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Abstract

Background

Accurate routine HIV viral load testing is essential for assessing the efficacy of antiretroviral

treatment (ART) regimens and the emergence of drug resistance. While the use of plasma

specimens is the standard for viral load testing, its use is restricted by the limited ambient

temperature stability of viral load biomarkers in whole blood and plasma during storage and

transportation and the limited cold chain available between many health care facilities in

resource-limited settings. Alternative specimen types and technologies, such as dried blood

spots, may address these issues and increase access to viral load testing; however, their

technical performance is unclear. To address this, we conducted a meta-analysis comparing

viral load results from paired dried blood spot and plasma specimens analyzed with com-

monly used viral load testing technologies.

Methods and findings

Standard databases, conferences, and gray literature were searched in 2013 and 2018.

Nearly all studies identified (60) were conducted between 2007 and 2018. Data from 40 of

the 60 studies were included in the meta-analysis, which accounted for a total of 10,871

paired dried blood spot:plasma data points. We used random effects models to determine

the bias, accuracy, precision, and misclassification for each viral load technology and to

account for between-study variation. Dried blood spot specimens produced consistently

higher mean viral loads across all technologies when compared to plasma specimens.
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However, when used to identify treatment failure, each technology compared best to plasma

at a threshold of 1,000 copies/ml, the present World Health Organization recommended

treatment failure threshold. Some heterogeneity existed between technologies; however, 5

technologies had a sensitivity greater than 95%. Furthermore, 5 technologies had a specific-

ity greater than 85% yet 2 technologies had a specificity less than 60% using a treatment

failure threshold of 1,000 copies/ml. The study’s main limitation was the direct applicability

of findings as nearly all studies to date used dried blood spot samples prepared in laborato-

ries using precision pipetting that resulted in consistent input volumes.

Conclusions

This analysis provides evidence to support the implementation and scale-up of dried blood

spot specimens for viral load testing using the same 1,000 copies/ml treatment failure

threshold as used with plasma specimens. This may support improved access to viral load

testing in resource-limited settings lacking the required infrastructure and cold chain storage

for testing with plasma specimens.

Author summary

Why was this study done?

• Though the preferred method to monitor patients on antiretroviral treatment (ART),

there remains limited access to viral load testing, particularly in resource-limited set-

tings suffering from infrastructural challenges.

• Dried blood spots can be an alternative sample type for viral load testing in resource-

limited settings as storage requirements are do not require cold chain or rapid transpor-

tation to the laboratory.

• Several viral load technologies exist with regulatory approvals for use with plasma sam-

ples; however, a significant knowledge gap exists in the accuracy of using dried blood

spot samples for HIV viral load testing.

What did the researchers do and find?

• We conducted a systematic review and meta-analysis and identified 60 studies that ful-

filled the inclusion criteria and included data on 6 technologies.

• Though some heterogeneity was observed in the systematic review, the meta-analysis

including 10,871 data points from 40 studies highlighted clear clinical performance met-

rics for each technology. Four of the 6 technologies had a sensitivity and specificity

above 83% using dried blood spot samples for viral load testing with a treatment failure

threshold of 1,000 copies/ml.

• Most studies used dried blood spots prepared in the laboratory with precision pipetting

resulting in consistent measurement of blood applied to each spot. Additional studies
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would be useful to ensure the results observed can be replicated and remain consistent

in the field when utilizing other sample preparation techniques.

What do these findings mean?

• Dried blood spot samples can be used for viral load testing at a treatment failure thresh-

old similar to plasma samples at 1,000 copies/ml.

• Performance of dried blood spot samples is not perfect; therefore, some misclassifica-

tion will occur. A small proportion of patients successfully undetectable will be incor-

rectly considered failing, while a small proportion of patients failing treatment will be

considered successfully treated. Furthermore, selection and implementation of technol-

ogies for use with dried blood spots may be complicated with heterogenous perfor-

mance and regulatory approvals.

• The availability and use of alternative sample types, such as dried blood spots, that

require less stringent and robust infrastructure may allow for significant expansion of

access to viral load testing in resource-limited settings.

Introduction

Although an estimated nearly 37 million HIV–positive people are currently eligible for antire-

troviral treatment (ART) according to the 2016 WHO Consolidated guidelines on the use of

antiretroviral drugs for treating and preventing HIV infection, only 19.5 million people are on

ART worldwide [1]. The global community is focused on the goal of achieving universal access

to affordable and effective ART with the intention of moving toward elimination of HIV infec-

tion. To address this gap, UNAIDS released global HIV targets of 90-90-90, in which the third

90 target represents achieving viral suppression in 90% of those receiving ART. Suppressed or

undetectable viral loads improve the health of patients as well as significantly reduce the likeli-

hood of HIV transmission [2–5]. To reach these goals, there is substantial impetus to ensure

HIV–positive people receive high-quality care, which includes accurate monitoring of viral

load.

Accurate routine viral load testing is essential for assessing the efficacy of ART regimens in

preventing morbidity, mortality, and transmission as well as treatment adherence and is an

indicator of the potential emergence of drug resistance [2,6–13]. Routine viral load testing has

also been strongly recommended by WHO as the preferred method for monitoring patients

on ART based on evidence indicating that viral load detects ART failure earlier compared to

clinical and immunological assessments [14–18]. Testing using plasma separated from EDTA

anti-coagulated whole blood has been used in developed countries for many years as the gold

standard for treatment monitoring [8,9,11,13]. Unfortunately, the high costs of viral load

equipment, the requirement for highly specialized and well-equipped laboratories, and partic-

ularly the difficulty of fresh blood specimen collection, storage, and transportation logistics

have restricted testing to centralized laboratories and slowed the scale-up of viral load testing

in resource-limited countries.
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Though viral load testing using plasma is the gold standard, alternative specimen types may

enable expansion of access to viral load testing in resource-limited countries. Dried blood spot

specimens for HIV testing are well established in resource-limited settings and have been rou-

tinely used for collecting and shipping early infant HIV diagnosis specimens for testing by

polymerase chain reaction in centralized laboratories. They are beneficial as they do not

require centrifuges, refrigerators, or freezers at the specimen collection site, can be stored and

transported for weeks at ambient temperature, and require a simple finger-prick or heel-stick

blood specimen that can be prepared by lower cadres of health care facility staff. Similar bene-

fits could be achieved by using dried blood spot specimens for viral load testing programs in

resource-limited settings.

Dried blood spot specimens for viral load testing using nucleic acid-based detection meth-

ods utilize whole blood as the input specimen, which can result in extraction and detection of

intracellular HIV proviral DNA and cell-associated HIV RNA in addition to the biomarker

target of free viral RNA circulating in the plasma. Due to this potential over-quantification of

HIV nucleic acids using dried blood spot specimens, the 2013 WHO Consolidated ART

Guidelines recommended a higher threshold of 3,000 to 5,000 copies/ml to identify treatment

failure using dried blood spot specimens, while maintaining a threshold of 1,000 copies/ml to

identify treatment failure with plasma specimens [18]. The uncertainty of the performance of

dried blood spot specimens for viral load testing has triggered significant interest and contro-

versy as countries are contemplating the scale-up of viral load testing using dried blood spot

specimens. Individual studies conducted to date comparing the performance of dried blood

spot specimens to plasma on viral load technologies have not provided a consistent picture of

performance to inform testing policy [19–69]. Additionally, differences in analytical

approaches between studies have made it difficult to compare the data on key criteria such as

clinical misclassification and dried blood spot specimen performance at lower thresholds as

these have not been presented consistently. This study is a systematic review and meta-analysis

using primary data from studies reporting on the currently available viral load technologies

and a standardized analysis methodology to better understand the performance and limita-

tions of this specimen collection type across all commonly used viral load testing platforms.

