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Abstract

A major challenge in the analysis of tissue imaging data is cell segmentation, the task of 

identifying the precise boundary of every cell in an image. To address this problem we constructed 

TissueNet, a dataset for training segmentation models that contains more than 1 million manually 

labeled cells, an order of magnitude more than all previously published segmentation training 

datasets. We used TissueNet to train Mesmer, a deep learning-enabled segmentation algorithm. We 

demonstrated that Mesmer is more accurate than previous methods, generalizes to the full diversity 

of tissue types and imaging platforms in TissueNet, and achieves human-level performance. 

Mesmer enabled the automated extraction of key cellular features, such as subcellular localization 

of protein signal, which was challenging with previous approaches. We then adapted Mesmer to 

harness cell lineage information in highly multiplexed datasets and used this enhanced version to 

quantify cell morphology changes during human gestation. All code, data, and models are released 

as a community resource.

Introduction

Understanding the structural and functional relationships present in tissues is a challenge 

at the forefront of basic and translational research. Recent advances in multiplexed 

imaging have expanded the number of transcripts and proteins that can be quantified 

simultaneously1–12, opening new avenues for large-scale analysis of human tissue samples. 

Ambitious collaborative efforts such as the Human Tumor Atlas Network13, the Human 

BioMolecular Atlas Program14, and the Human Cell Atlas15 are using these methods to 

comprehensively characterize the location, function, and phenotype of the cells in the human 

body. However, the tools needed for analysis and interpretation of these datasets at scale 

do not yet exist. The clearest example is the lack of a generalized algorithm for locating 

single cells in images. Unlike flow cytometry or single-cell RNA sequencing, tissue imaging 

is performed with intact specimens. Thus, to extract single-cell data, each pixel must be 

assigned to a cell, a process known as cell segmentation. Since the features extracted 

through this process are the basis for downstream analyses16, inaccuracies at this stage 

can have far-reaching consequences for interpreting image data. The difficulty of achieving 

accurate, automated cell segmentation is due in large part to the differences in cell shape, 

size, and density across tissue types17, 18. Machine-learning approaches developed to meet 

this challenge19–24 have fallen short for tissue imaging data. A common pitfall is the need 

to perform manual, image-specific adjustments to produce useful segmentations. This lack 

of full automation poses a prohibitive barrier given the increasing scale of tissue imaging 

experiments.

Deep learning algorithms for computer vision are increasingly being used for a variety of 

tasks in biological image analysis, including nuclear and cell segmentation25–31. These 

algorithms are capable of achieving high accuracy, but require substantial amounts of 

annotated training data. Generating ground-truth data for cell segmentation is time intensive, 
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and as a result, existing datasets are of modest size (104-105 annotations). Moreover, most 

public datasets26,27,32–38 annotate the location of cell nuclei rather than that of whole cells, 

meaning that models trained on these datasets are only capable of performing nuclear 

segmentation, not cell segmentation. Thus, the lack of available data, combined with 

the difficulties of deploying pre-trained models to the life science community39–42, has 

hampered progress in whole-cell segmentation.

Here, we sought to close these gaps by creating an automated, simple, and scalable 

algorithm for nuclear and whole-cell segmentation that performs accurately across a diverse 

range of tissue types and imaging platforms. Developing this algorithm required two 

innovations: (1) a scalable approach for generating large volumes of pixel-level training 

data and (2) an integrated deep learning pipeline that uses these data to achieve human-

level performance. To address the first challenge, we developed a crowdsourced, human-

in-the-loop approach for segmenting cells where humans and algorithms work in tandem 

to produce accurate annotations (Figure 1a). We used this pipeline to create TissueNet, 

a comprehensive segmentation dataset of >1 million paired whole-cell and nuclear 

annotations. TissueNet contains twice as many nuclear and 16 times as many whole-cell 

labels as all previously published datasets combined. To address the second challenge, we 

developed Mesmer, a deep learning-enabled pipeline for scalable, user-friendly segmentation 

of tissue imaging data. To enable broad use by the scientific community, we harnessed 

DeepCell, an open-source collection of software libraries, to create a web interface for using 

Mesmer, as well as plugins for ImageJ and QuPath. We have made all code, data, and trained 

models available under a permissive license as a community resource, setting the stage for 

application of these modern, data-driven methods to a broad range of research challenges.

A human-in-the-loop approach for constructing TissueNet

Existing annotated datasets for cell segmentation are limited in scope and scale (Figure 

1b)26,27,32–38. This limitation is largely due to the linear, time-intensive approach used 

to construct them, which requires the border of every cell in an image to be manually 

demarcated. We therefore implemented a three-phase approach to create TissueNet. In the 

first phase, expert human annotators outlined the border of each cell in 80 images. These 

labeled images were used to train a preliminary model (Figure 1a, left; Methods). The 

process then moved to the second phase (Figure 1a, middle), where images were first 

passed through the model to generate predicted annotations and then sent to crowdsourced 

annotators to correct errors. The corrected annotations underwent final inspection by an 

expert prior to being added to the training dataset. When enough new data were compiled, 

a new model was trained and phase two was repeated. Each iteration yielded more training 

data, which led to improved model accuracy, fewer errors that needed to be manually 

corrected, and a lower marginal cost of annotation. This virtuous cycle continued until 

the model achieved human-level performance. At this point, we transitioned to the third 

phase (Figure 1a, right), where the model was run without human assistance to produce 

high-quality predictions.

Human-in-the-loop pipelines require specialized software that is optimized for the task at 

hand. Although prior work has used the human-in-the-loop approach to create segmentation 
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datasets22,43–45, existing tools were not optimized for crowdsourcing or for correcting large 

quantities of tissue image data. We therefore developed DeepCell Label46, a browser-based 

graphical user interface optimized for editing existing cell annotations in tissue images 

(Extended Data Figure 1a; Methods). DeepCell Label is supported by a scalable cloud 

backend that dynamically adjusts the number of servers according to demand (Extended 

Data Figure 1b). Using DeepCell Label, we trained annotators from multiple crowdsourcing 

platforms to identify whole-cell and nuclear boundaries. To further simplify our annotation 

workflow, we integrated DeepCell Label into a pipeline that allowed us to prepare and 

submit images for annotation, have users annotate those images, and download the results. 

The images and resulting labels were used to train and update our model, completing the 

loop (Extended Data Figure 1c; Methods).

As a result of the scalability of our human-in-the-loop approach to data labeling, TissueNet 

is larger than the sum total of all previously published datasets26,27,32–38 (Figure 1b), with 

1.3 million whole-cell annotations and 1.2 million nuclear annotations. TissueNet contains 

2D data from six imaging platforms (Figure 1c), nine organs (Figure 1d), and includes 

both histologically normal and diseased tissue (e.g., tumor resections). TissueNet also 

encompasses three species, with images from human, mouse, and macaque. Constructing 

TissueNet required >4,000 person hours, the equivalent of nearly 2 person-years of full-time 

effort (Figure 1e).

Mesmer is a deep learning algorithm cell segmentation

To address the requirements for both accuracy and speed in cell segmentation, we created 

Mesmer, a deep learning-based algorithm for nuclear and whole-cell segmentation of tissue 

data. Mesmer’s model consists of a ResNet50 backbone coupled to a Feature Pyramid 

Network with four prediction heads (two for nuclear segmentation and two for whole-cell 

segmentation) that are attached to the top of the pyramid (Extended Data Figure 2a; 

Methods)47–49. The input to Mesmer is a nuclear image (e.g., DAPI) to define the nucleus 

of each cell and a membrane or cytoplasm image (e.g., CD45 or E-cadherin) to define the 

shape of each cell (Figure 2a). These inputs are normalized50 (to improve robustness), tiled 

into patches of fixed size (to allow processing of images with arbitrary dimensions), and 

fed to the deep learning model. The model outputs are then untiled51 to produce predictions 

for the centroid and boundary of every nucleus and cell in the image. The centroid and 

boundary predictions are used as inputs to a watershed algorithm52 to create the final 

instance segmentation mask for each nucleus and each cell in the image (Methods).

