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Integrative reconstruction of cancer genome
karyotypes using InfoGenomeR

Yeonghun Lee® ' & Hyunju Lee® '*

Annotation of structural variations (SVs) and base-level karyotyping in cancer cells remains
challenging. Here, we present Integrative Framework for Genome Reconstruction (InfoGen-
omeR)-a graph-based framework that can reconstruct individual SVs into karyotypes based
on whole-genome sequencing data, by integrating SVs, total copy number alterations, allele-
specific copy numbers, and haplotype information. Using whole-genome sequencing data
sets of patients with breast cancer, glioblastoma multiforme, and ovarian cancer, we
demonstrate the analytical potential of InfoGenomeR. We identify recurrent derivative
chromosomes derived from chromosomes 11 and 17 in breast cancer samples, with homo-
geneously staining regions for CCNDT and ERBBZ2, and double minutes and breakage-fusion-
bridge cycles in glioblastoma multiforme and ovarian cancer samples, respectively. Moreover,
we show that InfoGenomeR can discriminate private and shared SVs between primary and
metastatic cancer sites that could contribute to tumour evolution. These findings indicate that
InfoGenomeR can guide targeted therapies by unravelling cancer-specific SVs on a genome-
wide scale.
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ancer cells acquire numerous changes in their DNA,

ranging from point mutations to DNA rearrangements,

that ultimately result in a complex cancer-associated
genome. Recurrent chromosomal structural variations (SVs) have
been linked to tumorigenesis, including simple SVs such as tan-
dem duplications, deletions, inversions and insertions, which
have been extensively studied!2, as well as more complex SVs
such as translocations, fold-back inversions, chromothripsis,
homogeneously staining regions (HSRs, representing repetitive
gene amplification) and double minutes (DMs, extra-
chromosomal DNA)3#. Traditional karyotyping techniques, such
as G-banding and fluorescent in situ hybridisation (FISH) can
reveal the presence of complex SVs in derivative chromosomes
(by-product of the recombination of multiple chromosomes with
intact centromeres) or marker chromosomes (abnormal chro-
mosomes with unidentified genomic segments)°. However, owing
to their limited resolution (~5Mb), standard karyotyping tech-
niques cannot be used to accurately identify complex SVs in
derivative or marker chromosomes.

High-throughput sequencing has advanced our understanding
of SVs by resolving the genomic changes at the single-base level.
Early-stage methods have been developed to detect SVs using
discordant and split reads from sequencing data®?; however,
these methods have limited detection ability for SV breakpoints in
local genomic windows. Recently, several methods!-19 that
integrate genomic information, such as cancer purity and ploidy,
total copy number alterations (CNAs), allele-specific CNAs and
haplotype information, have been developed to identify SVs. They
use a graph-based representation for rearranged cancer genomes
but do not analyse the actual karyotypes of linear and/or circular
chromosomes, thus, not producing karyotypic topologies such as
HSRs, DMs, or chromothripsis. Global reconstruction of genome
karyotypes in cancers may allow uncovering of the mechanism
underlying cancer development and evolution.

In this article, we present a method to reconstruct cancer
genome karyotypes based on complex topology analysis, pro-
viding a haplotype graph-based representation. Our graph-
based framework, named Integrative Framework for Genome
Reconstruction (InfoGenomeR), uses a breakpoint graph to
model the connectivity among genomic segments on a genome-
wide scale using as input SV calls, unmapped reads, read-depth
information and single nucleotide polymorphisms (SNPs).
Furthermore, the InfoGenomeR tool classifies the rearrange-
ment topologies and derives the cancer genome karyotypes
from the haplotype graphical output (Supplementary Fig. 1).
We show the analytical potential of our method by comparing it
with existing tools using simulation data and cancer cell line
data. Moreover, using WGS data from The Cancer Genome
Atlas (TCGA)?9-22 and European Genome-phenome Archive
(EGA)?3, we show that InfoGenomeR can reconstruct the
karyotypes of cancer cells and distinguish between private and
shared SVs in primary and metastatic cancer cells, and reveal
tumour evolution.