Materials and methods

Search strategy

Fig 1 shows a PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)

diagram demonstrating the study selection and data acquisition process [70]. An initial search

was conducted on May 29, 2013 in the PubMed, EMBASE, Google Scholar, and Medline data-

bases to identify peer-reviewed original research with appropriate data for this systematic

review and meta-analysis. Conference abstracts within the search dates from the Conference

on Retroviruses and Opportunistic Infections (CROI), International Conference on AIDS and

STIs in Africa (ICASA), International AIDS Society (IAS), and AIDS Conferences as well as

extensive bibliography and gray literature were screened for possible inclusion. Only English

titles and manuscripts were included. A full final search was conducted again on April 20,

2018 (S1 Fig). For inclusion, studies must have compared viral load values using dried blood

spot and plasma specimens measured by 1 or more of the following 6 commonly used technol-

ogies—Abbott RealTime HIV-1 on the m2000 platform (Abbott Molecular, Abbott Park, Illi-

nois, United States of America), Generic HIV Charge Virale (Biocentric, Bandol, France),

bioMérieux NucliSENS EasyQ HIV-1 v2.0 (bioMérieux, Craponne, France), Hologic Aptima

(Hologic, Marlborough, Massachusetts, USA), Roche Amplicor HIV-1 Monitor Test, v1.5 or

COBAS Ampliprep/COBAS TaqMan HIV-1 Test, v2.0 using both specimen preextraction
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Fig 1. PRISMA flow chart.

https://doi.org/10.1371/journal.pmed.1004076.g001
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reagent (SPEX) and free virus elution (FVE) dried blood spot specimen protocols (Roche

Molecular Systems, Basel, Switzerland), and Siemens VERSANT HIV-1 RNA 1.0 assay (kPCR)

(Siemens Healthcare Diagnostics, Munich, Germany). Search terms included “dried blood

spot,” “plasma,” “technical performance,” “comparison,” “evaluation,” “viral load testing,” and

each of the proprietary respective technology names.

Study selection

Studies were included if they included technical evaluation data comparing dried blood spot

samples to plasma, were pertaining to viral load testing, and were performed using HIV–posi-

tive blood. Studies were excluded if they used spike blood samples or panels, compared dried

blood spot samples to plasma with a different assay, performed a qualitative analysis of dried

blood spot samples, or the comparator was a sample type other than plasma. Sixty studies were

identified through online searches and expert notification (Fig 1). We contacted the corre-

sponding authors of all studies that met the inclusion criteria to explain the analysis plan and

request original data and obtained original data from 4 studies that were not yet published. For

the meta-analysis, a total of 40 studies provided 45 data sets across the 6 technologies resulting

in a total of 10,831 paired dried blood spot and plasma viral load results. Correction factors

were applied as suggested by the manufacturers for the Hologic Aptima and Roche COBAS

TaqMan FVE technologies. Due to the discontinuation of the Roche Amplicor HIV-1 Monitor

test, v1.5, data using this technology were excluded from the analysis. Study characteristics

were extracted from each manuscript or through author contact.

Quality assessment

The Standards for Reporting Studies of Diagnostic Accuracy (STARD) criteria and Quality

Assessment of Diagnostic Accuracy Studies (QUADAS-2) were followed and each study

graded for quality [71,72]. The PRISMA reporting guideline was followed (S1 PRISMA

Checklist).

Statistical analyses

All analyses performed were prespecified in the protocol. Study variables analyzed for each

study included study sample size, viral load mean and median, proportion of patient speci-

mens within specific viral load ranges, and sensitivity and specificity. Sensitivity was calculated

as the proportion of dried blood spot specimens correctly identified as failing or above the

defined treatment failure threshold. Specificity was calculated as the proportion of dried blood

spot specimens correctly identified as not failing or below the treatment failure threshold. For-

est plots were developed to analyze the between-study heterogeneity of diagnostic performance

for each technology. Primary data were then pooled to analyze the performance of dried blood

spot specimens for each technology. The median pooled viral load was calculated accounting

for between-study heterogeneity using a random effects model. Viral load values were log-

transformed because of the non-normal distribution of the data.

Patients with 2 consecutive viral loads 3 months apart above 1,000 copies/ml with adher-

ence counseling after the first viral load are to be considered failing their ART regimen [18].

The performance (sensitivity, specificity, and clinical misclassification) of dried blood spot

specimens compared with plasma on each platform was assessed. Since longitudinal data on

dried blood spot specimen performance were not available, cross-sectional comparisons were

performed. In addition, alternate treatment failure thresholds for viral load using dried blood

spot specimens were assessed including 1,000, 3,000, 5,000, 7,500, and 10,000 copies/ml to

understand the threshold that best compares to the gold standard plasma specimens for each
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technology. Each treatment failure threshold of dried blood spot specimens was compared to

1,000 copies/ml for plasma with measurements of true positives, true negatives, false positives,

and false negatives calculated for each technology to create pooled estimates of diagnostic

accuracy of dried blood spot specimens for each platform across all studies. Using these treat-

ment failure thresholds, the sensitivity, specificity, upward and downward misclassification

rates, and positive and negative predictive values were also calculated. Misclassification was

calculated as the proportion of dried blood spot specimens incorrectly identified as above or

below 1,000 copies/ml compared to the plasma specimens. Upward misclassification was

defined as the number of dried blood spot specimens incorrectly identified as above the tested

treatment failure threshold divided by the total number of matched plasma specimens with

viral load results below 1,000 copies/ml. Downward misclassification was defined as the num-

ber of dried blood spot specimens incorrectly identified as below the tested treatment failure

threshold divided by the total number of matched plasma specimens with viral load results

above 1,000 copies/ml.

Pooled estimates of accuracy and misclassification were calculated using a series of methods

to first quantify and then account for the presence of study heterogeneity when calculating

pooled estimates. To determine the presence of between-study heterogeneity, the Q-statistic

was calculated for each treatment failure threshold comparison (for example, 1,000 copies/ml

using dried blood spot specimens to 1,000 copies/ml using plasma specimens; 3,000 copies/ml

using dried blood spot specimens to 1,000 copies/ml using plasma specimens, etc.) [73]. After

confirming the presence of heterogeneity, random effects models were used to estimate the

pooled summary measures for bias, accuracy, and fit hierarchical summary receiver-operator

curves (HSROCs) accounting for between-study variation. For sensitivity and specificity values

and corresponding 95% confidence intervals, bivariate random effects modeling was used to

simultaneously determine the pooled estimates, accounting for the covariance of sensitivity

and specificity as well as study specific heterogeneity [74]. Univariate random effects models

were used when less than 4 studies were included in the model methods, as bivariate random

effects models were unstable. To obtain pooled estimates of misclassification, univariate ran-

dom effects models were used to obtain the point estimates and corresponding 95% confidence

intervals [75]. All statistics were calculated overall, for each technology, and for each study

data set. We included a continuity correction to all of the diagnostic values of a study if at least

1 diagnostic value had a zero value.

Bland–Altman plots were created to assess mean bias values. In these plots, the mean viral

load value was assessed by dried blood spot specimens and plasma (x axis) compared to the

mean difference between paired dried blood spot specimens and plasma specimens (y axis) to

evaluate the degree of agreement between the 2 methods.

Several sub-analyses were conducted to further examine the diagnostic accuracy and clini-

cal misclassification of dried blood spot specimens by specific populations or technologies.

First, the diagnostic accuracy statistics were calculated for the comparison of 1,000 copies/ml

using dried blood spot specimens to 1,000 copies/ml using plasma specimens limiting the anal-

ysis to studies that included only patients on antiretroviral therapy. Second, the diagnostic

accuracy statistics were measured stratifying those studies that processed dried blood spot

specimens and performed viral load testing according to the manufacturer’s recommended

protocol and those that did not. Additionally, sub-analyses were analyzed by specimen collec-

tion method (capillary versus venous blood collection), specimen storage method (fresh versus

frozen), geography, and dried blood spot card type. Finally, in a third sub-analysis only data

from the most recent version of the specified technologies were included.

Three researchers independently performed the statistical analysis to ensure accuracy.

Graphic representations were completed in GraphPad Prism (La Jolla, California, USA) and
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analyses were completed in Stata 13 (College Station, Texas, USA) and SAS version 9.2 (Cary,

North Carolina, USA).

Protocol

The prepared protocol was reviewed by the World Health Organization and approved by

Chesapeake Institutional Research Review Board (Columbia, Maryland, USA; www.

chesapeakeirb.com) (S1 Text).

Results

Systematic review

A total of 60 studies were identified for inclusion (Fig 1 and Table 1) [19–69]. Thirteen studies

were excluded due to using a qualitative assay, 8 studies were drug resistance testing studies, 2

studies used panels as primary sample types, 2 studies were review manuscripts lacking pri-

mary data, 2 studies used spike blood samples, and 1 study used an incorrect comparator.

There was low to moderate heterogeneity in the analytical and clinical performance compari-

sons within technologies as well as in the viral load medians and distributions (Table 2).