To evaluate Mesmer’s accuracy, we performed comprehensive benchmarking against 

previously published, pre-trained algorithms as well as deep learning models that 

were retrained on TissueNet. These comparisons allowed us to understand the relative 

contributions of deep learning methodology and training data to overall accuracy. We first 

compared Mesmer’s performance against two pre-trained algorithms: FeatureNet26, which 

we previously used16 to perform nuclear segmentation followed by expansion to analyze a 

cohort of MIBI-TOF breast cancer samples, and Cellpose28, a recently published algorithm 

for whole-cell segmentation of microscopy data. Overall, we observed higher accuracy for 
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Mesmer (F1=0.82) than both FeatureNet (F1=0.63) and Cellpose (F1=0.41) (Figure 2b, 

Extended Data Figure 2c–f).

We then compared Mesmer’s performance against a range of supervised segmentation 

methods22,26,53,54 that were trained on TissueNet. FeatureNet, RetinaMask, and Ilastik did 

not achieve equivalent performance to Mesmer, even when trained on TissueNet (Figure 

2b, Extended Data Figure 2c–f). In contrast, Cellpose and StarDist obtained equivalent 

performance to Mesmer when trained on TissueNet (Figure 2b). Last, we compared Mesmer 

with a model trained to perform nuclear segmentation followed by a pixel expansion (a 

common method16,55–57 to approximate the entire cell for existing nuclear segmentation 

algorithms), and found that Mesmer achieved superior performance (Extended Data Figure 

2g). These comparisons were not affected by our choice of metrics, as we observed similar 

trends for recall, precision, and Jaccard index (Extended Data Figure 2c–f).

In addition to differences in accuracy, the algorithms that we benchmarked differed 

substantially in their speed. Mesmer was only 13% slower than FeatureNet, despite a 

significant increase in model capacity, and was 20 times faster than Cellpose (Figure 

2b). RetinaMask and Illastik also suffered from slow processing times (Figure 2b). These 

differences in speed are primarily due to differences in post-processing between the various 

methods, which accounts for most of the computational time (Extended Data Figure 2b).

To visualize the performance differences between Mesmer and the published, pre-trained 

versions of FeatureNet and Cellpose, we used all three algorithms to segment an image of 

colorectal carcinoma (Figure 2c). We compared segmentation predictions to the ground-truth 

data, coloring each cell by the ratio of the predicted area to the ground-truth area (Figure 

2d). Overall, Mesmer more effectively captured the true size of each cell in the image 

(Figure 2e). In comparison, FeatureNet poorly captured the true size of each cell, which is 

expected given that this model approximates cell shape by performing nuclear segmentation 

followed by expansion. In line with its lower recall score (Extended Data Figure 2c), 

Cellpose failed to identify a large fraction of the cells in the image (Figure 2e), likely due to 

the relative scarcity of tissue images in the data used to train Cellpose.

Next, we examined Mesmer’s segmentation predictions across a range of tissue types 

(Figure 2f). Mesmer’s errors were unbiased, with an equal number of cells that were too 

large or too small. Further, Mesmer’s errors were not correlated with the true size of the 

cell (Extended Data Figure 2g). In contrast, methods that rely on nuclear segmentation and 

expansion tend to overestimate the size of most small cells and underestimate the size of 

most large cells (Extended Data Figure 2g). Taken together, this benchmarking demonstrates 

that Mesmer is a significant advance over prior segmentation methods.

Mesmer achieves human-level performance for segmentation

Our results thus far (Figure 2f, Figure 3a) suggested that Mesmer performed well across all 

of TissueNet without manual adjustment. However, given that cell morphology and image 

characteristics can vary depending on organ site, disease state, and imaging platform17,18, 

training a specialist model on data from a single platform or single tissue type could 
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lead to superior performance when compared to a model trained on all of TissueNet. To 

evaluate Mesmer’s generalizability, we benchmarked performance against models that were 

trained using a subset of TissueNet that was either tissue- or platform-specific. We observed 

comparable performance between Mesmer and the specialist models (Figure 3b, c). We 

next sought to evaluate how specialist models performed when evaluated on data not seen 

during training. In general, specialist models had poor performance when evaluated on data 

types not seen during training (Extended Data Figure 3b). Dataset size likewise played an 

important role, as models trained on small subsets of TissueNet did not perform as well as 

those trained on the entire dataset (Extended Data Figure 3d–h).

The metrics for model accuracy used here treated human-annotated data as ground truth, 

but even expert annotators can disagree with one another. We therefore compared Mesmer’s 

segmentation predictions with predictions from five independent expert human annotators. 

We evaluated all pairs of human annotators against one another, using one annotator as the 

“ground truth” and the other as the prediction. We then evaluated Mesmer’s predictions 

against predictions from each of these five annotators. We detected no significant differences 

between human-to-human and human-to-Mesmer F1 scores (p=0.93) (Figure 3d), suggesting 

that Mesmer performed on par with human annotators.

To further evaluate Mesmer’s performance relative to humans, we enlisted four pathologists 

to perform a blinded evaluation of segmentations from the human annotators and Mesmer. 

Each pathologist was shown paired images containing a prediction from Mesmer and 

an annotation from a human (Figure 3e). When evaluated in aggregate, the pathologists 

rated Mesmer’s predictions and the expert annotator’s predictions equivalently (Figure 

3f). Breaking down the evaluation by tissue type, we observed only modest differences 

in pathologist evaluation, with Mesmer performing slightly better than the annotators 

for some tissues and the annotators performing slightly better in others. Taken together, 

the preceding analyses demonstrate that Mesmer performs whole-cell segmentation with 

human-level performance. This outcome is also likely for Cellpose and StarDist, given that 

they achieve performance equivalent to Mesmer when trained on TissueNet (Figure 2b). To 

our knowledge, no previous cell segmentation algorithm has achieved parity with human 

performance for tissue data.

To finish our performance analysis, we sought to understand Mesmer’s limitations by 

identifying images for which Mesmer produced low-quality cell segmentations. Inaccurately 

segmented images were characterized by low signal-to-noise ratio, heterogeneous staining, 

and focus issues (Extended Data Figure 3i). To characterize the impact of each of these 

factors on model performance, we evaluated model accuracy after blurring, resizing, or 

adding image noise. While Mesmer was robust to moderate image distortion, performance 

suffered as the distortions increased in magnitude (Extended Data Figure 3j–l)—as expected, 

since these manipulations remove information from the images.

Mesmer enables accurate analysis of tissue imaging data

Cell segmentation is the first step for quantitative analysis of tissue imaging data and serves 

as the foundation for subsequent single-cell analysis. Thus, Mesmer’s ability to generate 
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both whole-cell and nuclear segmentation predictions should enable analyses that were 

difficult to perform with previous segmentation algorithms. One example is predicting the 

subcellular localization of proteins within cells, which can be used to quantify the nuclear 

translocation of transcription factors58,59 or degree of membrane staining of HER2 for the 

assessment of breast cancer60. To explore the accuracy of subcellular signal prediction, we 

stained breast cancer samples with a panel of phenotyping markers and imaged them with 

MIBI-TOF61 (Figure 4a; Methods). We created an integrated multiplexed image analysis 

pipeline, ark-analysis62, that integrates Mesmer’s segmentation predictions with downstream 

analysis. We extracted the compartment-specific expression of each marker using both 

the predicted and ground truth segmentation masks (Methods). Subcellular localization 

predictions from Mesmer agreed with those from the ground-truth data (Figure 4b). We 

observed predominantly nuclear expression for known nuclear markers (e.g., Ki67 and HH3) 

and non-nuclear expression for membrane markers (e.g., E-cadherin and HER2; Figure 4b).