Results

InfoGenomeR reconstructs candidate genome karyotypes. First,
InfoGenomeR evaluates all reads in WGS data sets, generates
initial SV calls using the tools DELLY2°, Manta’ and novoBreak®
(Fig. 1a), and performs initial CN segmentation using BIC-seq224.
Then, it constructs an initial breakpoint graph of local genomic
segments using the initial SV and CN breakpoints. The break-
point graph is composed of nodes and segment edges, reference
edges, and SV edges. The following three-step iterations update
the initial breakpoint graph. In each iteration, (i) local genomic
segments are refined, (ii) integer CNs of genomic segments are

estimated using purity and ploidy (ABSOLUTE?®) and (iii) the
integer programming of the CN balance condition?® determines
the edge multiplicities of the breakpoint graph and removes zero-
multiplicity SVs. Each iteration restarts with the SV set without
zero-multiplicity SVs, CN segmentation is performed without the
previous false-positive SV breakpoints, and integer CNs of segments
are recalculated. Iterations are performed until the graph converges
(no zero-multiplicity SV is observed). The iterations are composed
of first and second rounds of iterations depending on the seg-
mentation parameter, and the CN segments are merged with their
neighbour CN segments more commonly in the second-round
iterations than in the first-round iterations. At the intermediate step
between the first and second rounds of iterations, the discordant or
unmapped reads, which do not pair properly, are remapped to the
sequences of candidate adjacencies from unbalanced nodes.
(Fig. 1b). Then, candidate adjacencies supported by their reads are
generated, and the second-round iterations finalise the breakpoint
graph. Next, integer CNs are divided into ASCNs using negative
binomial models for the different depths of heterozygous SNPs, and
the expectation-maximisation (EM) algorithm is used for estimat-
ing parameters. Integer programming under the CN balance con-
dition with the ASCNs constructs the allele-specific breakpoint
graph and then the imbalanced heterozygous SNP sequences are
phased (Fig. 1c). Genomic segments with balanced heterozygous
SNPs are phased using a hidden Markov model (BEAGLE?7), and
the final haplotype breakpoint graph is constructed (Fig. 1d).
Eulerian paths can be enumerated to obtain candidate genomes by
pairing breakpoint graph edges using a multiway tree structure?®
with minimum-entropy search. In the end, InfoGenomeR generates
candidate karyotypes of the cancer cells at the haplotype level
(Fig. 1e).

InfoGenomeR outperforms other variant-calling methods.
Based on the simulated data sets (Supplementary Note 1), we
evaluated the performance of InfoGenomeR against eight other
tools in six restricted variant-calling categories, SVs, SV copy
numbers (SVCNs), CNA breakpoints, integer CNs, ASCNs and
haplotype. These six categories were evaluated for the total and
somatic mode. Different methods were compared to detect var-
iants in each category. The performance of the individual meth-
ods was evaluated before integrating them into InfoGenomeR.
We performed fourfold cross-validation for each haplotype cov-
erage, where the selected parameters or thresholds were deter-
mined by enumerating a defined range of values (Supplementary
Table 1). To compare InfoGenomeR with JaBbA, which is the
recent graph SV caller, we ran JaBbA!¢ using the same SV union
set input (DELLY2, Manta and novoBreak) that we used for
InfoGenomeR. Because JaBbA was sensitive to the input purity
and ploidy hyperparameter, we used the purity and ploidy esti-
mation of InfoGenomeR for the JaBbA input. We tested various
hyperparameter settings for JaBbA along with the JaBbA
recommendation and selected the best setting for SV detection
(Supplementary Fig. 2). We judged the performance metrics on
the precision and recall of each variant-calling category (Sup-
plementary Table 2).

