comethylated gene sets, we
use a consensus clustering method (Gaiteri et al. 2015)
that operates on the gene-gene Pearson correlation matrix
(or CPG-CPG correlation matrix) to find gene sets whose
expression or methylation levels covary across subjects.
Average levels of these 47 gene and 58 methylation sets
were then related to neuroimaging in the same cohort as
described below.

Neuroimaging data processing

Ex-vivo MRI scans show high correlation with antemortem
imaging (Dawe et al. 2016) and were conducted on a 3 Tesla
MRI scanner using a 2D fast spin-echo sequence with multi-
ple echo-times (TEs), producing estimates of relaxation rates
(Ry) for each voxel. R, values are the inverse of T, values.
Variation in voxel R, values related to the molecular environ-
ment and molecular motion within a given voxel (Brown et al.
2014) such as cellular density, myelin content, or water con-
tent. R, values are responsive to changes within healthy brains
(Whittall et al. 1997) or certain brain injuries (Assaf et al.
1997) or disease (Bricllmann et al. 2002; Fisniku et al.
2008). All R, maps were warped into the space of a cerebral
hemisphere template constructed from the images of 30 rep-
resentative specimens, first using linear and then nonlinear
registration methods.

To obtain the lists of predicted most-affected single gray
matter regions (Tables S1, S3) we use the IIT Human Brain
Atlas (Varentsova et al. 2014) (www.nitrc.org/projects/iit) and
the regionstat tool to first generate the pairs of gray matter
regions most likely connected by white matter fibers
traversing through the white matter region of interest,
and then derive single gray matter regions with the
most streamlines through the white matter region of
interest. Specifically, the impact score for a single gray
matter region is computed by summing the percentages
of streamlines traversing through the white matter
region of interest and terminating to that gray matter
region. For full details of neuroimaging methods, see
Supplemental methods.
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Imaging omic maps

The average values for each of the resulting gene sets/
molecular system is mapped onto the MRI data of brain scans
of the same individuals to identify significantly correlated
voxels (Fig. 1). Specifically, we identify all voxels in the ce-
rebral hemisphere template significantly correlated with any
module, under a false discovery rate (FDR) of 5%. We further
guard against false positives by accepting only clusters of 100
or more contiguous voxels (100 mm?) that all surpass the
FDR-corrected critical p-value. The locations with Pearson
correlations that pass these criteria define locations where
brain microstructure is related to the average level of a given
molecular system. This methodology is parallel to standard
neuroimaging studies to identify brain regions that are syn-
chronized with the phenotype of interest; in this case the phe-
notype of interest is the level of gene expression or DNA
methylation in various molecular systems.

Results

Identification of brain regions associated
with molecular systems

Analogous to imaging genetics studies, we compare the aver-
age expression of molecular systems in gene expression and
DNA methylation to each neuroimaging voxel to create maps
of the brain regions related to these phenotypes. Specifically,
we compare coexpression or comethylation modules and
brain R,, and observe correlations proximal to the dorsolateral
prefrontal cortex, and also in voxels located in distant regions
of the brain (Figs. 2a, 3a). The maps of correlations between
molecular systems and R, (Figs. 2a, 3a) indicate where the
brain microstructure changes concurrently with the average
level of a given molecular system.

Because R, measurements are most sensitive to changes in
white-matter, we integrate atlas-based tractography to associate
these changes with gray matter regions that represent the ori-
gins or destinations of the white matter fibers (Figs. 2b, 3D, c,
Tables S1-S6, see methods). The brain regions likely related to
levels of coexpressed molecular systems are primarily located
in the frontal cortex, but regions connected via the impacted
white matter also include subcortical structures, particularly the
putamen (Tables S1, S2, Fig. 2b). The white matter regions
associated with comethylation (Fig. 3a) are more extensive
(Fig. 4) than those associated with coexpression (Fig. 2a).
The gray matter regions predicted to be connected by
methylation-associated white matter regions include a compre-
hensive range of frontal cortex regions (Fig. 3b, Tables S3-S6),
as well as some temporal and parietal areas. The relatively
unique predicted effects on multiple temporal regions and the
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precuneus stem from a specific comethyation system associat-
ed with cell morphology (Fig. 3, Tables S5, S6).

Functional properties of molecular systems
associated with neuroimaging

Although the molecular systems associated with R, are
enriched with a diverse set of molecular functions (Tables

<« Fig. 2 Maps of expression-correlated brain areas (a) Locations in

which ex-vivo transverse relaxation (R,) is correlated with expression of
molecular systems related to transcriptional regulation (m109 - red),
synaptic transmission (m23 - dark blue), myelination (m110 - green),
nuclear processes (ml11 - yellow) or unknown processes (m131 - light
blue). All colored labels are displayed with 50% transparency to allow for
partial visualization of overlapping labels. Critical p-value threshold for
expression-correlated voxels determined by correction for multiple
comparisons to yield false discovery rate of 0.05 (b) Cortical and
subcortical gray matter terminals of white matter pathways traversing
through the region with R, values linked to expression of m109. The
blue region comprises voxels for which R, was significantly associated
with the expression of m109, after FDR correction for multiple
comparisons, thresholding based on a minimum cluster size of
100 mm®. The red-to-yellow color assigned to each gray matter region
indicates the relative proportion of streamlines (a proxy of white matter
fiber tracts) traversing the region in blue and terminating to that gray
matter region (see also Tables S1, S2)