As Mesmer also provides automated analysis of the relationship between each individual 

nucleus and cell, it should enable automatic scoring of the nuclear/cytoplasmic ratio, which 

is widely used by pathologists to evaluate malignancies63. We used Mesmer to generate 

nuclear and whole-cell segmentations for every cell in the test set of TissueNet. We then 

computed the nuclear/whole-cell (N/C) ratio, which is conceptually similar to the nuclear/

cytoplasm ratio but has higher numerical stability for cells with little cytoplasm (e.g., 

immune cells; Methods). Mesmer accurately captured cells with low and high N/C ratios 

(Figure 4c), and there was a strong correlation (Pearson’s r = 0.87) between the predicted 

and ground-truth N/C ratios across all cells in TissueNet (Figure 4d).

This analysis identified a subpopulation of cells with an N/C ratio of 0 (Figure 4e), 

indicating that no nucleus was observed in that cell. These cells arise when the imaging 

plane used to acquire the data captures the cytoplasm, but not the nucleus. We quantified 

the proportion of cells with an out-of-plane nucleus across the tissue types in TissueNet 

for both the predicted and ground-truth segmentation labels and found good agreement 

between predicted and true rates of out-of-plane nuclei (Figure 4f). The highest proportion 

of out-of-plane nuclei occurred in gastrointestinal tissue (Figure 4f), presumably due to the 

elongated nature of the columnar epithelium. Cells with out-of-plane-nuclei are missed by 

nucleus-based segmentation approaches but are captured by Mesmer.

Cell classification is a common task following segmentation. Inaccuracies in segmentation 

can lead to substantial bias in the identification and enumeration of the cells present in an 

image. To benchmark how Mesmer’s predictions impact this process, we analyzed a cohort 

of breast cancer samples generated with the Vectra platform. Each image was stained with 

a panel of lineage-defining markers (Figure 4g), which we used to classify each cell as 

either a T cell, monocyte, tumor cell, or ungated. We selected two distinct regions from 

three patients and generated both predicted and ground-truth segmentations for all the cells 

in the image. We classified all cells from the predicted (Figure 4h) and ground-truth (Figure 

4i) segmentations into these categories using the same gating scheme (Methods). We then 

computed the precision and recall for each cell type across the patients. We observed strong 

agreement between the two annotations (Figure 4j), showing that Mesmer’s segmentation 

predictions enable accurate classification of the diversity of cells present in these images.
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Lineage-aware segmentation quantifies morphological changes

We have demonstrated that models trained on TissueNet can harness the two channels 

present in this data to accurately segment cells across a diversity of tissue types. However, 

some tissue types have complex morphologies that cannot be accurately captured with only 

two channels of imaging data. For example, the decidua, the mucosal membrane of the 

uterus, shows substantial variation in cell size and cell shape arising from the interaction 

between maternal and fetal cells. This complexity is compounded by the tight juxtaposition 

of these cells with one another and the non-convex geometries that they can assume64, with 

small round cells nestled within concavities of much larger cells.

This complex morphology makes segmentation challenging when using a single membrane 

channel, even for an expert annotator (Figure 5a, top). However, information about the 

location and shape of each cell can be attained by including additional markers that are 

cell-type specific (Figure 5a, bottom). These additional markers provide crucial information 

about cell morphology during model training that is lost when they are combined into 

a single channel. We used MIBI-TOF to generate a multiplexed imaging dataset from 

the human decidua with six lineage specific markers (Greenbaum, Averbukh, Soon et 

al., manuscript in preparation) and then used DeepCell Label to generate lineage-aware 

ground-truth segmentations from a subset of the images. We modified our deep learning 

architecture to accept these six channels of input data and trained a model using this 

dataset (Methods). The resulting lineage-aware segmentation pipeline accurately performed 

whole-cell segmentation, despite the complex cell morphologies in these images (Figure 5b).

We used this lineage-aware segmentation pipeline to quantify morphological changes of 

cells in the decidua over time. We first defined a series of morphological metrics to 

capture the diversity of cell shapes in this dataset (Figure 5c; Methods). Manual inspection 

demonstrated accurate assignment of cells within each category (Figure 5d). We then created 

an automated pipeline that computed these metrics for every cell in an image62. We applied 

our pipeline to this dataset and found that these metrics captured key morphological features 

of the cell shapes that we observed (Figure 5e). We then performed k-means clustering 

on the cell morphology profiles (Methods) and identified four distinct clusters (Figure 

5f, g). To determine how these cellular morphologies changed over time in the human 

decidua, we divided the samples into two groups based on age: early (6-8 weeks) and late 

(16-18 weeks) gestational age. Coloring each cell by its cluster highlighted the difference 

in cell morphology between the two gestational age groups (Figure 5h, i). We observed 

an abundance of cluster 1 cells (elongated) in the early time point and an abundance 

of cluster 2 cells (large and globular) at the late timepoint (Figure 5j). This shift likely 

reflects the morphological transformation undergone by maternal stromal cells during 

decidualization65. Our analysis demonstrates that whole-cell segmentation can make cell 

morphology a quantitative observable, bridging the historical knowledge of pathologists and 

modern multiplexed imaging methods.
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DeepCell supports community-wide deployment of Mesmer

To facilitate the deployment of deep learning models, our group previously created 

DeepCell37,39,46,66, a collection of linked, open-source software libraries for cellular image 

analysis. Here we used DeepCell to make Mesmer accessible to the broader biological 

imaging community, with two distinct deployment solutions based on the volume of data 

that must be processed (Figure 6). The first solution is geared toward moderate amounts 

of data (<103 1-megapixel images) and centers around our web portal https://deepcell.org, 

which hosts the full Mesmer pipeline. Users can access Mesmer through this web portal 

directly or submit images through plugins that we have made for ImageJ21 and QuPath67, 

two popular image-analysis tools. This web portal is served by a scalable backend (created 

by DeepCell Kiosk39), which dynamically adjusts the server’s computational resources to 

match the volume of data being submitted. This strategy increases computational resources 

to support large volumes of data during times of high demand, while reducing these 

resources during times of low demand to reduce costs.

The second deployment solution is targeted toward users with larger volumes of data (>103 

1-megapixel images) and who need more control over the execution of the described 

algorithm. For these users, we provide a Docker image that contains the full Mesmer 

pipeline. The image generates a Docker container locally on a user’s computational 

infrastructure and can be installed with a one-line command. This container can be used 

to launch an interactive Jupyter Notebook that processes data with Mesmer. The container 

can also be configured as an executable, making it possible to integrate Mesmer within 

existing image-analysis workflows. In addition, we have developed a software package 

specifically for analyzing multiplexed imaging data, ark-analysis62, that integrates cloud-

based segmentation predictions with downstream analysis and visualization.

