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Today’s environmental balance has been compromised by the unreasonable and

sometimes dangerous actions committed by humans to maintain their dominance over

the Earth’s natural resources. As a result, oceans are contaminated by the different

types of plastic trash, crude oil coming from mismanagement of transporting ships

spilling it in the water, and air pollution due to increasing production of greenhouse

gases, such as CO2 and CH4 etc., into the atmosphere. The lands, agricultural fields,

and groundwater are also contaminated by the infamous chemicals viz., polycyclic

aromatic hydrocarbons, pyrethroids pesticides, bisphenol-A, and dioxanes. Therefore,

bioremediation might function as a convenient alternative to restore a clean environment.

However, at present, the majority of bioremediation reports are limited to the natural

capabilities of microbial enzymes. Synthetic biology with uncompromised supervision of

ethical standards could help to outsmart nature’s engineering, such as the CETCH cycle

for improved CO2 fixation. Additionally, a blend of synthetic biology with machine learning

algorithms could expand the possibilities of bioengineering. This review summarized

current state-of-the-art knowledge of the data-assisted enzyme redesigning to actively

promote new research on important enzymes to ameliorate the environment.

Keywords: environment, crude oils, greenhouse gases, polycyclic aromatic hydrocarbons, enzymes, machine

learning, metabolic engineering

INTRODUCTION

The present growth and development of modern human societies are sustained by the stability
of the Holocene climate (Revell, 2020). However, the invariability of the stable Holocene climate
had been overwhelmingly abused by unrestrained consumption without genuine attention to
the environment. Moreover, due to such negligence, the total wilderness of the earth has
been dramatically reduced to only 35% of what it once was (Revell, 2020). Global warming
(Change, 2018), polar ice meltdown (Hansen et al., 2015), reduction of biodiversity (Underwood
et al., 2009; Handa et al., 2014; Delgado-Baquerizo et al., 2020), and extinctions of important
wild-life species (Thomas et al., 2004) are influencers in the global climate change. Our
environment is not only ruined but also destroyed by human activities. Now, we must reverse the
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GRAPHICAL ABSTRACT | Redesigned enzyme for bioremediation.

process (Revell, 2020). In addition, according to a recent
report, corals are dying as a result of high ocean-water pH
(Hoegh-Guldberg et al., 2017). However, corals are crucial
for underwater biodiversity (Wagner et al., 2020). Moreover,
ocean pollution is increasing due to plastic articles, crude oils
(Price et al., 2003), etc., which are not coral-friendly (Monteiro
et al., 2018; Forrest et al., 2019). However, plastic pollution
has been identified (Xanthos and Walker, 2017), and alternative
materials such as bioplastics (Peelman et al., 2013; Ashter, 2016;
Brodin et al., 2017) and plant-based materials are replacing non-
biodegradable plastics (Ashori, 2008; Mooney, 2009; Su et al.,
2018). Besides, the termination of non-biodegradable plastic
production is possible by strict government restrictions (Xanthos
and Walker, 2017). Conversely, we are still very dependent
on hydrocarbon oil (Holdren, 2006). Thus, disasters like oil
spills in the middle of oceans have become common events
(Magris and Giarrizzo, 2020). For example, the artic oil spill
released about 21,000 tons of diesel into rivers and subsoil
from a fuel tank near Norilsk, Russian Federation (Reuters,
June 9, 2020).

Furthermore, the air we breathe is also not very healthy
(Koenig, 2000; Carvalho, 2016; West et al., 2016). According to
a recent report, the air quality index (AQI) in some cities are
in critical condition (Chelani et al., 2002; Kumar and Goyal,
2011). Besides, the emission of high amounts of greenhouse gases
such as CO2 and methane has also threatened the respiratory
health of humans and animals (Marrero, 2010; Li S. et al.,
2018). Additionally, soil finds itself to not be an exception
to this list. Soil, as well as groundwater, is contaminated by
notorious chemicals such as polycyclic aromatic hydrocarbons
(PAH), pyrethroids pesticides (Holmes et al., 2008; Deng et al.,
2020), bisphenol-A, and dioxanes etc., (Lee and Peart, 2000;
Haritash and Kaushik, 2009). Bioremediation is one way to
restore our environment from devastating damage (Vidali, 2001).
Besides, bioremediation is an environment-friendly approach