Quality of studies

There was some risk of bias in patient selection, however, low risk of bias with the reference

standard and index test (S2 Fig). Participants in most studies were not consecutively recruited

or failed to report the process of patient recruitment and only 5% of studies reported the pro-

cess of patient recruitment. There was a high applicability in patient selection, index test, and

reference standard; however, there were some concerns as most studies (58%) were carried out

in Africa; most studies (>90%) used venous blood prepared in the laboratory with a pipet; and

most studies (>90%) used only 1 dried blood spot filter paper (Whatman 903).

Systematic review analysis

Mean bias was the most commonly reported analytical measurement across all studies included

in the systematic review (82%); therefore, forest plots of each study were developed by technology

(S3 Fig). Half of the studies included patients on antiretroviral therapy [21–23,29,33,35–37,39,40,

42,43,45–47,51–54,56–59,62,64,65,68,69], whereas the remaining studies either included patients

not on antiretroviral therapy or did not indicate such information. The study characteristics such

as sample size, viral load medians, and patient viral load distributions are summarized in Table 2.

Meta-analysis

A total of 40 studies provided 45 data sets across the 6 technologies resulting in a total of 10,871

paired dried blood spot and plasma viral load results [22,24,26,28,30,31,33,34,36–45,48–53,56,58,

59,62–66,68,69]. Those studies not included from the systematic review were due to primary

authors’ inability to sharing data. Of these 58% of pairs were analyzed with the Roche COBAS

TaqMan technology [22,26,40,43,48,49,51,56,58,65,66,69], 25% with the Abbott RealTime HIV-1

technology [26,28,31,37–39,42,45,58,59,63,69], 10% with the bioMérieux NucliSENS EasyQ tech-

nology [24,30,31,33,34,36,40,42,53,62], 5% with the Biocentric Generic HIV Charge Virale tech-

nology [41,52,64], 1% with the Hologic Aptima [68], and 1% with the Siemens VERSANT HIV-

1 RNA technology [50]. Approximately 70% of the paired data points were from studies con-

ducted in Africa [22,24,26,28,33,34,37,39,40,42,43,48,53,56,58,59,64,65,74], of which 36% were

from the Southern African Development Community region [22,26,28,42,43,56,59,64] and 24%

from the East African Community region [24,33,37,48,65,69].
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Table 2. Analytical and clinical metrics for each study.

Reference R2 bias

(95% CI)

Median

plasma

Median

DBS

Difference in

medians

Proportion

undetectable

Proportion

1–10,000 cp/ml

Proportion

> 10,000 cp/ml

Abravaya Abbott m2000rt

RealTime HIV-1

[19] Quantitative data not reported

Aitken Roche COBAS

Ampliprep/

TaqMan v2

[20] NR

Alvarez-Munoz bioMerieux

NucliSens HIV-1

QT

[21] 0.9025 NR

Andreotti Roche COBAS

TaqMan RT-PCR

[22] 0.8328 −0.474 (−1.98–1.03) 4.07 3.76 0.31 14.7% 34.1% 51.2%

Arredondo Abbott m2000rt

RealTime HIV-1

[23] 0.8281 0.13 (−1.00–1.25) 0.35

Ayele bioMerieux

NucliSens HIV-1

QT

[24] 0.5524 −0.794 (2.90–1.31) 4.64 3.90 0.74 0.0% 31.6% 68.4%

Brambilla bioMerieux

NucliSens HIV-1

QT

[25] Three patients included, viral loads >3.5 log copies/ml

Carmona Abbott m2000rt

RealTime HIV-1

[26] 0.5877 −0.218 (−2.95–2.51) 3.76 3.15 0.61 26.6% 27.4% 46.0%

Roche COBAS

Ampliprep/

TaqMan v2

[26] 0.7426 0.747 (−1.34–2.83) 3.95 4.08 −0.13 7.5% 43.0% 49.5%

Roche COBAS

Ampliprep/

TaqMan v2 FVE

0.7951 −0.096 (−1.81–1.62) 3.25 3.27 −0.02 11.2% 54.6% 34.2%

David Abbott m2000rt

RealTime HIV-1

[27] 0.9409 0.47 (−0.18–1.12) 0.41

Erba Abbott m2000rt

RealTime HIV-1

[28] 0.7809 0.01 (−0.75–0.77) 4.11 4.03 0.07 0.0% 44.2% 55.8%

Fajardo—

capillary

bioMerieux

NucliSens EasyQ

HIV-1 v2.0

[29] 0.658 −0.35 (−1.26–0.56)

venous bioMerieux

NucliSens EasyQ

HIV-1 v2.0

[29] 0.689 −0.22 (−1.13–0.69)

Fiscus bioMerieux

NucliSens HIV-1

QT

[30] 0.5988 −0.424 (−3.30–2.46) 4.48 4.20 0.28 22.4% 14.5% 63.2%

Garrido Abbott m2000rt

RealTime HIV-1

[31] 0.8954 0.147 (−0.39–0.68) 3.81 4.15 −0.34 36.1% 43.3% 20.6%

bioMerieux

NucliSens EasyQ

HIV-1 v1.1

[31] 0.7585 −0.577 (−2.59–1.43) 3.04 0.00 3.04 36.1% 33.0% 30.9%

Gous Hologic Aptima 0.7874 −0.134 (−1.30–1.03) 4.04 3.97 0.07 10.0% 40.0% 50.0%

Johannessen bioMerieux

NucliSens EasyQ

HIV-1 v1.2

[33] 0.6538 −0.672 (−3.10–1.76) 2.00 0.00 2.00 33.7% 45.9% 20.4%

Lira bioMerieux

NucliSens HIV-1

QT

[36] 0.801 −0.060 (−0.71–0.59) 4.61 4.53 0.07 0.0% 24.6% 75.4%

Lofgren Abbott m2000rt

RealTime HIV-1

[37] 0.9477 −0.083 (−1.26–1.10) 0.00 0.00 0.00 52.7% 15.0% 32.3%

Marconi Abbott m2000rt

RealTime HIV-1

[38] 0.7812 −0.407 (−2.56–1.75) 3.45 3.93 −0.48 15.2% 40.8% 44.0%

Mbida Abbott m2000rt

RealTime HIV-1

[39] 0.8787 −0.272 (−1.87–1.32) 3.62 3.70 −0.08 20.0% 35.6% 44.4%

(Continued)
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Table 2. (Continued)

Reference R2 bias

(95% CI)

Median

plasma

Median

DBS

Difference in

medians

Proportion

undetectable

Proportion

1–10,000 cp/ml

Proportion

> 10,000 cp/ml

Mercier-

Delarue

bioMerieux

NucliSens EasyQ

HIV-1 v2.0

[40] 0.7602 −0.544 (−2.54–1.45) 2.77 2.56 0.22 24.5% 42.2% 33.3%

Roche COBAS

Ampliprep/

TaqMan v2

[40] 0.5157 0.217 (−2.47–2.91) 2.99 3.44 −0.44 18.8% 40.6% 40.6%

Monleau 2010 Biocentric G2

Generic

[41] NR 0.45

Monleau 2013 Abbott m2000rt

RealTime HIV-1

[42] 0.4759 0.089 (−3.21–3.39) 0.00 0.00 0.00 59.3% 19.0% 21.7%

Biocentric G2

Generic

[42] 0.3386 0.926 (−2.38–4.24) 2.58 3.11 −0.53 46.6% 30.5% 22.9%

bioMerieux

NucliSens EasyQ

HIV-1 v1.2

[42] 0.8000 −0.476 (−1.89–0.93) 3.76 3.36 0.40 11.0% 48.4% 40.7%

Mwau Abbott m2000rt

RealTime HIV-1

0.6517 −1.169 (−3.44–1.11) 2.19 0.00 2.19 43.2% 37.0% 19.8%

Neogi Abbott m2000rt

RealTime HIV-1

[45] 0.7169 −0.485 (−2.81–1.84) 1.77 0.00 1.77 39.3% 38.7% 22.0%

Onkendi Roche COBAS

Ampliprep/

TaqMan v2 FVE

[47] 0.917 −0.200 (−0.63–0.23)