Discussion

Cell segmentation has been a major bottleneck for the tissue imaging community, as prior 

methods19,22–24 required extensive manual curation and parameter tuning to produce usable 

results. Our experience has shown that these shortcomings can lead to months-long delays 

in analysis. Mesmer provides a single unified solution to cell segmentation for the most 

widely used fluorescence and mass spectrometry imaging platforms in a user-friendly 

format. Mesmer achieves human-level accuracy across a variety of tissues and imaging 

modalities while requiring no manual parameter tuning from the end user. To make Mesmer 

widely available, we created cloud-based and local software solutions that position users 

of all backgrounds to generate accurate predictions for their data. Mesmer’s speed and 

scalability should facilitate the analysis of the large volumes of multiplexed imaging data 

currently being generated by consortia around the world. Mesmer was trained on tissue 

imaging data from both fluorescence- and mass spectrometry-based platforms. Analyses of 

hematoxylin and eosin images and images of cells in cell culture have been achieved by 

prior work26,28,38,68,69; making these functionalities available through DeepCell will be the 

focus of future work.
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Along with Mesmer, here we present the initial release of TissueNet, a comprehensive cell 

segmentation dataset for tissue images. TissueNet contains paired nuclear and whole-cell 

annotations for >1 million cells from nine organs and six imaging platforms. Prior tissue 

datasets16,28 were not large enough to train accurate whole-cell segmentation models. As 

a result, previous efforts to generate accurate tissue-segmentation models have focused 

on nuclear segmentation27,29,38, meaning that nearly all previous benchmarking has been 

limited to the evaluation of nuclear-segmentation models27,29,53. TissueNet will enable these 

valuable efforts to move from nuclear segmentation to whole-cell segmentation, facilitating 

the development and benchmarking of a new class of tissue-segmentation algorithms. To 

expand upon this initial release of TissueNet, we are currently constructing a seamless 

mechanism for investigators to add their own annotated data. Future releases of TissueNet 

will likely include higher-dimensional data from a wider diversity of tissue types, imaging 

techniques, and species.

Constructing TissueNet required a new process for generating annotations. Rather than using 

manual annotation by experts, we used a human-in-the-loop approach. Because annotators 

in such approaches correct model mistakes rather than create annotations from scratch, 

annotation time is linked to model performance. As model performance improves, the 

marginal cost of annotation is reduced, delivering the scalability required for annotating 

large collections of biological images. Here, we built on prior work22,43–45 by integrating 

the human-in-the-loop annotation framework with crowdsourcing. This integration increases 

the speed at which annotation can be performed by distributing work across a crowdsourced 

labor pool and decreases the annotation burden that deep learning methods place on experts. 

Thus, crowdsourcing can help meet the data-annotation needs of the biological imaging 

community. We also demonstrated accurate segmentations for a tissue with complex 

cell morphologies, the human decidua, using lineage-aware segmentation and a custom 

six-channel model. While this lineage-aware model was limited to our specific dataset, 

we believe that it indicates the potential of general-purpose, lineage-aware segmentation 

models.

Our experience developing TissueNet and Mesmer raises a natural question: how much data 

is enough? We observed diminishing returns to training data at ~104-105 labels (Extended 

Data Figure 3c). We believe that the effort required to go beyond this scale is warranted 

when accuracy is a paramount concern, for example for models applied across projects 

or in clinical contexts, which is the case for Mesmer. This effort is also worthwhile for 

generating gold-standard datasets to benchmark model performance. For other use cases, 

smaller datasets and bespoke models would likely suffice.

Future challenges include the need for a standardized, cross-tissue antibody panel for cell 

segmentation. Development of such a panel would be a significant advance and would 

synergize with the work presented here. Whole-cell segmentation in 3D70 is another 

challenge that will become more prominent as imaging throughput increases to allow routine 

collection of such datasets. Existing deep learning approaches for 3D instance segmentation 

are promising71, but a 3D equivalent of TissueNet to power future models currently does not 

exist. This work can serve as a starting point for these efforts, as it yields accurate prediction 

in 2D slices of tissues (Extended Data Figure 4). Now that accurate cell segmentation is 
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available to the community, many scientific insights can be expected from the diversity of 

data currently being generated.

Methods

Creating TissueNet

Human-in-the-loop annotation in the crowd with DeepCell Label—Labeling 

multiplexed imaging data presents a unique software engineering challenge. Labeling 

software must allow users to view multiple channels at once, so that they can use all 

available information to identify cell and nuclear boundaries. This software also needs 

specialized labeling operations to enable efficient labeling of densely packed fields of cells. 

Further operations are needed for creating labels from scratch and for editing existing labels; 

the latter is a key requirement for our human-in-the-loop framework. The final constraint is 

that this software needs to be browser based, which is essential for crowdsourcing. While 

existing software packages address specific aspects of these challenges, to date none have 

met all of the necessary requirements for human-in-the-loop data annotation of multiplexed 

image data.

To meet this challenge, we previously developed DeepCell Label46, a software package by 

which humans and algorithms collaboratively create and correct annotations for biological 

images. DeepCell Label consists of a frontend, which enables users to visualize and interact 

with images and labels (Extended Data Figure 1a), and a backend, which serves images and 

labels (stored in cloud buckets) to the frontend (Extended Data Figure 1b). This backend is 

built on Elastic Beanstalk, a scalable web framework that allows our application to scale as 

the number of users increases. This scalability enables multiple users to work on the same 

collection of data at the same time while maintaining responsiveness. A database keeps track 

of user access and stores key metadata involved in the annotation process. The DeepCell 

Label software is available at https://github.com/vanvalenlab/deepcell-label.

Because DeepCell Label is cloud-native, it is compatible with any crowdsourcing 

platform that supports HTML iframes. We have successfully used two crowdsourcing 

platforms to perform crowdsourced labeling of multiplexed imaging data with DeepCell 

Label: Appen (https://appen.com) and Anolytics (https://anolytics.ai). DeepCell Label 

enables our human-in-the-loop framework to blend expert and novice human annotators 

to increase the scale of creating dense, pixel-level labels for biological images 

(Figure 1). An example of the instructions provided for the crowd annotators can be 

found here: https://github.com/vanvalenlab/publication-figures/blob/mesmer_update/2021-

Greenwald_Miller_et_al-Mesmer/Example_annotation_instructions.docx

Cropping and stitching of labeled images—We found that supplying smaller image 

crops led to significantly better crowd annotation of dense images (data not shown). Large 

images can be overwhelming for annotators to examine and are difficult to navigate at the 

high zoom level necessary for accurate pixel-level annotation. These two issues significantly 

increase the time required to complete each job. To alleviate these issues, we created a 

pipeline to crop and stitch images as part of the annotation process (Extended Data Figure 

1c). Input images are cropped to a predetermined size, generally 270x270 pixels, with an 
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overlap between adjacent crops. We keep track of the necessary metadata for each crop to 

facilitate stitching the image back together. Each crop is independently annotated, with crops 

from the same image being randomly assigned to annotators. Following annotation, these 

crops are stitched back together. Cells at the boundary between crops are merged based on 

maximum overlap. Once each image has been stitched back together, it is quality-controlled 

by an internal expert to correct stitching artifacts and remaining errors from the annotator 

output. The finalized annotations are stored with the corresponding image data in .npz files 

to facilitate easy loading and manipulation in Python.

Combining labeled data for model training—To construct the dataset used for model 

training, individual .npz files containing annotated images from a single experiment were 

combined. During this process, the data were randomly split 80%/10%/10% into training, 

validation, and testing fractions. We applied automated quality control to each image, such 

as removing cells with area <15 pixels and removing images with <20 cells. Finally, we 

cropped each image to 256x256 pixels, the input size that the model expects.