that uses the microbial enzyme to metabolize the pollutant
as a nutrient for microbes (Vidali, 2001). For example, of
bioremediation by enzyme engineering, which can improve the
function of the microbial enzyme (Ali et al., 2020) by means
of directed evolution (Kuchner and Arnold, 1997) and rational
(Cedrone et al., 2000) and semi-rational approaches (Lutz, 2010).
However, engineering enzymes in the data-assisted synthetic
biology landscape could accelerate the hunt of the “super-
enzyme” in environmental perspectives. However, as this is a
new frontier to the scientific literature body, only a handful of
the kindest efforts are available at present (Ajjolli Nagaraja et al.,
2020; Lawson et al., 2020; Mou et al., 2020; Robinson et al.,
2020; Siedhoff et al., 2020; Wittmann et al., 2020). Herein, we
have summarized current state-of-the-art knowledge of the data-
assisted enzyme redesigning (Figure 1) to promote new studies
on enzyme redesigning from an environmental perspective.

SCIENTIFIC BACKGROUND OF ENZYME
REDESIGNING

Directed Evolution (DE) of Enzymes
Enzyme redesigning by “directed evolution” was introduced
in 1997 (Kuchner and Arnold, 1997). In that same year,
40x optimization of arsenic resistance property was reported
(Crameri et al., 1997). After that, many research groups
reported the DE of enzymes because it is a novel approach to
redesign biocatalyst (Kuchner and Arnold, 1997), (MacBeath
et al., 1998). For example, directed evolution is successful in
improving different enzymes, viz., Staphylococcal nuclease (100-
fold) (Pedersen et al., 1998), an efficient RNA polymerase
(Xia et al., 2002), a Cre recombinase (Santoro and Schultz,
2002), a new enzyme function by synthetic transformation
(Turner, 2009), or enzymes with industrial values (Zhao et al.,
2002; Cherry and Fidantsef, 2003; Eijsink et al., 2005; Liang
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FIGURE 1 | Current state-of-the-art trends and technologies for enzyme-mediated bioremediation, which include synthetic biology (enzyme reengineering and

redesigning in vitro), rational enzyme design (molecular modeling and simulation), directed enzyme evolution (enhanced enzyme selection), and data-assisted enzyme

engineering [artificial intelligence (AI) and machine learning (ML)].

et al., 2014; Porter et al., 2016). The biosynthetic pathway is
also completely manipulated by enzyme redesigning (Johannes
and Zhao, 2006). Besides, directed evolution methods were
progressively improved with time (Arnold and Georgiou,
2003; Lutz and Patrick, 2004; Leemhuis et al., 2009). Table 1
summarizes enzyme engineering approaches and new trends,
that could improve enzyme-mediated bioremediation toward an
environment-friendly society.

Rational Approach of Enzyme Redesigning
Rational and semi-rational approaches of the enzyme redesigning
are supervised by high-end computation power for the mutant
library preparation (Cedrone et al., 2000). Conversely, in directed
evolution, a random mutation library is prepared without
computation power (Kuchner and Arnold, 1997). Therefore, in
DE, a random mutation library preparation is more tedious and
time-consuming. However, active learning, machine learning,
and deep learning-assisted enzyme redesigning are state-of-
the-art methods for enzyme redesigning. Since the year 2013,
machine learning has become popular in studying science and
engineering (Zhang et al., 2020). Furthermore, in the late
20th century, computational technologies contribute to data-
assisted enzyme engineering (Cedrone et al., 2000; Chen, 2001;