Ouma Roche COBAS

Amplicor v1.5/

TaqMan v2

[48] 0.6575 0.206 (−0.88–1.30) 4.33 4.54 −0.21 1.2% 32.4% 66.4%

Pannus Roche COBAS

Ampliprep/

TaqMan v2 FVE

[49] 0.7418 0.296 (−1.06–1.65) 3.54 3.63 −0.01 10.7% 59.1% 39.9%

Pirollo Siemens

VERSANT HIV-1

RNA 1.0 (kPCR)

[50] 0.7697 −0.318 (−2.06–1.42) 3.57 3.25 0.33 13.3% 44.9% 41.8%

Pollack Roche COBAS

Ampliprep/

TaqMan v2 SPEX

[51] 0.3701 1.813 (−0.91–4.54) 1.72 3.73 −2.01 34.5% 50.4% 15.1%

Roche COBAS

Ampliprep/

TaqMan v2 FVE

[51] 0.6083 0.382 (−1.58–2.34) 3.06 3.30 −0.24 14.2% 64.0% 21.8%

Reigadas Biocentric [52] 0.1312 −0.536 (−4.83–3.76) 4.10 3.99 0.11 14.0% 32.6% 53.5%

Rottinghaus bioMerieux

NucliSens EasyQ

HIV-1 v1.1

[53] 0.7527 0.054 (−1.36–1.47) 0.00 0.00 0.00 85.0% 7.5% 7.5%

Rutstein—

capillary

Abbott m2000rt

RealTime HIV-1

[54] 0.81 NR 1.14

venous Abbott m2000rt

RealTime HIV-1

[54] 0.8649 NR 1.14

Sahoo Hologic Aptima [55] −0.075 (−0.62–0.48)

Sawadogo Roche COBAS

Amplicor v1.5/

TaqMan v2

[56] 0.3651 1.715 (−1.20–4.63) 1.51 3.76 −2.26 39.9% 44.6% 15.6%

Schmitz Abbott m2000rt

RealTime HIV-1

[57] 0.07–0.09

Siemens Siemens

VERSANT HIV-1

RNA 1.0 (kPCR)

0.7830 0.002 (−1.24–1.24) 3.63 3.68 −0.05 0.0% 67.4% 32.6%

Taieb Abbott m2000rt

RealTime HIV-1

[58] 0.8432 0.090 (−0.82–0.99) 3.22 4.30 −1.08 58.6% 25.3% 16.2%

Abbott m2000rt

RealTime HIV-1

one-spot

[58] 0.7631 −0.001 (−0.08–0.08) 0.61 0.62 −0.01 34.8% 65.2% 0.0%

(Continued)
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The viral load distribution for the 10,871 plasma specimens tested was relatively equally dis-

tributed across all viral load ranges (Fig 2A). While approximately 41% of all plasma specimens

were undetectable (below the technology’s limit of detection), 30% of all plasma study speci-

mens were between detectable (at or greater than the technology’s limit of detection) and

10,000 copies/ml. Furthermore, when including only plasma specimens from patients known

to be on ART, we observed that just over 40% of patients had undetectable levels of viral load

(Fig 2B). Approximately 31% of plasma specimens from patients on ART were between detect-

able and 10,000 copies/ml.

The median dried blood spot viral loads were higher than the median plasma viral loads for

all but 2 technologies. Overall, the median difference was 1.03 log copies/ml (Table 3). The

Table 2. (Continued)

Reference R2 bias

(95% CI)

Median

plasma

Median

DBS

Difference in

medians

Proportion

undetectable

Proportion

1–10,000 cp/ml

Proportion

> 10,000 cp/ml

Roche COBAS

Ampliprep/

TaqMan v2 FVE

[58] 0.6393 −2.090 (−4.44–0.26) 2.78 0 2.78 41.9% 39.9% 18.2%

Tang Abbott m2000rt

RealTime HIV-1

one-spot

[59] 0.9166 0.087 (−0.53–0.71) 4.29 4.02 0.27 65.0% 12.3% 22.7%

Tariro

Makadzange

Roche COBAS

Ampliprep/

TaqMan v2 FVE

[60] 0.782 −1.07 (−0.06–2.16) 5.33 4.26 1.07 58.1%

Toure Kane bioMerieux

NucliSens EasyQ

HIV-1 v1.2

[34] 0.9334 −0.108 (−1.02–0.80) 3.76 3.60 0.16 14.6% 41.5% 43.9%

Uttayamakul bioMerieux

NucliSens HIV-1

QT

[61] 0.667 0.17

van Deursen bioMerieux

NucliSens EasyQ

HIV-1 v2.0

[62] 0.7750 −0.544 (-2.24–1.15) 1.91 0.00 1.91 33.0% 49.5% 17.4%

Vidya Abbott m2000rt

RealTime HIV-1

[63] 0.7069 −0.141 (−1.61–1.32) 4.37 4.39 −0.02 0.0% 39.0% 61.0%

Viljoen Biocentric [64] 0.5958 0.277 (−0.64–1.20) 4.33 4.65 −0.32 0.0% 29.7% 70.3%

Waters Roche COBAS

TaqMan RT-PCR

[65] 0.8402 0.209 (−1.33–1.75) 3.24 2.74 0.50 81.3% 9.7% 9.0%

Wu Roche COBAS

Ampliprep/

TaqMan v2 FVE

[66] 0.8003 −1.055 (−3.07–0.96) 3.24 0.00 3.24 81.3% 9.7% 9.0%

Yapo Biocentric [67] 0.92 0.65 (−1.35–0.06) 0.77

Yek Hologic Aptima [68] 0.7418 0.075 (−1.56–1.71) 3.34 3.49 −0.15 59.6% 26.9% 13.5%

Zeh Abbott m2000rt

RealTime HIV-1

[69] 0.8840 0.264 (−1.33–1.86) 3.68 4.45 −0.77 23.0% 34.5% 42.5%

Roche COBAS

Ampliprep/

TaqMan v2

[69] 0.6368 1.002 (−1.80–3.81) 4.01 4.36 −0.35 25.0% 25.0% 50.0%

Roche COBAS

Ampliprep/

TaqMan v2 FVE

0.6210 −0.364 (−2.44–1.71) 0.00 0.00 0.00 63.2% 28.1% 8.8%

Zhang Roche COBAS

Ampliprep/

TaqMan v2 FVE

0.8615 −0.058 (−1.67–1.56) 1.40 0.00 1.40 48.3% 22.5% 29.2%

Zinyowera Roche COBAS

TaqMan RT-PCR

[43] 0.3080 0.573 (−2.01–3.51) 0.00 0.00 0.00 89.9% 5.5% 4.6%

NR: not reported.

Gray shading: studies included in the meta-analysis.

https://doi.org/10.1371/journal.pmed.1004076.t002
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Abbott RealTime HIV-1 two-spot, Abbott RealTime HIV-1 one-spot, Biocentric Generic HIV

Charge Virale, bioMérieux NucliSENS EasyQ HIV-1, Hologic Aptima, Roche COBAS Taq-

Man FVE, Roche COBAS TaqMan SPEX, and Siemens VERSANT HIV-1 RNA technologies

had a difference between the median dried blood spot and plasma specimen viral loads of 0.09,

0.04, 0.17, −0.30, 0.12, 0.33, 1.99, and −0.13 log copies/ml, respectively. The mean bias for each

technology was calculated by pooling all primary data for each technology as though one study

(Table 3). The mean biases between the dried blood spot and plasma viral load values varied

significantly depending on the technology. The overall mean bias was 0.30 log copies/ml. The

Abbott RealTime HIV-1 two-spot (−0.12 log copies/ml), Abbott RealTime HIV-1 one-spot

(0.02 log copies/ml), and Roche COBAS TaqMan FVE (0.06 log copies/ml) assay biases were

closest to zero, while the bioMerieux NucliSENS EasyQ HIV-1 (−0.41 log copies/ml) and

Roche COBAS TaqMan SPEX (1.03 log copies/ml) assay biases were furthest from zero. The

Abbott RealTime HIV-1 two-spot, bioMerieux NucliSENS EasyQ HIV-1, and Siemens VER-

SANT HIV-1 RNA technologies had negative mean biases indicating under-quantification

compared to the plasma viral load result, which is expected due to the lower input sample vol-

ume. The positive mean biases of Biocentric Generic HIV Charge Virale and Roche COBAS

TaqMan SPEX reflect over-quantification compared to the plasma viral load result, likely due

to processing and extraction chemistries resulting in amplification of total intracellular and

extracellular nucleic acids.