TissueNet construction—Our goal in creating TissueNet was to use it to power general-

purpose tissue segmentation models. To ensure that models trained on TissueNet would 

serve as much of the imaging community as possible, we made two key choices. First, 

all data in TissueNet contains two channels, a nuclear channel (such as DAPI) and a 

membrane or cytoplasm channel (such as E-cadherin or Pan-Keratin). Although some highly 

multiplexed platforms are capable of imaging dozens of markers at once1,2,4,6, restricting 

TissueNet to include only the minimum number of channels necessary for whole-cell 

segmentation maximizes the number of imaging platforms where the resulting models can 

be used. Second, the data in TissueNet are derived from a wide variety of tissue types, 

disease states, and imaging platforms. This diversity of data allows models trained on 

TissueNet to handle data from many different experimental setups and biological contexts. 

The images included in TissueNet were acquired from the published and unpublished works 

of labs who routinely perform tissue imaging55,61,72–77.

Each dataset was manually inspected to identify images suitable for model training. To 

be included, images from each dataset needed to have robust nuclear staining of all 

cells, as well as membranous/cytoplasmic staining of a substantial subset of the cells. 

For datasets with multiple potential nuclear and membrane markers, the best marker (high 

signal-to-noise ratio, ubiquitous expression) was chosen for each cell type. For multiplexed 

datasets containing more than one high-quality nuclear or membrane marker, these channels 

were added together (after rescaling) if doing so increased the coverage of relevant cell 

compartments across the cells in the image. Selected images were fed through the human-in-

the-loop data pipeline to create the final labeled dataset.

Mesmer algorithm design

Deep learning model architecture—The deep learning models used for segmentation 

are based on feature pyramid networks. Briefly, these networks consist of a ResNet5049 

backbone that is connected to a feature pyramid. Prior to entering the backbone 

model, images are concatenated with a coordinate map. We use backbone layers C3-C5 
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and pyramid layers P3-P7; for the pyramid layers we use depthwise convolutions for 

computational efficiency. We attach two semantic segmentation heads to the top of the 

feature pyramid that perform upsampling to produce predictions the same size as the input 

image.

Label image transforms—We employed a deep learning approach to segmentation that 

is inspired by previous work30,54. For each image we use a deep learning model to predict 

two distinct transforms. The first transform is a prediction of whether each pixel belongs 

to the cell interior, cell boundary, or background. We call this transform a “pixel-wise 

transform”. The second transform captures the distance of each pixel inside a cell to that 

cell’s centroid. If the distance of a cell’s pixel to that cell’s centroid is r, then we compute 

transform = 1
1 + αβr , where α = 1

cell area  and β is a hyper-parameter that we take to be 1. 

We call this the “inner distance transform”. One key difference between our formula and 

the work where this strategy was first proposed30 is the introduction of α, which makes 

this transform relatively indifferent to differences in cell size. We use the softmax loss for 

the semantic head assigned to the pixel-wise transform and the mean squared error for the 

semantic head assigned to the inner distance transform. Similar to prior work, we scale the 

softmax loss by 0.01 to stabilize training.

Mesmer preprocessing—To handle the variation in staining intensity and signal-to-noise 

ratio across tissue types and imaging platforms, we normalize each image prior to running 

it through our deep learning model. We first perform 99.9% scaling to reduce the influence 

of extremely bright, isolated pixels. We then utilize Contrast Limited Adaptive Histogram 

Equalization (CLAHE)50 to normalize each image to have the same dynamic range.

Mesmer post-processing—The output of the deep learning model is two sets of 

predictions, one for the interior/border/background transform and a second for the inner 

distance transform. We use marker-based watershed52 as a post-processing step to convert 

these continuous predictions into discrete label images where the pixels belonging to each 

cell are assigned a unique integer id. To perform this post-processing step, a peak-finding 

algorithm78 is first applied to the prediction image for the inner distance transform to locate 

the centroid of each cell in the image. These predictions are thresholded at a value of 

0.1. The interior class of the prediction image for the pixel-wise transform is thresholded 

at a value of 0.3. The cell centroid locations and interior pixel prediction image are used 

as inputs to the marker-based watershed algorithm to produce the final label image. We 

smooth the transforms with a gaussian filter to eliminate minor variations and perform 

additional processing that removes holes and all objects with an area <15 pixels from the 

final prediction.

Model training—All models were trained using the Adam optimizer79 with a learning 

rate of 10−4, clipnorm of 0.001, and batch size of 8 images. During training, each image is 

augmented by performing random flips, rotations, crops, and scaling to increase the diversity 

of the training dataset. We use 80% of the data for training, 10% for validation, and 10% 

for testing. We evaluate the loss on the validation dataset after each epoch, and only save 

the model weights if the loss decreases from the previous value. The test set is only used to 
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evaluate the final trained model. The deep learning model architecture code is available at: 

https://github.com/vanvalenlab/deepcell-tf

Cell segmentation benchmarking

Classifying error types—We previously described a methodology for classifying 

segmentation error types37, which we used here. We first construct a cost matrix between 

all cells in the ground-truth and predicted images, where the cost for each pair of cells is 

defined as (1 - the intersection over union) between cells. We use this value to determine 

which predicted cells have a direct, 1-to-1 mapping with ground-truth cells; these cells are 

classified as accurately segmented. For all other cells, we generate a graph in which the 

nodes are cells and the edges are connections between cells with nonzero intersection over 

union. Predicted cells with no edges are labeled as false positives, since they do not have a 

corresponding match in the ground-truth data. True cells with no edges are labeled as false 

negatives, since they do not have a corresponding match in the predicted data. If a single 

predicted cell has edges to multiple ground-truth cells, then this cell is labeled as a merge. If 

a single ground-truth cell has edges to multiple predicted cells, then this cell is labeled as a 

split. Finally, if none of the above criteria are satisfied, and there are edges between multiple 

ground truth and predicted cells, then we categorize such cells as “other.”

Benchmarking model performance—To evaluate model accuracy, we created three 

random splits of TissueNet, each with a different training, validation, and testing set. These 

three separate versions of TissueNet were used to train models in triplicate for all model 

comparisons in this and subsequent sections. Each model was trained using the training 

and validation splits and evaluated using the corresponding test split, which was never seen 

during training. We used our error classification framework to calculate the types of errors 

present in each image in the test split and reported the average and standard deviation across 

the replicates. All deep learning models were trained for 100 epochs with a fixed number of 

steps per epoch to control for differences in dataset size.

Comparison with alternate models and architectures—To evaluate the relative 

performance of distinct deep learning architectures, we compared our approach with several 

alternative methods: Cellpose28 (whole-cell), StarDist53 (nuclear), RetinaMask54 (trained on 

TissueNet), FeatureNet16 (nuclear), FeatureNet26 (trained on TissueNet), and Ilastik22. For 

all models other than Ilastik, we trained on the entire train split of the TissueNet dataset, 

using the default settings as supplied in the original, respective papers. For Ilastik, we 

manually annotated two images from each tissue type using the Ilastik interface, rather than 

using the entire train split, to more accurately mirror how this software is used in practice. 

All models were evaluated on the same test splits of TissueNet.

Mesmer performance analysis

Nuclear expansion comparison—To compare Mesmer with the current nuclear-based 

segmentation approaches listed above, we generated whole-cell labels using Mesmer, as well 

expanded nuclear labels, for all of the images in the test set. Nuclear expansion predictions 

were generated from nuclear predictions by applying a morphological dilation with a disk 

of radius 3 pixels as the structuring element. To characterize the error modes of each 
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approach, we selected predictions that mapped directly to a single ground-truth cell using 

our error-type classification approach (see Classifying error types). Following identification 

of the corresponding ground-truth cell, we computed the ratio of predicted cell size to true 

cell size for each prediction.

Specialist model evaluation—To evaluate how a specialist model trained on only a 

subset of the data compared to a generalist model trained on the entire dataset, we identified 

the four most common tissue types and four most common imaging platforms in TissueNet. 