Lutz, 2010; Otten et al., 2010; Steiner and Schwab, 2012). For
example, successful examples of the rational and combinatorial
approaches of enzyme redesigning are as follows: site-directed
mutagenesis with a combinatorial approach (Cedrone et al.,
2000), a structure-based improvement of the non-ribosomal
peptide synthetase (Chen, 2001), active site redesigning (Toscano
et al., 2007), enantioselectivity-based improvement (Otten et al.,
2010), site-directed saturationmutation analysis (Schneider et al.,
2010), de novo substrate-based enzyme engineering (Steiner
and Schwab, 2012), a combinatorial approach for improving
alcohol dehydrogenase (Zhang et al., 2015), the rational-designed
dual active site of a protein scaffold (Shu et al., 2016), 100x
optimization of a selenoenzyme (Wang et al., 2018), heavy
enzyme redesigning (Scott et al., 2019), 40x catalytic and 39x
stereoselectivity enhancement of a decarboxylase (Payer et al.,
2018), and widening active site tunnel by backbone redesigning
(Rigoldi et al., 2020), etc.

DATA-ASSISTED ENZYME ENGINEERING
(DAEE)

Studies on the structure–function relationship of enzymes are
possible with the help of the latest biophysical tools. Moreover,
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the protein database (PDB) (Sussman et al., 1998) and similar
databases (El-Gebali et al., 2019) offer excellent opportunities
for a data scientist to analyze and optimize particular enzyme
structures from a large volume of data. On the other hand,
machine learning (Mazurenko et al., 2019) and deep learning
are two approaches where specific algorithms are needed (LeCun
et al., 2015). So far, there are limited numbers of research studies
available in this new field of enzyme engineering.

SYNTHETIC BIOLOGY AND
DATA-ASSISTED ENZYME ENGINEERING

Synthetic biology offers the possibility to redesign the chemical
composition of biological molecules. It can also engineer natural
DNA polymerase to catalyze a new type of genetic material
called Xeno nucleic acids (XNA) (Glasscock et al., 2016). On
the other hand, machine learning offers excellent advantages to
handle big data. Thus, analyzing big data with machine learning
provides new insights to improve the enzyme (Mazurenko et al.,
2019). Besides, the synthetic biology industry or syndustry
is a growing area of the bioeconomy (Bueso and Tangney,
2017), and it includes a wide range of enzyme applications.
In comparison to some standard techniques of CO2 fixation
including cell-free synthetic biology and ultrahigh-throughput
enzyme engineering approaches using omics-based big data, the
CETCH cycle was designed to be 3x faster, providing more
possibilities for mutant library generation and screening (Young
and Alper, 2010 Schwander et al., 2016; Quaglia et al., 2017;
Badenhorst and Bornscheuer, 2018; García-Granados et al., 2019;
Jiang et al., 2020).

DATA-ASSISTED SYNTHETIC BIOLOGY
AND BIOREMEDIATION

In the literature, the majority of bioremediation reports are about
the natural capacity of the microbial enzymes. However, the
natural enzymatic efficiency is slow compared to any redesigned
or “tailor-made” enzymes (Schwander et al., 2016). Also, a
microorganism has to follow a very long route to reach the
final TCA cycle (Dutta et al., 2018). Yet, bioremediation with
the data-assisted synthetic biology is overlooked. Conversely,
bioremediation properties/pathways of a natural enzyme could
be optimized by data-assisted assisted enzyme engineering.

AIR POLLUTION, CO2 FIXATION, AND
RIBULOSE-1,5-BISPHOSPHATE
CARBOXYLASE/OXYGENASE (RUBISCO)

Air pollution due to greenhouse gases is a significant problem
for public health (Costello et al., 2009; Bierwirth, 2018) as well
as on the atmosphere and climate change (Costello et al., 2009;
Ramanathan and Feng, 2009; El Zein and Chehayeb, 2015).
Ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) is
a primary enzyme that catalyzes CO2 fixation in photosynthetic
plants (Hatch and Slack, 1970). As plants hold great potential
to reduce air pollution (Chung et al., 2011), redesigning

RuBisCO could be an ideal target for ecology and environmental
protection. The structure of RuBisCO varies with the plant
species, and some RuBisCO variants are also available in the
PDB database. Yet, studies on the identification of vital amino
acids are still sparse. But, Ile-165 and Met-331 mutations of
RuBisCO in Rhodospirillum rubrum might alter the enzyme
function. Besides, the Ala-47 mutation at the C-terminus near
the active site significantly improves the carboxylation efficiency
of RuBisCO.