InfoGenomeR achieved the highest total (precision, 0.987; recall,
0.825) and somatic (precision, 0.981; recall, 0.919) SV calling
performance, at a haplotype coverage of 15X, when compared with
the three methods using discordant and split reads (DELLY2,
Manta, and novoBreak), and the three methods using both
discordant/split reads and read depths (CONSERTING!?,
Weaver!! and JaBbA) (Fig. 2). Furthermore, JaBbA produced the
second-best results for SV calling. Our results showed that the
integrative strategy of InfoGenomeR imparted an enhanced
performance over individual SV tools (DELLY2, Manta and
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Fig. 1 Schematic diagram of InfoGenomeR steps. a Each of the two chromosomes (chrA and chrB) has two haplotypes (hap1 and hap2), with head-to-tail
(HT), tail-to-head (TH), tail-to-tail (TT) and head-to-head (HH) SVs. b Breakpoint graph construction. After reads from whole-genome sequencing data
(WGS) are aligned, a breakpoint graph that is composed of nodes and segment edges (blue and green boxes), reference edges (black lines) and SV edges
(coloured lines) is constructed. An iteration consisting of three steps is shown in the first box. The log,ratio represents a normalised copy number (CN),
and numbers under the nodes are integer CNs (low-confidence CNs are shown in grey). Note that the false-positive edges change to grey edges after
integer programming. Once the graph converges (first iterations), reads supporting a deletion (green) are remapped, and the segmentation parameter 4 is
updated before second iterations. ¢ Allele-specific graph construction. ASCNs are measured for each segment using a negative binomial model, and

imbalanced segments are divided into allelic segments (light blue and blue for chrA, light green and green for chrB). Balanced segments (grey) remain in
the same states in the breakpoint graph. d Haplotype graph construction. Allelic segments are phased into haplotypes using the HMM (blue and green
arrows) to construct the haplotype graph. e The Eulerian path-finding problem in the haplotype graph finally reconstructs the cancer genome from the

alignment data. Here, the example has unique paths.

novoBreak), and InfoGenomeR outperformed the other graph SV
caller, JaBbA. Although CONSERTING and Weaver used dis-
cordant/split reads and read depths together, they exhibited a lower
performance compared to DELLY2 and Manta. On the other hand,
InfoGenomeR showed higher precision, even while maintaining the
recall rate from the initial SV calls (Supplementary Fig. 3). In
addition, InfoGenomeR remapped non-properly paired reads to
unbalanced nodes to discover SVs at the intermediate step, which
resulted in a 2.8% improvement in the recall rate for somatic SVs
(Supplementary Fig. 4). As read-depth integration with SV could be
sensitive to variant size, we next compared the performances based
on the variant size. Again, InfoGenomeR remained robust,
regardless of variant size, and showed the highest precision and
recall rate compared to all other tested methods (Supplementary
Fig. 5). Finally, we compared InfoGenomeR, Weaver and JaBbA in
terms of SVCNs detection, and yet again, InfoGenomeR showed
better performance (Fig. 2).

For CNA breakpoint calling, InfoGenomeR exhibited an
enhanced performance over BIC-seq2, likely due to its local
segmentation strategy (Fig. 2). Specifically, InfoGenomeR pre-
determined CNA breakpoints using initial SVs (first-round
iterations), discovered CNA breakpoints where candidate SVs
existed (the intermediate step), and reduced false breakpoints in
segmented regions by increasing the segmentation parameter
(second-round iterations) (Supplementary Fig. 4). The local
segmentation resolved trade-offs between filtering noises and
recalling true variants, thereby resulting in the highest precision
and recall. Although CONSERTING wuses a similar local
segmentation approach as InfoGenomeR, it showed a lower
performance. Weaver, on the other hand, showed the lowest
performance and was sensitive to variant size and purity
(Supplementary Figs. 3, 5). JaBbA showed the second-best
performance for CNA breakpoints. Next, we compared their
performance in detecting integer CNs and ASCNs of segmented
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Fig. 2 InfoGenomeR performance with simulated data sets. F-measures were compared among variant-calling tools for five variant-calling categories
(SVs, SVCNs, CNA breakpoints, integer CNs and ASCNs) and switch error rates for haplotype, with controls (somatic variants), and without controls (total
variants including germline and somatic variants). The x-axis denotes the haplotype coverage (3x to 20x), representing the mean number of reads aligned

to a nucleotide in a haplotype.