Each of these four tissue types had images from multiple imaging platforms, and each of 

the four imaging platforms had images from multiple tissue types. For each of the eight 

specialist models, we identified the images in the training and validation split that belonged 

to that class and used that subset for model training. We then evaluated the trained specialist 

model on the data in the test split that belonged to that class and compared this performance 

to the generalist model evaluated on the same portion of the test split.

Dataset size evaluation—To evaluate how training dataset size impacts model accuracy, 

we divided TissueNet into bins of increasing size. Each bin of increasing size contained all 

data from the previous bins, with new data added. This strategy ensured that each bin is 

a superset of the previous bin, rather than each bin being a random draw from the whole 

dataset. Bins of increasing size were generated for the training and validation splits while 

holding the test split constant. We trained models on the progressively larger bins and 

evaluated all models on the same complete test set.

Inter-annotator agreement—To determine the degree to which annotators agreed with 

one another, we recruited five expert annotators (lab members or PhD students) to annotate 

the same set of images. For each of the four images, all five annotators generated 

segmentations from scratch, without using model predictions. We also generated model 

predictions for these same four images, which were not included in the training data. We 

then computed the F1 score between all pairs of annotators, as well as between each 

annotator and the model.

Pathologist evaluation—To evaluate the relative accuracy of Mesmer and human 

annotators, we enlisted four board-certified pathologists to evaluate segmentation accuracy. 

Each pathologist was shown pairs of images; one image contained the segmentation 

predictions from Mesmer and the other contained the segmentation prediction from one 

of our expert annotators. We selected 13 random crops from each of the four images. Each 

crop was displayed to each pathologist twice, with the same Mesmer prediction each time, 

but matched to a different expert annotator prediction, for a total of 104 comparisons.

Image distortion quantification—To determine how image quality impacts model 

performance, we systematically degraded images in the test set and assessed the 

corresponding decrease in F1 score. To simulate out-of-focus images, we performed 

a gaussian blur with increasing sigma. The blurred images were then passed through 

the model to generate predictions. To determine how image resolution impacts model 

performance, we downsampled each image to represent low-resolution data. We then 

upsampled back to the original size and ran the upsampled images through the model. 
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To simulate low signal-to-noise ratio and high background staining, we added uniform 

random noise of increasing magnitude to each pixel. The noise-corrupted images were 

passed through the model to generate predictions.

Analyzing multiplexed imaging datasets

Generating subcellular segmentation predictions—We created a custom analysis 

pipeline that integrates nuclear and whole-cell segmentation predictions. This pipeline takes 

as inputs the predictions from Mesmer of each cell and each nucleus in the image. We first 

link each cell mask with its corresponding nuclear mask using maximum overlap, splitting 

nuclei that are larger than their corresponding cell. We use these linked masks to extract the 

counts per compartment for all channels of imaging data. The counts for each marker within 

each compartment are summed and normalized by cell area. Our multiplex image analysis 

pipeline is available at: https://github.com/angelolab/ark-analysis

We used this pipeline to compute the subcellular localization of a panel of phenotypic 

markers with known profiles. We stained a tissue microarray of ductal carcinoma in-situ 

samples61, imaged them with MIBI-TOF, and ran the above pipeline. For each channel, 

we selected fields of view in which the marker showed clear expression and computed the 

localization within each cell, after removing the bottom 20% lowly expressing cells within 

each marker. We performed the same procedure using the ground-truth labels generated by 

the human annotators and used the computed localization from the true labels to assess the 

accuracy of our predictions.

Computing nucleus to whole-cell ratio (N/C)—Traditionally, the nuclear to cytoplasm 

ratio assessed by pathologists is the ratio between the area of the nucleus and the area 

of the cytoplasm63. However, as a quantitative measure, this formulation runs into issues 

with division by zero for immune or stromal cells that have no detectable cytoplasm. To 

alleviate this issue, we instead use the nucleus to whole-cell ratio (N/C), which uses the 

whole-cell area rather than the cytoplasm’s area. The nuclear and whole-cell areas are 

always greater than zero, thus avoiding division by zero and leading to more stable estimates 

while maintaining the same qualitative interpretation. Cells with high N/C ratios have larger 

nuclei relative to their overall cell size, and cells with low N/C ratios have smaller nuclei 

relative to their overall cell size.

Evaluating accuracy of N/C ratio predictions—To determine the accuracy of our N/C 

ratio predictions, we ran Mesmer on the entire test split of TissueNet. We computed the 

nuclear and cell predictions for each cell in the image. For each cell, we computed the N/C 

ratio by first matching each nucleus to its corresponding cell, and then calculated the ratios 

of their respective areas. We reported the Pearson correlation between the true N/C and 

predicted N/C for all predicted cells with a direct match in the ground-truth data.

Assessing frequency of out-of-plane nuclei—Multiplexed imaging platforms 

analyze tissue slices that represent a 2D cut through a 3D structure. As a result, sometimes 

the nucleus of a given cell is not captured in the image plane/tissue section, whereas the 

rest of the cell is. Given that Mesmer is trained to separately identify nuclei and cells, 
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cells whose nucleus is out of the imaging plane can still be identified and segmented. To 

determine the frequency of this occurrence, and to validate that these predictions were not 

merely segmentation artifacts, we compared the incidence of cells with an out-of-plane 

nucleus in the ground-truth data and Mesmer predictions from the TissueNet test set. For 

each ground-truth or predicted cell, we identified the corresponding nucleus. Cells without a 

matching nucleus were classified as out of plane.

Quantifying accuracy of cell type predictions—To determine how the accuracy of 

Mesmer’s segmentation predictions influenced downstream quantification of cell type, we 

analyzed a cohort of breast cancer samples acquired on the Vectra platform. We selected two 

fields of view each from three patients. Each patient’s sample was stained with DAPI, CD8, 

CD14, and Pan-Keratin to identify major cell subpopulations. We generated segmentation 

predictions for all images with Mesmer, as well as ground-truth labels with our human-in-

the-loop pipeline. We then extracted the counts of each marker in each cell and used 

hierarchical gating to define cell populations. Thresholds for gating were determined by 

manual inspection of the histogram for size-normalized counts of each marker. We used 

the same thresholds for the ground-truth and predicted segmentations. We matched each 

ground-truth cell with the predicted cell with maximal IOU. We then determined whether 

these matching cells were of the same, or different, assigned cell type based on our gating 

scheme. Matching cells with the same assigned cell type were labeled as true positives. 

Matching cells which did not have the same assigned cell type and unmatched predicted 

cells were labeled as false positive. Unmatched ground-truth cells were labeled as false 

negative.

Decidual cell morphology

Ethical approval—Approval for this study was obtained from the Institutional Review 

Boards of Stanford University and University of California San Francisco. All participants 

provided informed consent.

Training a six-channel Mesmer model—To establish the potential of a model that 

takes in multiple lineage markers, we replaced Mesmer’s model with a lineage-aware 

variant. We stained samples of human decidua with a panel of markers to define the cell 

lineages present, then generated images using the MIBI-TOF platform (Greenbaum et al., 

manuscript in prep). We manually generated whole-cell segmentation labels for 15 of these 

images using HH3 to define the nucleus and CD3, CD14, CD56, HLAG, and vimentin to 

define the shape of the cells in the image. We modified the model architecture to accept six 

channels of input data and trained it using the settings described above.