Furthermore, some “form-I and -III” mutations
(Rhodospirillum rubum) in the C-terminus have resulted in
the loss of the enzyme activity (Satagopan et al., 2014). Moreover,
nitrosylation is crucial for RuBisCO activation in Galdieria
sulphuraria, which has been overlooked for many years (Stec,
2012). Additionally, Mg2+ and few amino acids serve a vital
role in the activation and carbamoylation process of RuBisCO
(Okano et al., 2002). These results are encouraging to optimize
RuBisCO by data-assisted enzyme engineering.

OCEAN WATER OIL SPILL,
BIOREMEDIATION, AND METHANE
MONOOXYGENASE (MMO)

Modern human society depends on petroleum hydrocarbons.
However, human activities on the oil spill and hydrocarbon
pollution occur in many parts of the world, especially in the
middle-east (Elsayed and Ammar, 2020; Nwachukwu et al., 2020;
Wang D. et al., 2020). Bacterial enzymes metabolize crude oil
fractions containing hydrocarbons (Stauffer et al., 2008). For
example, methane monooxygenase (MMO), commonly found
in methanotrophic bacteria (Singh and Singh, 2017), could be a
perfect target for data-assisted enzyme engineering to improve
oil-bioremediation strategy. MMOs are of two types, i.e., soluble
methane monooxygenase (sMMO) and particulate methane
monooxygenase (pMMO) (Lipscomb, 1994). The structural
features of sMMO are previously discussed in a more detailed
manner (Banerjee et al., 2019). The sMMO active site is mainly
composed of E144, H147, E209, E243, and H246 residues.
Similarly, Culpepper et al. have characterized the molecular
structure of pMMO (Culpepper and Rosenzweig, 2012), and
Rigoldi et al. have shown improved catalytic efficiency of pMMO
improved by widening the diameter of the active site (Rigoldi
et al., 2020). A recent study on sMMO showed an essential role
of O2 transport passage to the active site termed as W308-tunnel
(Jones et al., 2020). Thus, reengineering sMMO might improve
the enzymatic efficiency.

SOIL AND GROUNDWATER
CONTAMINATION BY PAHS AND
AROMATIC RING HYDROXYLATING
DIOXYGENASE (ARHD)

The polycyclic aromatic hydrocarbon is a harmful chemical
comprising 16 variants (PAHs) added to the priority list by the US
Environmental Protection Agency (Andersson and Achten, 2015;
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TABLE 1 | Summary of enzyme engineering approaches and new trends.

Type of improvements Brief about the advancements

Workflow/pipeline: for DE. A machine learning assisted directed evolution (MLDE) workflow. It tests many design

considerations of the MLDE pipeline (Wittmann et al., 2020). Available at https://github.com/fhalab/

MLDE

A predictive DE method. An innovative sequence–activity relationship (innov’SAR) method. This method combines wet-lab

experimentation and computational protein design. An epoxide hydrolase from Aspergillus niger is

used in this model (Cadet et al., 2018).

A predictive model for catalytic turnover number (kcat). The model has identified a diverse set of enzyme features, for example, structure, biochemistry, and

the network. These networks are applicable for in vivo and in vitro enzyme turnover rates. Finally, the

predicted catalytic turnover rates are correlated with experimental results (Heckmann et al., 2018).

A predictive model for optimal growth temperature and

catalytic temperature optima (Topt ).

This model is used to generate the optimal catalytic temperature of the enzyme. It helps to redesign

enzymes for performance at extreme temperatures (Li et al., 2019).

A predictive model of concentration for metabolic flux

optimization.

The model uses the artificial neural network. It is helpful for the optimization of in silico enzyme

concentration prediction. The accurate enzyme concentration is helpful for the cell-free enzyme

assay (Ajjolli Nagaraja et al., 2020).

Machine learning (ML) sequence function models. It provides steps for machine learning sequence function-based models. This model is helpful for

accurate protein engineering through DE (Yang et al., 2019).