WHO and many national clinical guidelines in resource-limited settings recommend using

viral load testing as a binary result, above or below a specific threshold to identify treatment

failure. We, therefore, compared several treatment failure thresholds for dried blood spot spec-

imens (1,000, 3,000, 5,000, 7,500, and 10,000 copies/ml) to the currently suggested 1,000 cop-

ies/ml threshold for plasma specimens for correctly classifying patients (Table 3 and Fig 3).

Using a dried blood spot specimen threshold of 1,000 copies/ml, all 6 technologies had a sensi-

tivity of detecting a viral load above 1,000 copies/ml of greater than 80%. At the same thresh-

old, the specificity of detecting a viral load below 1,000 copies/ml was over 80% for all

technologies except for the Biocentric Generic HIV Charge Virale (55.16%), Hologic Aptima

Fig 2. Patient plasma viral load distribution from all studies (a) and including only patients on antiretroviral therapy (b).

https://doi.org/10.1371/journal.pmed.1004076.g002
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Fig 3. Forest plots of sensitivity and specificity of all studies included in the meta-analysis for each viral load

technology using a treatment failure threshold of 1,000 copies/ml. Abbott RealTime HIV-1 two-spot (a), Abbott

RealTime HIV-1 one-spot (b), Biocentric Generic HIV Charge Virale (c), bioMerieux NucliSENS EasyQ HIV-1 (d),

Hologic Aptima (e), Roche COBAS TaqMan FVE (f), Roche COBAS TaqMan SPEX (g), Siemens VERSANT HIV-1

RNA (h). Red bars and lines indicate the overall metrics for each viral load technology.

https://doi.org/10.1371/journal.pmed.1004076.g003
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(73.44%), and Roche COBAS TaqMan SPEX (43.86%). Using a higher treatment failure

threshold, such as 5,000 copies/ml, for dried blood spot specimens reduced the sensitivity and

increased the specificity of all technologies. Finally, HSROC curves were created for those tech-

nologies where more than 4 studies were included in the meta-analysis (S4 Fig).

Additionally, to better understand the performance of dried blood spot specimens at lower

treatment failure thresholds (below 1,000 copies/ml), we compared the 6 predefined treatment

treatment failure thresholds—detectable, 200, 400, 500, 600, and 800 copies/ml—between

dried blood spot specimens and plasma for each technology and protocol (Table 4). The Bio-

centric Generic HIV Charge Virale and Roche COBAS TaqMan SPEX technologies had poor

specificity (<40%) at all lower thresholds below 1,000 copies/ml. The Siemens Versant had a

sensitivity and specificity above 85% when using a threshold of 800 copies/ml; however, the

specificity declined to below 80% at a threshold of 600 copies/ml and below 70% with all

thresholds below 500 copies/ml. The Abbott RealTime HIV-1 two-spot and Roche COBAS

TaqMan FVE protocols had high sensitivities and specificities at all lower thresholds except

detectable. The new Abbott RealTime HIV-1 one-spot protocol, however, had high specificities

at all lower thresholds, but sensitivity performance was below 85% at the 200 copies/ml and

detectable thresholds. The Hologic Aptima had high sensitivities with all thresholds except

detectable; however, specificity was lower than 85% at the thresholds of 800 copies/ml and 200

copies/ml. Finally, the bioMérieux NucliSENS EasyQ HIV-1 had sensitivities and specificities

greater than 85% at all thresholds.

Quantitative polymerase chain reaction inherently introduces a level of variability in test

results, generally +/−0.3 log copies/ml [68,69]. We, therefore, sought to understand if the per-

formance observed with each technology was within the inherent assay variability limits. For

Table 4. Meta-analysis of clinical metrics overall and for each viral load technology and protocol for treatment failure thresholds below 1,000 copies/ml.

All

technologies

Abbott

RealTime

HIV-1 two-

spot

Abbott

RealTime

HIV-1 one-

spot

Biocentric

Generic HIV

Charge

Virale

bioMerieux

NucliSENS

EasyQ HIV-1

Hologic

Aptima

Roche

COBAS

TaqMan

HIV-1 FVE

Roche

COBAS

TaqMan

HIV-1

SPEX

Siemens

VERSANT

HIV-1 RNA

n 10,831 2,004 700 531 1,062 124 3,076 3,190 144

DBS:plasma

threshold

comparisons

Sensitivity

(UCL-LCL)

800:800 95.04 (91.45–

97.17)

92.59

(82.86–

96.99)

91.55 (4.60–

99.96)

98.64 (43.94–

99.99)

85.36 (80.27–

89.32)

93.47

(31.10–

99.78)

95.35

(87.11–

98.42)

99.70

(95.62–

99.98)

91.07 (74.87–

97.22)

600:600 95.24 (92.21–

97.12)

92.71

(84.14–

96.83)

92.95 (0.04–

100.00)

98.55 (60.16–

99.97)

88.87 (83.99–

92.40)

94.54

(27.75–

99.87)

94.17

(83.85–

98.05)

99.26

(96.03–

99.87)

93.45 (84.10–

97.47)

500:500 95.43 (92.38–

97.30)

93.11

(84.49–

97.11)

92.96 (0.00–

100.00)

98.40 (66.61–

99.95)

89.04 (84.76–

92.22)

94.50

(29.45–

99.86)

93.37

(81.99–

97.75)

99.22

(95.81–

99.86)

97.21 (66.06–

99.84)

400:400 95.51 (92.35–

97.41)

92.48

(84.11–

96.61)

94.36 (0.00–

100.00)

97.79 (60.28–

99.92)

90.17 (85.52–

93.44)

94.69

(28.03–

99.88)

92.26

(80.79–

97.13)

99.36

(95.26–

99.92)

97.18 (62.91–

99.86)

200:200 94.78 (91.11–

96.99)

90.80

(82.55–

95.37)

97.18 (0.00–

100.00)

98.09 (65.21–

99.93)

89.42 (83.74–

93.28)

95.01

(22.04–

99.92)

89.86

(76.26–

96.07)

99.16

(94.75–

99.87)

97.67 (71.68–

99.86)

Detectable 95.39 (90.12–

97.91)

92.81

(76.47–

98.09)

93.13

(62.76–

99.09)

97.98 (59.94–

99.94)

88.59 (75.29–

95.18)

75.42

(51.82–

89.75)

97.10

(58.02–

99.88)

99.76

(94.64–

99.99)

90.08 (83.66–

94.15)
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Table 4. (Continued)

All

technologies

Abbott

RealTime

HIV-1 two-

spot

Abbott

RealTime

HIV-1 one-

spot

Biocentric

Generic HIV

Charge

Virale

bioMerieux

NucliSENS

EasyQ HIV-1

Hologic

Aptima

Roche

COBAS

TaqMan

HIV-1 FVE

Roche

COBAS

TaqMan

HIV-1

SPEX

Siemens

VERSANT

HIV-1 RNA

Specificity

(UCL-LCL)

800:800 83.56 (71.57–

91.12)

92.01

(83.14–

96.41)

99.77

(23.66–

100.00)

38.14 (10.78–

75.88)

95.99 (91.31–

98.20)

72.16

(41.80–

90.34)

92.86

(64.86–

98.92)

37.59

(13.30–

70.28)

86.62 (68.28–

95.11)

600:600 82.52 (69.82–

90.60)

92.54

(81.42–

97.23)

99.77

(12.38–

100.00)

28.13 (5.97–

70.70)

95.21 (91.29–

97.42)

89.34

(50.48–

98.57)

92.95

(68.03–

98.79)

32.98

(11.54–

64.98)

78.77 (60.95–

89.82)

500:500 80.41 (66.80–

89.33)

93.16

(81.96–

97.61)

99.77 (9.33–

100.00)

23.72 (4.28–

68.41)

95.27 (91.10–

97.54)

89.06

(50.38–

98.49)

91.71

(67.71–

98.32)

29.63

(9.78–

62.04)

65.63 (30.99–

89.04)

400:400 79.81 (65.43–

89.20)

93.15

(80.02–

97.88)

99.77 (8.20–

100.00)

11.35 (0.61–

72.77)

95.61 (90.73–

97.98)

88.44

(47.82–

98.46)

92.04

(67.80–

98.45)

27.71

(9.04–

59.65)

64.91 (24.64–

91.28)