S9, S10), despite being derived without reference to any on-
tology (Tables S8, S9). For instance, the coexpression m109
module is enriched for transcriptional regulatory systems (p <
1077, Table S9); the m66 comethylation module is enriched
for ontology categories generally related to neurogenesis and
morphogenesis around synapses (p < 10> Table S10). Several
modules are highly enriched for specific cell types, such as
microglia. However, those most highly enriched cell type
modules do not have omic correlations in this dataset
(Tables S11, S12). This implies that cell-type specificity is
not sufficient to produce imaging omic associations. The lack
of cell type enrichment in methylation modules indicates that
cell type signatures alone are also not necessary for the exis-
tence of imaging omic associations.

In addition to their correlations with R, values in extensive
brain areas, both coexpression module m109 (transcriptional
regulation) and comethylation module m66 (synapses and
morphogenesis) have significant correlations with a wide
range of AD clinical and pathologic phenotypes, including
[3-amyloid load and tau tangle density, and with AD diagno-
sis, global cognition and cognitive systems (Fig. 5). The con-
sistency of correlations across multiple subcomponents of
cognition, and various assays of AD pathology confirms the
robustness of the findings. We also validated the relevance of
m109 to AD pathology in vitro by testing the effects of influ-
ential genes within the module on A(342 levels in astrocyte
cultures, showing significant effects for INPPLI and PLXNB1
(Mostafavi et al. 2018).

Comparison to neuroimaging of age-related
pathologies

To provide context for the spatial extent and statistical strength
of these imaging omic associations, we contrast them with
voxels correlating with common neuropathologies (Fig. 4b,
d). The number of voxels associated with select molecular
systems is commensurate with the number of voxels

@ Springer
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Fig. 3 Maps of methylation-correlated brain areas (a) Locations in
which ex-vivo transverse relaxation (R,) is correlated with methylation of
molecular systems related to cell motility (m66 in blue-green) and a
module with unknown functions (m33 in yellow). b Cortical and
subcortical gray matter terminals of white matter pathways traversing

associated with neuropathology; including those neuropathol-
ogies with the strongest relationships with imaging, such as
gross infarcts and AD pathology (Fig. 4a, ¢). While
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Relative Number of White Matter
Pathways (Arbitrary Units)

through the region with R, values linked to expression of
comethylation module m33. ¢ Cortical and subcortical gray matter
terminals of white matter pathways traversing through the region with
R, values linked comethylation module m66

expression-related regions are largely frontal, methylation-
associated regions cover both temporal and frontal regions
that are typically associated with AD pathology. Because
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Fig. 4 Spatial extent and phenotypic correlates of molecular systems
in expression and methylation (a) Comparison of extent of voxel
correlations of neuropathologies and a coexpression modules (m109) at
an uncorrected p < .01 threshold (solid bars) and a more stringent FDR =
5% threshold (hollow bars). Neuropathology measures are controlled for
m109 and m109 is controlled for neuropathologies. b Brain regions
associated with neuropathologies and m109. Color-coding matches
panel 4A, with AD pathology in dark blue, global infarcts in green,
coexpression m109 in red. ¢ Comparison of extent of voxel correlations
of neuropathologies and comethylation modules at uncorrected p <.01

pathological processes have an effect on both omics and brain
characteristics, we check to what extent pathology may ac-
count for imaging correlations. To do this we account for the
effects of all neuropathologies with known large effects on
structural imaging: AD, infarcts, and Lewy body disease
(Dawe et al. 2014). This reduces the number of voxels asso-
ciated with m109, but relationships remain numerous, and
focused on the same region (Figs. 4a, S1). By contrast,

with m66

threshold (solid bars) and more stringent FDR = 5% threshold (hollow
bars). In this comparison, neuropathology measures are controlled for
comethylation modules and modules are controlled for
neuropathologies. d Brain regions associated with neuropathologies and
comethylation modules. Color-coding matches panel 4C, with AD
pathology in dark blue, global infarcts in green, comethylation m33 in
pink and comethylation m66 in yellow. The distribution and extent of
pathology appears to shift between 4B and 4D due to different number
of subjects, and different covariates (expression vs methylation) included
in model

including gene expression in a model of R, values weakens
the associations between R, and neuropathologic indices such
that they do not meet the FDR 5%-corrected significance
threshold (Fig. 4a). Therefore, known pathology measures
do not account for a substantial proportion of the strongest
imaging expression relationship. Similarly accounting for pa-
thology reduces the number of voxels associated with
comethylation module m66, but they remain significant and

Fig. 5 Module-trait c
associations of modules with i)
neuroimaging correlations. Full w me6- * ok * % * ok x x %
trait descriptions in supplement. >
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focused in the same region. However, the number of voxels
associated with m33 is only slightly reduced when accounting
for pathology (Fig. 4c), indicating it represents a non-disease
or basic biological relationship between DNA methylation
and brain microstructure.