ML-based improvement of proteinase K. This model uses two cycles of machine learning algorithms. The catalytic efficiency of the enzyme

improves about 20x by this strategy. The significant advantages of this model are that it tests only

95 variants of redesigned proteinase K (Liao et al., 2007).

Supervised machine learning-based ligand affinity, predation

models.

This work provides detail information on the supervised machine learning-based model. This model

predicts the ligand affinity of the enzymes (S Heck et al., 2017).

An ensemble learning model for accurate prediction of the

optimum catalytic temperature (Topt ) of the enzymes.

It is an improved ensemble learning model. This model eliminates error in the temperature range

prediction of the enzyme (Gado et al., 2020).

ML-based prediction model for enzyme activity and substrate

specificity of thiol superfamily enzyme.

It is a model of thiolase superfamily enzyme. It measured the activity of 73 diverse bacterial thiolase

(Robinson et al., 2020). Available at https://github.com/serina-robinson/thiolase-machine-learning/

A high-quality and high-throughput deep learning (DL) model

for accurate enzyme commission (EC) number prediction

model.

It is a high-precise deep learning model. It uses three convolutional neural networks and homology

analysis. This model is useful for Enzyme Commission (EC) number prediction (Ryu et al., 2019).

A multi-level machine learning model enzyme-substrate

prediction.

It applies experimental enzyme activity data, structure, ligand docking, and physiochemical

properties. This model is based on a bacterial nitrilase (Mou et al., 2020).

A multi-level hierarchical deep learning model for

multi-functional enzyme prediction.

This deep learning model is based on a novel loss of function. This loss of function is associated with

the relationship between different levels and self-adapted level assigning threshold (Zou et al., 2019).

The proposed machine learning model for class selective

optimization of enzyme.

This work emphasized the application of machine learning. It also discussed the practical

improvement of biotechnology, metabolic engineering, and synthetic biology (Ng, 2020).

DE model of the enzyme based on a statistical exploration of

sequence-function space.

This report provides the usefulness of machine learning assisted directed evolution. It highlights the

disadvantages of random mutagenesis, DNA shuffling, etc. (Fox and Huisman, 2008).

Automatic single, multi-level enzymatic function prediction

model.

It is an accurate EC number prediction model. The model combines both structure and amino acid

sequence information. This approach also includes feature level and decision level investigation

(Amidi et al., 2017). This machine learning model is available at https://figshare.com/s/

a63e0bafa9b71fc7cbd7

A ML model for identification of the reactivity promoting

region (RPR) of the enzyme.

This model uses multiples descriptors. The descriptors are substrate conformation, metal

coordinate geometry, and substrate bond polarization. This model promotes the substrate reactivity

with <85% accuracy (Bonk et al., 2019).

A Random Forest-based machine learning model for enzyme

reaction prediction.

This model predicts EC number by two-fold accuracy optimizations. This prediction optimization is

achieved by sequence data and enzyme-substrate models (Watanabe et al., 2020).

A supported vector machine (SVM) model for substrate

specificity prediction.

This SVM model uses a large set of data. Moreover, it is 80% accurate with 30% (approx.) less

compound in the datasets (Pertusi et al., 2017).

A quantitatively validated machine learning model for

enzymatic pathway prediction.

This ML model uses an extensive data set of 123 biochemical pathways. Moreover, the decision

tree, logistic regression, etc. are used as an input (Dale et al., 2010).

A multi-level machine learning model for prediction of the

enzymatic mechanism.

The model utilizes a large set of databases, for example, InterPro, Catalytic site Atlas, MACiE,

EzCatDb, and SFLD. It also uses off-the-shelf K-Nearest Neighbors multi-label algorithm (De Ferrari

and Mitchell, 2014). Available online at http://sourceforge.net/projects/ml2db/

A high-performance ML-based tool for metabolic pathway

prediction of plant enzymes.

This model uses sequence similarities of the enzymes with the reference sequence. It is also

available for local installation using a Graphical user interface (de Oliveira Almeida and Valente,

2020).

A hyper network model for enzymatic weight update. The molecular algorithm is based on training data and targets internal loop structures in DNA and

ensemble learning (Baek et al., 2019).