200:200 81.57 (67.54–

90.40)

97.22

(91.66–

99.11)

99.78 (5.34–

100.00)

15.09 (1.30–

70.49)

92.94 (89.26–

95.43)

81.48

(71.52–

88.52)

91.60

(71.21–

97.96)

25.31

(7.60–

58.26)

64.68 (26.23–

90.41)

Detectable 60.98 (34.29–

82.40)

78.79 (8.46–

99.33)

93.16

(66.40–

98.94)

18.62 (4.87–

50.58)

93.46 (90.43–

95.59)

87.18

(66.58–

95.87)

58.09

(6.37–

96.58)

4.25 (0.17–

53.54)

69.23 (40.93–

87.96)

Total

misclassification

(UCL-LCL)

800:800 9.97 (6.92–

14.15)

8.39 (5.26–

13.11)

0.23 (0.00–

78.78)

11.96 (1.98–

47.79)

9.03 (6.80–

11.91)

18.55

(12.65–

26.37)

10.35

(5.77–

17.89)

22.44

(11.82–

38.44)

10.39 (4.12–

23.82)

600:600 9.12 (6.16–

13.30)

8.04 (5.01–

12.67)

0.23 (0.00–

84.65)

12.85 (1.95–

52.18)

7.78 (5.64–

10.64)

6.67

(0.54–

48.42)

10.42

(6.16–

17.09)

23.81

(12.52–

40.57)

11.11 (6.92–

17.37)

500:500 9.21 (6.15–

13.58)

7.72 (4.78–

12.24)

0.23 (0.00–

87.30)

10.79 (1.09–

57.09)

7.82 (5.72–

10.61)

6.67

(0.54–

48.43)

11.03

(7.08–

16.79)

25.00

(13.21–

42.19)

13.19 (8.58–

19.76)

400:400 8.87 (5.80–

13.35)

7.94 (5.04–

12.29)

0.23 (0.00–

87.36)

9.40 (0.62–

63.44)

7.50 (5.25–

10.62)

6.55

(0.49–

50.14)

10.95

(7.18–

16.33)

25.35

(13.21–

43.11)

13.19 (8.58–

19.76)

200:200 8.04 (4.99–

12.70)

7.13 (4.11–

12.08)

0.23 (0.00–

88.53)

4.33 (0.08–

73.07)

8.94 (6.41–

12.34)

6.23

(0.25–

63.87)

11.01

(7.52–

15.83)

24.02

(12.02–

42.26)

10.42 (6.38–

16.56)

Detectable 8.73 (5.22–

14.24)

9.64 (4.17–

20.74)

15.00

(12.54–

17.84)

4.65 (0.07–

76.18)

11.26 (6.16–

19.71)

20.97

(14.69–

29.02)

7.29 (1.41–

30.10)

8.26 (2.36–

25.14)

11.81 (7.47–

18.17)

Upward

misclassification

(UCL-LCL)

800:800 16.44 (8.88–

28.43)

7.99 (3.59–

16.86)

0.23 (0.00–

76.34)

61.86 (24.12–

89.22)

4.01 (1.80–

8.69)

27.84

(9.66–

58.20)

7.14 (1.08–

35.14)

62.41

(29.72–

86.70)

13.38 (4.89–

31.72)

600:600 17.48 (9.40–

30.18)

7.46 (2.77–

18.58)

0.23 (0.00–

87.62)

71.87 (29.30–

94.03)

4.79 (2.58–

8.71)

10.66

(1.43–

49.52)

7.05 (1.21–

31.97)

67.02

(35.02–

88.46)

21.23 (10.18–

39.05)

500:500 19.59 (10.67–

33.20)

6.84 (2.39–

18.04)

0.23 (0.00–

90.67)

76.28 (31.59–

95.72)

4.73 (2.46–

8.90)

10.94

(1.51–

49.62)

8.29 (1.68–

32.29)

70.37

(37.96–

90.22)

34.37 (10.96–

69.01)

400:400 20.19 (10.80–

34.57)

6.85 (2.12–

19.98)

0.23 (0.00–

91.80)

88.65 (27.23–

99.39)

4.39 (2.02–

9.27)

11.56

(1.54–

52.18)

7.96 (1.55–

32.20)

72.29

(40.35–

90.96)

35.09 (8.72–

75.36)

200:200 18.43 (9.60–

32.46)

2.78 (0.89–

8.34)

0.22 (0.00–

94.66)

84.91 (29.51–

98.70)

7.06 (4.57–

10.74)

18.52

(11.48–

28.48)

8.40 (2.04–

28.79)

74.69

(41.74–

92.40)

35.32 (9.59–

73.77)

Detectable 39.02 (17.60–

65.71)

21.21 (0.67–

91.54)

6.84 (1.06–

33.60)

81.38 (49.42–

95.13)

6.54 (4.41–

9.57)

12.82

(4.13–

33.42)

41.91

(3.42–

93.63)

95.75

(46.46–

99.83)

30.77 (12.04–

59.07)
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Table 4. (Continued)

All

technologies

Abbott

RealTime

HIV-1 two-

spot

Abbott

RealTime

HIV-1 one-

spot

Biocentric

Generic HIV

Charge

Virale

bioMerieux

NucliSENS

EasyQ HIV-1

Hologic

Aptima

Roche

COBAS

TaqMan

HIV-1 FVE

Roche

COBAS

TaqMan

HIV-1

SPEX

Siemens

VERSANT

HIV-1 RNA

Downward

misclassification

(UCL-LCL)

800:800 4.96 (2.83–

8.55)

7.41 (3.01–

17.14)

8.45 (0.04–

95.40)

1.36 (0.01–

56.06)

14.64 (10.68–

19.73)

6.53

(0.22–

68.90)

4.65 (1.58–

12.89)

0.30 (0.02–

4.38)

8.93 (2.78–

25.13)

600:600 4.76 (2.88–

7.79)

7.29 (3.17–

15.86)

7.05 (0.00–

99.96)

1.45 (0.03–

39.84)

11.13 (7.60–

16.01)

5.46

(0.13–

72.25)

5.83 (1.95–

16.15)

0.74 (0.13–

3.97)

6.55 (2.53–

15.90)

500:500 4.57 (2.70–

7.62)

6.89 (2.89–

15.51)

7.04 (0.00–

100.00)

1.60 (0.05–

33.39)

10.96 (7.78–

15.24)

5.50

(0.14–

70.55)

6.63 (2.25–

18.01)

0.78 (0.14–

4.19)

2.79 (0.16–

33.94)

400:400 4.49 (2.59–

7.65)

7.52 (3.39–

15.89)

5.64 (0.00–

100.00)

2.21 (0.08–

39.72)

9.83 (6.56–

14.48)

5.31

(0.12–

71.97)

7.74 (2.87–

19.21)

0.64 (0.08–

4.74)

2.82 (0.14–

37.09)

200:200 5.22 (3.01–

8.89)

9.20 (4.63–

17.45)

2.82 (0.00–

100.00)

1.91 (0.07–

34.79)

10.58 (6.72–

16.26)

4.99

(0.08–

77.96)

10.14

(3.93–

23.74)

0.84 (0.13–

5.25)

2.33 (0.14–

28.32)

Detectable 4.61 (2.09–

9.88)

7.19 (1.91–

23.53)

6.87 (0.91–

37.24)

2.02 (0.06–

40.06)

11.41 (4.82–

24.71)

24.58

(10.25–

48.18)

2.90 (0.12–

41.98)

0.24 (0.01–

5.36)

9.92 (5.85–

16.34)

PPV (UCL-LCL) 800:800 89.22 (82.88–

93.40)

93.43

(88.98–

96.16)

86.67

(11.76–

99.69)

88.79 (50.70–

98.39)

96.91 (93.16–

98.64)

63.04

(48.39–

75.64)

87.09

(66.28–

95.86)

67.49

(40.14–

86.53)

93.44 (82.58–

97.71)

600:600 89.74 (83.48–

93.80)

94.46

(89.47–

97.16)

82.50

(13.38–

99.31)

88.64 (48.24–

98.49)

96.13 (91.82–

98.21)

93.68

(8.52–

99.96)

89.28

(68.33–

96.98)

66.39

(38.39–

86.23)

91.18 (83.90–

95.35)

500:500 89.50 (83.10–

93.66)

95.13

(89.88–

97.73)

80.49

(31.57–

97.36)