Finally, because m109- and cognition-associated brain re-
gions are semi-overlapping (Fig. S2) we compare the variance
in cognitive decline explained by this single module compared
to mean R, values from all voxels that are correlated with
cognition. We find that this single coexpression module ex-
plains 17% of the variance in cognitive decline and an addi-
tional 7% of the variance in cognitive decline above and be-
yond averaged R, values of brain regions associated with
cognition.

Discussion

Using brain gene expression, methylation and ex-vivo MRI
data from two longitudinal cohort studies of aging, we find
molecular systems synchronized with MRI-derived molecular
brain characteristics in many brain areas. These imaging-omic
associations are spatially extensive and involve hundreds of
genes in several molecular systems, including transcriptional
regulation and cell morphology. Further, both the molecular
systems and the brain regions with which they covary are
associated with a wide range of AD clinical and pathologic
phenotypes suggesting that both have important functional
consequences.

Molecular systems and brain microstructure are indepen-
dently known to be essential factors in cognitive function and
disease susceptibility. The scope and strength of their coordi-
nation has been challenging to observe, although glimpses of
large-scale coordination have emerged (Fulcher and Fornito
2016; Hibar et al. 2015; Krienen et al. 2016; Richiardi et al.
2015). To date, such studies have focused on comparing dis-
tributions of gene expression from one data source with neu-
roimaging features acquired from another data source. By
obtaining omics from the brain paired with neuroimaging
from a large cohort we follow the typical neuroimaging ap-
proach of identifying brain regions that covary with molecular
levels. Our results expand prior work in several important
ways.

First, we are able to demonstrate the existence of covaria-
tion between two omics and brain structures. The molecular
systems are identified without reference to neuroimaging,
pathological variables or molecular ontologies; they are pro-
duced by the activity of regulatory systems and are highly
reproducible (Gaiteri et al. 2014; Mostafavi et al. 2018). The
specific MRI measure of R, characterizes the molecular envi-
ronment and molecular motion within a given voxel (Brown et
al. 2014) such as cellular density, myelin content, or water
content. These R, values are responsive to changes within
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healthy brains (Whittall et al. 1997), certain brain injuries
(Assaf et al. 1997) or disease (Briellmann et al. 2002;
Fisniku et al. 2008). As a result, our findings on imaging omic
association identify areas of the brain in which expression or
methylation of a given molecular system is associated with R,
values and the molecular environment they represent in a giv-
en brain area. This also indicates the interoperability of omic
and neuroimaging perspectives on brain diseases, particularly
within select molecular systems and brain regions.

Second, these imaging omics relationships have a practical
influence on AD and likely other neuropathologies and dis-
cases. Here they provide a coherent representation of the mo-
lecular and brain integrity progression of AD, prioritizing spe-
cific molecular systems as targets, identifying their spatial
correlates in the brain, and tracking how these relate to region-
al correlates of neuropathology and cognition. By bringing
together molecular and neuroimaging perspectives on AD it
may be possible to merge their strengths as drug development
tools and biomarkers for a more efficient perspective on path-
ogenesis. Thus neuroimaging results are no longer isolated
from molecular interventions, but it will be known that struc-
tural brain changes in a given region may be controlled by
molecular levels nearby or elsewhere in the brain.

Third, we explore the potential biological basis of imaging
omic relationships. The causality behind brain omic imaging
associations is more complex than that of imaging genetics, as
feedback loops, such as activity-driven expression, are perva-
sive in the brain (West and Greenberg 2011). If omic systems
are generally upstream, those molecular systems may be use-
ful in controlling the molecular changes observed through
MRI. If they are downstream of these brain changes, the mo-
lecular systems mark response to a process in a particular
brain area. We explore the possibility that some third factor,
such as pathology, may jointly influence brain omics and im-
aging. However, pathology has limited responsibility for some
imaging omic associations and other imaging omic associa-
tions persist after controlling for several common neuropa-
thologies. The distribution of cell types is also unlikely to
completely account for our findings. Thus, imaging omic re-
lationships appear to have relevance both to disease neurobi-
ology and basic brain function.

The strength of these results is made possible by post-
mortem neuroimaging on subjects with multiple brain omics,
while their robustness is supported by the large cohort size and
many detailed neuropathology and cognitive assessments.
These diverse sources of information allow us to explore the
basis for synchronization between brain omics and neuroim-
aging, which may be partially disease-driven, but also disease-
independent. Limitations and open questions on the current
study include the causality between brain microstructure and
the molecular levels assayed by omics, and also questions of
the extent of imaging omic relationships in various forms of
neuroimaging. As persons in the parent cohorts are currently
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undergoing ante-mortem imaging, future studies can examine
the fMRI associations of omics. Future in-vitro experiments,
evaluating cell morphology before and after perturbing key
genes in imaging-associated systems, will be helpful in dis-
secting the causality of imaging omics relationships. Omics
data from additional brain regions, or additional types of neu-
roimaging, may potentially show similar or unique imaging
omic association maps.
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