(Continued)
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TABLE 1 | Continued

Type of improvements Brief about the advancements

Multiple machine learning algorithms for prediction enzymatic

reactions.

This algorithm uses three reaction fingerprints and seven ML models. This model can predict the

enzymatic reactions catalyzed by oxidoreductase and hydrolase (Cai et al., 2018).

Supervised machine learning-based enzyme class prediction. This model uses amino acid sequence-derived features. These features are amino acid composition,

dipeptide composition, amino acid distribution, etc. Besides, support vector machine recursive

feature elimination and Random Forest are also used by this model (Yadav and Tiwari, 2015).

An online server for enzyme selective pathway design. “Selenzyme” is an assembled tool with the extended application of many tools such as machine

learning, antiSMASH, etc. (Carbonell et al., 2018). Available at http://selenzyme.synbiochem.co.uk/

A semisupervised Gaussian model for enzyme search and

Michaelis—Menten constant Km prediction.

This automatic semi-supervised Gaussian model uses chemical transformation fundamentals to

provide probability estimates. Moreover, the probability estimate model is confirmed in E. coli (Mellor

et al., 2016).

Machine learning models for metabolic engineering. This work illustrates how machine learning models can overcome the rate-limiting step and optimize

complex metabolic networks (Zhou et al., 2020).

A deep learning model for accurate enzyme function

prediction.

DEEPre is a deep learning model based on accurate prediction of EC number (Li Y. et al., 2018).

Available at http://www.cbrc.kaust.edu.sa/DEEPre

A machine learning-based web-server for prediction of the

enzyme class.

SMV-Prot prediction model is based on protein sequences irrespective of the similarities and

available at http://bidd2.nus.edu.sg/cgi-bin/svmprot/svmprot.cgi (Li et al., 2016).

Zelinkova andWenzl, 2015; Dutta et al., 2017, 2018). These PAHs’
physiochemical and toxic properties raise a significant concern
over their impact on soil and groundwater contamination (Wang
et al., 2009). Moreover, several reports showed evidence of
PAH contamination in different soil and groundwater sources
(Sushkova et al., 2018; Haleyur et al., 2019; Lu et al., 2019;
Liang et al., 2020; Pacwa-Płociniczak et al., 2020; Picariello et al.,
2020; Wang Y. et al., 2020; Wolf et al., 2020; Ambade et al.,
2021a,b; Qiao et al., 2021). Therefore, the PAH contamination
problem requires more research in this direction using chemical
cleavage. PAHs are composed of two or more fused aromatic
rings (Haritash and Kaushik, 2009), which can cleave by the
aromatic ring hydroxylating dioxygenase, estradiol ring cleavage
dioxygenase, and estradiol ring cleavage dioxygenase (Arora
et al., 2009). Aromatic ring hydroxylating dioxygenase (ARHD) is
a promising enzyme for this purpose, composed of an iron–sulfur
flavoprotein and an iron–sulfur ferredoxin subunit (Butler and
Mason, 1996). The advantage of this enzyme is that it can catalyze
biodegradation of more than one PAH species and initiates the
degradation of 44 different aromatic compounds (Parales and
Resnick, 2006). Therefore, this enzymemight be a promising tool
to implement in environmental applications (Tan and Parales,
2016), and its further reengineering using a data-assisted enzyme
engineering approach could be advantageous.

CONCLUSION

In this condensed review, we have identified different approaches
of data-assisted enzyme engineering that could be applied
on RuBisCO for air pollution, methene monooxygenase for
crude-oil bioremediation, and aromatic ring hydroxylating

dioxygenase for bioremediation of PAHs from soil and
groundwater. Future directions can be referred to a design
and development of the pipelines, algorithms, and protocols,
integrating aforementioned state-of-the-art technologies for
enzyme-mediated bioremediation, such as synthetic biology,
rational enzyme design, directed enzyme evolution, and AI/ML-
assisted enzyme engineering. Overall, this review might help
to potentiate more research on this direction, which is an
urgent need in this present environmental crisis. However,
challenges remain active to apply data-assisted synthetic
biology in improving bioremediation, but with computation
power and up-gradation of the coding skills, these could
be overcome.
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