90.95 (47.06–

99.13)

96.08 (91.90–

98.14)

93.66

(9.34–

99.95)

87.39

(69.63–

95.44)

66.21

(37.81–

86.33)

88.75 (78.93–

94.33)

400:400 90.26 (83.87–

94.29)

95.37

(90.57–

97.79)

79.76

(21.07–

98.31)

92.82 (45.93–

99.49)

96.25 (96.23–

96.26)

93.67

(8.17–

99.96)

86.58

(72.16–

94.13)

66.90

(37.97–

86.96)

89.88 (78.90–

95.47)

200:200 93.09 (86.54–

96.58)

99.14

(93.84–

99.89)

77.53

(66.60–

85.65)

96.79 (38.29–

99.93)

95.31 (90.04–

97.86)

93.81

(7.53–

99.96)

87.80

(75.05–

94.51)

70.56

(39.94–

89.62)

92.17 (85.64–

95.88)

Detectable 97.60 (94.45–

98.98)

99.69

(91.78–

99.99)

93.25

(53.87–

99.39)

96.80 (38.43–

99.93)

96.51 (93.13–

98.26)

93.69

(35.94–

99.75)

98.07

(90.92–

99.61)

92.19

(70.22–

98.34)

98.67 (65.40–

99.97)

NPV (UCL-LCL) 800:800 92.83 (87.27–

96.07)

90.48

(79.65–

95.85)

99.77

(48.10–

100.00)

33.65 (1.43–

94.65)

79.41 (62.31–

90.00)

92.31

(83.92–

96.50)

97.39

(94.33–

98.82)

97.53

(94.81–

98.84)

78.00 (64.49–

87.38)

600:600 92.44 (87.13–

95.67)

89.59

(77.67–

95.52)

99.77

(56.44–

100.00)

41.43 (3.28–

93.66)

83.11 (64.24–

93.09)

97.05

(31.73–

99.96)

96.66

(92.95–

98.45)

96.85

(93.97–

98.38)

83.33 (68.95–

91.84)

500:500 92.27 (86.93–

95.55)

89.73

(79.34–

95.21)

99.77

(55.62–

100.00)

34.65 (2.09–

92.93)

83.19 (65.11–

92.92)

97.00

(32.11–

99.95)

95.92

(91.92–

97.98)

96.20

(92.60–

98.08)

83.39 (53.74–

95.60)

400:400 91.83 (85.88–

95.41)

88.15

(75.52–

94.72)

99.77

(67.05–

100.00)

26.51 (2.48–

83.67)

84.74 (70.14–

92.92)

93.24

(84.77–

97.16)

94.71

(89.03–

97.53)

95.21

(90.77–

97.57)

81.23 (49.15–

95.09)

200:200 87.86 (80.59–

92.66)

82.53

(71.11–

90.07)

99.79

(91.24–

100.00)

14.76 (0.24–

92.55)

79.75 (63.92–

89.74)

96.57

(27.65–

99.95)

92.24

(84.69–

96.23)

93.38

(85.67–

97.08)

79.31 (60.95–

90.40)

Detectable 57.74 (41.04–

72.84)

58.92

(35.49–

78.90)

93.33

(50.20–

99.49)

3.19 (0.01–

95.43)

63.22 (33.93–

85.19)

68.34

(38.97–

87.94)

52.90

(27.86–

76.57)

72.19

(36.12–

92.26)

21.12 (0.86–

89.25)

https://doi.org/10.1371/journal.pmed.1004076.t004
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the Abbott RealTime HIV-1 two-spot, Abbott RealTime HIV-1 one-spot, Biocentric Generic

HIV Charge Virale, bioMérieux NucliSENS EasyQ HIV-1, Hologic Aptima, Roche COBAS

TaqMan FVE, Roche COBAS TaqMan SPEX, and Siemens VERSANT HIV-1 RNA technolo-

gies, 59.28%, 68.71%, 38.04%, 52.54%, 50.40%, 62.03%, 33.45%, 47.22% of dried blood spot

specimen test results were within the standard deviation of +/−0.3 log copies/ml of the paired

plasma test result, respectively (Fig 4).

Fig 4. A substantial proportion of dried blood spot results fall outside of the plasma result +/−0.3 log copies/ml

for each technology. Abbott RealTime HIV-1 two-spot (a), Abbott RealTime HIV-1 one-spot (b), Biocentric Generic

HIV Charge Virale (c), bioMerieux NucliSENS EasyQ HIV-1 (d), Hologic Aptima (e), Roche COBAS TaqMan FVE

(f), Roche COBAS TaqMan SPEX (g), Siemens VERSANT HIV-1 RNA (h). Blue bars represent +/−0.3 log copies/ml of

the plasma result, while orange triangles represent the paired dried blood spot viral load result.

https://doi.org/10.1371/journal.pmed.1004076.g004
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Sensitivity analyses

We next conducted sensitivity analyses with subsets of the data specific to each technology to

understand possible causes of lower analytical and clinical performance (Figs 5 and S5). After

including only studies in which manufacturer-recommended procedures for dried blood spot

specimen collection and processing were precisely followed, we observed no change in the per-

formance of dried blood spot specimens on each of the viral load platforms (S5 Fig). Similarly,

performance of dried blood spot specimens did not change when used with older and newer

versions of the assays as well as within ART and ART-naïve patient populations (S5 Fig).

Fig 5. Meta-analysis sub-analyses. Sensitivity and specificity sub-analyses by venous and capillary preparation (a), dried blood spot filter card type (b), and

storage temperature (c) compared to plasma with a treatment failure threshold of 1,000 copies/ml.

https://doi.org/10.1371/journal.pmed.1004076.g005
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Dried blood spot specimens can be prepared and stored in various ways. We, therefore, per-

formed sub-analyses to detect differences in dried blood spot specimen test performance due

to venous or capillary blood specimen collection, dried blood spot filter card type, and storage

temperature. While the sample size for the capillary specimen collection sub-analysis was rela-

tively small (n = 119), the specificity was reduced compared with venous blood specimens (Fig

5A). No significant difference was observed between the performance of the Munktell TFN fil-

ter card and Whatman 903 card types on each of the viral load technologies analyzed (Fig 5B).

Similarly, no significant difference was found between the performance of dried blood spot

specimens kept at room temperature or frozen (Fig 5C).

Discussion

Dried blood spot specimens may increase access to HIV viral load testing for virological moni-

toring of ART patients in resource-limited settings. This study analyzed the technical perfor-

mance of laboratory-based viral load technologies for accurate quantification of viral load

using dried blood spot specimens compared to plasma specimens. While the performance var-

ied between technologies, the most commonly used viral load technologies, Abbott RealTime

HIV-1, bioMérieux NucliSENS EasyQ HIV-1, Roche COBAS TaqMan using the FVE protocol,

and Siemens VERSANT HIV-1 RNA performed best and within acceptable limits when using

a treatment failure threshold of 1,000 copies/ml. Further, utilizing the same treatment failure

threshold for both plasma and dried blood spot specimens will avoid differentiated training

and interpretation by specimen type and facilitate viral load scale-up in resource-limited set-

tings. Additionally, this analysis indicated that the use of higher thresholds (e.g., 3,000 or 5,000

copies/ml) for dried blood spot specimen viral load testing will result in higher levels of mis-

classification of treatment failure with most viral load testing technologies.

The sensitivity for 5 technologies were above 90%, however, between 80% to 90% for the

Abbott RealTime HIV-1 one-spot, bioMérieux NucliSENS EasyQ HIV-1, and Hologic Aptima

assays using a treatment failure threshold of 1,000 copies/ml. Increasing the treatment failure

threshold further reduces the sensitivities of all assays. This performance indicated that most

patients with an elevated viral load would be identified by all technologies; however, it is

important to note that some patients failing treatment will be missed and only retested a year

later when using technologies with lower sensitivity. Additionally, 5 technologies had a speci-

ficity above 85% using the treatment failure threshold of 1,000 copies/ml. Two technologies,

Biocentric Generic HIV Charge Virale and Roche COBAS TaqMan using the SPEX protocol

had low specificities of approximately 55% and 44%, respectively, using a treatment failure

threshold of 1,000 copies/ml. This performance would be concerning as significant propor-

tions of patients suppressing their viral load would be incorrectly identified as failing treat-

ment; however, additional viral load measurements are required prior treatment switching

and thus this misclassification could be resolved. Though some variability was observed with

the Roche COBAS TaqMan using the FVE protocol in the meta-analysis, recent studies have

shown consistent performance with sensitivity and specificity greater than 90% [51,60]. Fur-

thermore, the Hologic Aptima had a sensitivity of approximately 75%; however, it is important

to note that this is a relatively new technology and only 2 studies were included in the meta-

analysis. Additional data may support more precise estimates.