Generating cell morphology information—To quantify the range of cell shapes and 

morphologies present in the image data, we created an automated pipeline that extracts key 

features from each cell segmentation in an image. We extract morphological information 

using the regionprops function in the scikit-image78 library. We use the following default 

features from regionprops: area, perimeter, centroid, convex area, equivalent diameter, 

convex image, and major axis length. These features are transformed as described below 
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to create the selected morphology metrics. Our analysis pipeline is available at: https://

github.com/angelolab/ark-analysis

Many of the metrics relate to the difference between the cell shape and the corresponding 

convex hull. A convex hull for a given segmentation is defined as the smallest possible 

convex shape that completely contains the cell shape. For shapes that are already convex and 

do not have any concave angles, the convex hull and the cell are equivalent. For shapes that 

do have concavities, the convex hull fills in these areas.

In addition to the N/C ratio, we computed the following five morphology metrics:

• Asymmetry: the distance between the centroid of the convex hull and the 

centroid of the cell, normalized by the square root of the area of the cell. The 

centroid of the convex hull is far from the centroid of the cell when extra mass 

is added to the convex hull in an imbalanced fashion, indicating that the original 

cell was not symmetrical.

• Concavities: the number of concavities present in each cell. We only include 

concavities that have an area of at least 10 pixels2 and a perimeter-to-area ratio 

< 60 to avoid counting very small deviations from convexity. This approach 

summarizes how many unique indentations and divots are present in each cell.

• Fill: the difference in area between the convex hull and the cell, normalized by 

the area of the convex hull. This ratio is effectively the proportion of the convex 

hull that was newly added and quantifies the fraction of the cell that is composed 

of divots and indentations.

• Aspect ratio: the ratio between the major axis length and the equivalent diameter. 

Major axis length is the length of the major axis of an ellipse with the same 

moments as the original cell and serves as a proxy for the length of the longest 

diagonal of the cell. Equivalent diameter is the diameter of a circle with the 

same area as the cell. The ratio of these two quantities gives an estimate of cell 

elongation.

• Perimeter to area ratio: The ratio between the perimeter squared of the cell and 

the area of the cell. We use perimeter squared rather than perimeter itself for 

better consistency across cell sizes.

Identifying morphological clusters—We classified the cells based only on the above 

five morphology metrics, which we computed for the images in the decidua cohort. We first 

normalized each metric independently, and then performed k-means clustering with k=4. We 

plotted the mean value of metric in each cluster to identify the features that separated them 

from one another and performed hierarchical clustering on the resulting output.

Model deployment

DeepCell Kiosk: A scalable, cloud-based solution for hosting deep learning 
models—We previously described the construction of DeepCell Kiosk, our cloud-based 

deployment system39. This software dynamically adjusts the amount of compute resources 
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needed at any one time to match demand; since the load on the server is quite low most 

of the time, this strategy delivers economical hosting of the web portal for community 

use. When demand increases, compute resources are automatically increased. The Kiosk is 

available at: https://github.com/vanvalenlab/kiosk-console.

Generating predictions from Mesmer using cloud deployments—To facilitate 

quick and easy access to Mesmer, we used the Kiosk to generate several easy ways to 

predict cell segmentation. We created a web portal that allows anyone to upload their 

data and instantly receive results. This web-based interface facilitates point-and-click 

upload and download of results, with no installation required. We have also created 

plugins for ImageJ21 and QuPath67 that automatically send data to the Kiosk and return 

predictions to the user. These predictions can then be used within ImageJ or QuPath for 

downstream analyses of interest. Detailed tutorials and documentation can be found at: 

https://github.com/vanvalenlab/intro-to-deepcell.

Generating predictions from Mesmer using local deployments—Although cloud 

deployment offers a fast, intuitive way for users with little computational experience to 

generate predictions, it offers less fine-grained control over the input and output parameters. 

Further, web portals are not ideal for integration with existing image-processing workflows. 

For users with more computational expertise, we have created local deployments of Mesmer 

to facilitate future model development and integration with existing workflows. To facilitate 

training and model development, we provide example Jupyter and Colab notebooks. For 

integration with existing computational workflows, we provide a command line interface 

and docker container. Finally, we have also made our open-source multiplex image analysis 

pipeline available for users who want an end-to-end solution for segmenting, quantifying, 

and analyzing image data. A guide showing users how to use these resources is available at: 

https://github.com/vanvalenlab/intro-to-deepcell.

Statistics and Reproducibility—The image shown in Figure 2c is a crop from a single 

patient sample; this experiment was not repeated. The images shown in Figures 2f and 3a 

are crops from individual patient samples with the highest F1 scores; this experiment was 

repeated across all images in the test split of TissueNet, with results reported in Figure 

2b and 3b–c. The images shown in Figure 4c are crops from individual patient samples; 

this experiment was repeated across all samples in the test split of TissueNet, with the 

results reported in Figure 4d. The images shown in Figure 4e are crops from a single 

patient sample; this experiment was repeated across all samples in the test split of TissueNet, 

with the results reported in Figure 4f. The images shown in Figure 4g–i are crops from a 

single patient sample; this experiment was repeated twice in two distinct crops for the three 

patients in this dataset, with the results reported in Figure 4j. The images shown in Figures 

5a–b, 5e, and 5h–i are crops from individual patient samples; this experiment was repeated 

across all 10 patients in this cohort. The images in Supplementary Figure 3i are crops from 

individual patient samples; this experiment was repeated across all samples in the test split 

of TissueNet.
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Software

This project would not have been possible without numerous open-source Python packages 

including jupyter80, keras81, matplotlib82, numpy83, pandas84, scikit-image78, scikit-learn85, 

seaborn86, tensorflow87, and xarray88. Specific versions for each package can be found at: 

https://github.com/vanvalenlab/deepcell-tf/blob/master/requirements.txt

Extended Data
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Extended Data Figure 1. 
a, How multichannel images are represented and edited in DeepCell Label. b, Scalable 

backend for DeepCell Label that dynamically adjusts required resources based on usage, 

allowing concurrent annotators to work in parallel. c, Human-in-the-loop workflow diagram. 

Images are uploaded to the server, run through Mesmer to make predictions, and cropped to 

facilitate error correction. These crops are sent to the crowd to be corrected, stitched back 

together, run through quality control to ensure accuracy, and used to train an updated model.

Extended Data Figure 2. 
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a, PanopticNet architecture. Images are fed into a ResNet50 backbone coupled to a feature 

pyramid network. Two semantic heads produce pixel-level predictions. The first head 

predicts whether each pixel belongs to the interior, border, or background of a cell, while 

the second head predicts the center of each cell. b, Relative proportion of preprocessing, 

inference, and post-processing time in PanopticNet architecture. c, Evaluation of precision, 

recall, and Jaccard index for Mesmer and previously published models (right) and models 

trained on TissueNet (left). d, Summary of TissueNet accuracy for Mesmer and selected 

models to facilitate future benchmarking efforts e,f Breakdown of most prevalent error types 

(e) and less prevalent error types (f) for Mesmer and previously published models illustrates 

Mesmer’s advantages over previous approaches. g, Comparison of the size distribution of 

prediction errors for Mesmer (left) with nuclear segmentation followed by expansion (right) 

shows that Mesmer’s predictions are unbiased.
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Extended Data Figure 3. 
a, Accuracy of specialist models trained on each platform type (rows) and evaluated on data 

from other platform types (columns) indicates good agreement within immunofluorescence 

and mass spectrometry-based methods, but not across distinct methods. b, Accuracy of 

specialist models trained on each tissue type (rows) and evaluated on data from other 

tissue types (columns) demonstrates that models trained on only a single tissue type do not 

generalize as well to other tissue types. c, Quantification of F1 score as a function of the size 

of the dataset used for training. d-h, Quantification of individual error types as a function 
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of the size of the dataset used for training. i, Representative images where Mesmer accuracy 

was poor, as determined by the image specific F1 score. j, Impact of image blurring on 

model accuracy. k, Impact of image downsampling and then upsampling on model accuracy. 

l, Impact of adding random noise to image on model accuracy. All scale bars are 50 μM.

Extended Data Figure 4. 
Proof of principle for using Mesmer’s segmentation predictions to generate 3D 

segmentations. A z-stack of 3D data is fed to Mesmer, which generates separate 2D 

predictions for each slice. We computationally link the segmentations predictions from 

each slice to form 3D objects. This approach can form the basis for human-in-the-loop 

construction of training data for 3D models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: A human-in-the-loop approach enables scalable, pixel-level annotation of large image 
collections.
a, This approach has three phases. During phase 1, annotations are created from scratch to 

train a model. During phase 2, new data are fed through a preliminary model to generate 

predictions. These predictions are used as a starting point for correction by annotators. As 

more images are corrected, the model improves, which decreases the number of errors, 

increasing the speed with which new data can be annotated. During phase 3, an accurate 

model is run without human correction. b, TissueNet has more nuclear and whole-cell 

annotations than all previously published datasets. c, The number of cell annotations per 

imaging platform in TissueNet. d, The number of cell annotations per tissue type in 

TissueNet. e, The number of hours of annotation time required to create TissueNet.
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Figure 2: Mesmer delivers accurate nuclear and whole-cell segmentation in multiplexed images 
of tissues.
a, Diagram illustrating the key steps in the Mesmer segmentation pipeline. b, Speed versus 

accuracy comparison of Mesmer and previously published models, as well as architectures 

we retrained on TissueNet. Accuracy is measured by the F1 score (Methods) between the 

predicted segmentations and the ground-truth labels in the test set of TissueNet, where 0 

indicates no agreement and 1 indicates perfect agreement. c, Color overlay of representative 

image of colorectal carcinoma. d, Inset showing the ground truth (top) and predicted 
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(middle) labels from a small region in c, along with a visual representation of segmentation 

accuracy (bottom). Predicted segmentations for each cell are colored by the log2 of the 

ratio between the predicted area and ground-truth area. Predicted cells that are too large are 

red, while predicted cells that are too small are blue. e, Ground-truth segmentation labels 

for the image in c, along with the predicted labels from Mesmer and previously published 

models, each colored by the log2 as in d. As seen visually, Mesmer offers substantially better 

performance than previous methods. f, Mesmer generalizes across tissue types, imaging 

platforms, and disease states. The F1 score is given for each image. In all panels, scale bars 

are 50 μm.
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Figure 3: Mesmer performs whole-cell segmentation across tissue types and imaging platforms 
with human-level accuracy.
a, Sample images, predicted segmentations, and F1 scores for distinct tissues and imaging 

platforms visually demonstrate that Mesmer delivers accurate cell segmentation for all 

available imaging platforms. b, Mesmer has accuracy equivalent to specialist models trained 

only on data from a specific imaging platform (Methods), with all models evaluated on 

data from the platform used for training. c, Mesmer has accuracy equivalent to specialist 

models trained only on data from a specific tissue type (Methods), with all models 
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evaluated on data from the tissue type used for training. GI, gastrointestinal. d, F1 scores 

evaluating the agreement between segmentation predictions for the same set of images. 

The predictions from five independent expert annotators were compared against each other 

(human vs. human) or against Mesmer (human vs. Mesmer). No statistically significant 

differences between these two comparisons were found, demonstrating that Mesmer 

achieves human-level performance. e, Workflow for pathologists to rate the segmentation 

accuracy of Mesmer compared with expert human annotators. f, Pathologist scores from the 

blinded comparison. A positive score indicates a preference for Mesmer while a negative 

score indicates a preference for human annotations. Pathologists displayed no significant 

preference for human labels or Mesmer’s outputs overall. When broken down by tissue type, 

pathologists displayed a slight preference for Mesmer in immune tissue (p=0.02), and a 

slight preference for humans in colon tissue (p=0.01), again demonstrating that Mesmer has 

achieved human-level performance. n.s., not significant; *p<0.05, two-sample t-test for d, 

one-sample t-test for f. All scale bars are 50 μm.
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Figure 4: Mesmer enables accurate analysis of multiplex imaging data.
a, Color overlays showing staining patterns for nuclear and non-nuclear proteins (top), with 

associated nuclear and whole-cell segmentation predictions (bottom). b, Quantification of 

subcellular localization of the proteins in a for predicted and ground-truth segmentations. 

The agreement between localization for prediction and ground-truth segmentations indicates 

that Mesmer accurately quantifies protein localization patterns at the single-cell level. 

n=1069 cells. Data are presented as mean +/− 95% confidence interval. c, Example image 

of a tissue with a high N/C ratio (top) and a low N/C ratio (bottom). The N/C ratio is 

one of several metrics used for quantifying cell morphology (Methods). d, A Pearson’s 
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correlation contour plot of the accuracy of N/C ratio predictions across the entire test 

split of TissueNet demonstrates that Mesmer accurately quantifies cell morphology. e, 

Representative image of a tissue with many nuclei outside the imaging plane (top), along 

with corresponding segmentations colored by whether the nucleus is or is not in the imaging 

plane. f, Quantification of the number of cells with an out-of-plane nucleus in the predicted 

and ground-truth segmentations. These cells are detected by Mesmer but would be missed 

by nuclear segmentation-based methods. GI, gastrointestinal. g, Representative image of 

the expression of multiple informative proteins in a breast cancer sample. h, Predicted 

segmentation colored by cell lineage. i, Ground-truth segmentation colored by cell lineage. 

j, Quantification of precision and recall of each cell type in the ground-truth and predicted 

segmentations demonstrates that Mesmer produces accurate cell-type counts. All scale bars 

are 50 μm.
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Figure 5: Lineage-aware segmentation yields morphological profiling of cells in the decidua 
during human pregnancy.
a, Color overlay showcasing the challenge of distinguishing cells with only a single 

combined membrane channel (top), paired with a version of the same image containing 

all six channels used for lineage-aware segmentation (bottom). b, Representative image 

of the diverse morphology of cell types in the human decidua (left), along with insets 

(right) with corresponding segmentation predictions. c, Diagram illustrating the morphology 

metrics that we defined to enable automated extraction of cell-shape parameters (Methods). 
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d, Predicted segmentations (left) placing cells on a spectrum from low to high for each 

morphology metric, along with the corresponding imaging data for those cells (right). e, Cell 

segmentations in four representative images colored by morphology metrics demonstrate the 

accurate quantification of diverse features. f, Heatmap of inputs to k-means clustering used 

to identify distinct cell populations based on cell morphology. g, Example cells belonging 

to each cluster illustrate the morphological differences between cells belonging to each 

cluster. h,i Representative images of maternal decidua in early (h) and late (i) gestation, with 

segmentations colored by cluster. j, Quantification of the ratio between cluster 2 and cluster 

1 cells in early pregnancy versus late pregnancy. Cluster 2 cells become more prominent in 

the later time point while cluster 1 cells become rarer. p=0.0003, two-sample t-test. All scale 

bars are 50 μm.
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Figure 6: Cloud-native and on-premise software facilitates deployment of Mesmer.
A centralized web server, https://deepcell.org, hosts a version of the Mesmer pipeline. 

Users with moderate amounts of data (<103 1-megapixel images) to process can access 

this pipeline through a web portal. Alternatively, users can use ImageJ and QuPath plugins 

that submit data to the https://deepcell.org web server and retrieve the results. We have 

also created a containerized version of Mesmer that is compatible with existing workflow 

managers, so that users with larger amounts of data (>103 1-megapixel images) to process 

can benefit from our work.
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