Furthermore, though technologies have variable performance when using dried blood spot

specimens at lower treatment failure thresholds, several technologies and protocols can be

considered if lower treatment failure thresholds are required. While the lower limits of detec-

tion of dried blood spot specimens tend to be higher than plasma due to the smaller specimen

volume that clearly does not preclude the technologies or protocols from correctly classifying
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patients as failing or not failing treatment, the most critical clinical measurement used. There-

fore, limits of detection should not be the primary metric for consideration when reviewing

technology performance or selecting one for routine use. Prior to changing guidelines and put-

ting in the significant work to implement such an algorithm change, it is important to consider

a range of factors, including the prevalence and clinical relevance of low-level viremia, espe-

cially in relation to implementation and scale-up of optimized antiretroviral drugs such as

dolutegravir, access to testing, result utilization, and other scale-up priorities to ensure that

patients have access to high-quality testing and necessary follow-up clinical care.

The sensitivity analyses performed in this study suggest that low adherence to manufac-

turer-recommended dried blood spot specimen collection and extraction protocols, study

geographies, and technology version used did not contribute significantly to any observed dif-

ferences in dried blood spot and plasma specimen test results. Though the sensitivity analysis

including only data generated through compliance with the manufacturers’ recommended

protocols did not improve the performance of dried blood spot specimens for viral load test-

ing, manufacturer protocols should be precisely followed for optimal technology performance.

Performance variability between test platforms is likely due to different dried blood spot

nucleic acid extraction methods and viral load test chemistries employed by each platform.

This was observed with the standard Roche COBAS TaqMan SPEX and FVE specimen extrac-

tion protocols; the latter protocol was associated with much higher levels of specificity when

compared with paired plasma specimen testing. Similarly, the lower specificity of the Biocen-

tric Generic HIV Charge Virale test used in the studies analyzed may reflect a need to optimize

specimen extraction for dried blood spot specimens.

Viral load testing is known to be inherently variable within limits [76,77]; however, 50% to

60% of the dried blood spot specimen test results on all platforms fell outside the inherent vari-

ability commonly accepted to exist in viral load tests, +/−0.3 log copies/ml, of the plasma speci-

men test result. This highlights the effect of dried blood spot use on variability. The clinical

relevance and interpretation of this additional variability is, however, unclear given that a

binary threshold above or below 1,000 copies/ml is recommended by WHO to define treat-

ment failure. Further refinement of dried blood spot protocols and testing may allow for more

careful quantitative use of this specimen type in the future.

This systematic review and meta-analysis had some limitations. Almost all studies in this

systematic review and meta-analysis used dried blood spots prepared in laboratories using pre-

cision pipetting for consistent measurement of input specimen volumes. Hence, the findings

may not reflect performance in the field with less precise specimen collection procedures such

as allowing the blood drops to drip from the patient’s finger or heel directly onto filter cards as

practiced for HIV early infant diagnosis dried blood spot specimen collection [29,43,54,57,59].

Further analysis of the threshold in the context of the finger-prick/“hang drop” blood sample

collection method would be beneficial. Incompletely filled circles, as potentially could be

observed in the field using the hanging drop technique, may result in inaccurate test results

due to variable blood volumes. Viral load testing, however, is quantitative and requires a pre-

cise known amount of input volume, though the impact of variability in input volume, and

sampling approaches such as the “hang drop” technique, on clinical misclassification needs

further study before use. Accordingly, WHO has recommended the use of precision pipets or

measured micro-capillary EDTA tubes to ensure the appropriate volume is added to each spec-

imen spot [78]. Additionally, sample storage and transportation are critically important for

dried blood spot specimens; however, this systematic review was unable to review the effect of

inappropriate storage and transportation on clinical performance. Furthermore, almost all

studies in this systematic review and meta-analysis used the Whatman 903 dried blood spot

paper; therefore, additional studies may be needed to better validate other types of dried blood
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spot collection papers for use with viral load testing. Finally, though nearly 70% of studies pro-

vided primary data for inclusion in the meta-analysis, the possibility exists that the data and

results of those not included could be slightly different or that the current data set may be

biased; however, no clear differences were observed between those studies that provided pri-

mary data and those that were unable to do so.

The sample sizes for each sub-analysis were small; therefore, further studies are warranted

to better understand the performance of dried blood spot specimens under these conditions.

Abbott has recently changed their dried blood spot protocol to only use 1 dried blood spot and

a different dried blood spot extraction buffer. Data on the new protocol are very limited; how-

ever, 2 studies reviewed the performance and found sensitivity and specificity of greater than

90% [58,59]. While additional critical analytical parameters are important such as analytical

performance and sensitivity, we focused on the clinical implications. As with all systematic

reviews, the search strategy may have missed some titles; however, a significant number of

studies and data points were included in both the systematic review and meta-analysis, thus

limiting potential biases. Additionally, the time of sample storage was rarely included or

defined. Finally, no studies reviewed the use of dried blood spot samples for viral load testing

within the longitudinal algorithm currently recommended by the WHO [79].

While this systematic review and meta-analysis informs the use of dried blood spot speci-

mens for viral load testing [79], it is important to note that the performance characteristics

described herein used single cross-sectional specimens. WHO guidelines, however, defines

treatment failure as 2 consecutive viral load tests greater than 1,000 copies/ml that are at least 3

months apart with adherence counseling after the first viral load. The technical performance

of dried blood spot specimens within such a longitudinal treatment failure algorithm is

unknown and should be studied further. Furthermore, few manufacturers have sought regula-

tory approval to use dried blood spot samples for viral load testing. Currently, only the Abbott

RealTime HIV-1 one-spot and bioMérieux NucliSENS EasyQ HIV-1 have CE-IVD approval

and/or WHO prequalification listing. It is critical, however, for manufacturers to seek regula-

tory approval to provide better support to countries in need of this additional sample type to

further expand access.

This study raises an important issue of understanding appropriate and acceptable levels of

clinical misclassification for current treatment failure thresholds. The acceptable level of mis-

classification with viral load tests is, however, unclear and further investigation may be war-

ranted to guide technology development and selection.

The gold standard biomarker for viral load testing is circulating HIV RNA in plasma

[8,9,11,13,80]. Because plasma viral load testing is not accessible to many HIV patients in

resource-limited settings, countries and companies have sought alternative specimen types.

Whole blood specimens, however, result in elevated viral loads compared to plasma specimens

because of the detection of intracellular RNA and DNA. Alternative specimen input types,

such as whole blood, has sparked debate as to the most appropriate biomarker(s) for detecting

treatment failure [77,78]. Additional research would provide better insight as to the clinical

and virological relevance of intracellular nucleic acids in detecting treatment failure.

The meta-analysis presented here offers advantages over previous systematic reviews [81–

83], which were limited in robustness by variations in the analysis methodology and sample

sizes of individual studies. Systematic reviews also do not allow for data manipulation or sensi-

tivity analyses to draw new relevant conclusions. Meta-analyses have more power to detect real

differences compared to individual studies or systematic reviews given that precision estimates

increase with pooled data. Further, meta-analyses provide greater insights into the consistency

of test results through stronger quantification of the variability of test accuracy across many

settings and technologies.
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In conclusion, though variability was seen between technologies included, several technolo-

gies performed best using a treatment failure threshold of 1,000 copies/ml. The Abbott Real-

Time HIV-1 two- and one-spot, bioMérieux NucliSENS EasyQ HIV-1, Roche COBAS

TaqMan using the FVE protocol, and Siemens VERSANT HIV-1 RNA technologies can all be

considered for use with dried blood spot specimens when prepared using precision pipets or

measured micro-capillary EDTA tubes with a treatment failure threshold of 1,000 copies/ml. It

is expected that increased interest in and implementation of viral load testing using dried

blood spot specimens may encourage manufacturers to acquire regulatory approval for this

specimen type for in vitro diagnostic use, while new technologies such as plasma separation

cards may further support the testing landscape.
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