regions based on corroboration (defined as >90% of the regions of
the segment having the same state, with true copy numbers)!0.
For integer CNs, Weaver was able to detect total integer CNs, but
not somatic integer CNs with the germline coverage control.
Further, we combined BIC-seq2 and ABSOLUTE to compare the
ability to detect total and somatic integer CNs. JaBbA was
compared with InfoGenomeR for both total and somatic integer
CNs. InfoGenomeR showed an enhanced performance over the
combination of BIC-seq2 and ABSOLUTE and outperformed
JaBbA, achieving the best performance in detecting integer CNs.
For ASCNs, InfoGenomeR showed an F-measure of 0.799 (15X),
which was 14% higher than the F-measure of Weaver. For
somatic ASCNs, InfoGenomeR showed the F-measure of 0.907
(15X). Since ASCN’s depend on the number of SNPs, we observed
that small germline variants (<10kb) caused a bottleneck
(Supplementary Fig. 5). InfoGenomeR showed F-measures of
0.940 (total variants) and 0.925 (somatic variants) for large
ASCNs (>100 kb) (Supplementary Fig. 5).

For haplotype estimation, we measured the switch error rate
between the true and inferred haplotypes, based on the total or
somatic breakpoint graph. InfoGenomeR showed error rates of
1.98% and 1.87% for the total and somatic mode respectively
(15X) (Fig. 2), and the small decrease in the error rate for the
somatic mode might have resulted from the higher accuracy of
somatic ASCN estimation. InfoGenomeR showed better perfor-
mance for haplotype estimation than Weaver, because it could
benefit from the better ASCN estimation than Weaver.

To compare the performance depending on the human
reference genome versions, we evaluated InfoGenomeR against
the five other tools using GRCh38-based simulated data sets.
Performance gaps between SV callers were reduced compared
with those of the GRCh37-based simulated data sets

(Supplementary Fig. 6). This reduction in performance gaps
might have resulted from the mappability improvement of
GRCh38. InfoGenomeR and JaBbA for total SVs, and InfoGen-
omeR and Manta for somatic SVs exhibited the best perfor-
mances in that order, respectively. InfoGenomeR and JaBbA had
similar performances for total CNA breakpoint calling. Although,
the mappability improvement in the GRCh38 reference could
reduce performance gaps among the variant-calling methods, the
high performance of InfoGenomeR was still valid for the GRCh38
reference. Considering these results, InfoGenomeR outperformed
the other variant-calling methods in all restricted variant-calling
categories, for both the GRCh37 and GRCh38 references.

Validation using cancer cell lines. To evaluate the performance
of InfoGenomeR, we analysed WGS data from three lung cancer
cell lines (H292, A549 and H226)2° and the HeLa cell line3",
whose karyotypes are well known. We constructed haplotype
graphs for each cell line (Fig. 3). Because the graphs included
multiple karyotypic possibilities as per the alternative Eulerian
paths, we selected the one with the minimum entropy for the
validation of karyotyping among the candidate karyotypes. The
reconstructed karyotypes were matched with m-FISH karyotypes,
and chromosomal ends predicted by InfoGenomeR were com-
pared (Table 1, Supplementary Table 3 and Supplementary
Fig. 7). InfoGenomeR identified 62.5, 50.0, 53.3 and 40% of the
interchromosomal translocations from m-FISH (Table 1). Most
of the unidentified translocations were found in centromeric or
telomeric regions (Supplementary Table 3). For the correctly
identified interchromosomal translocations, InfoGenomeR can
detect breakpoints at the base-pair resolution in the haplotype,
and types of complex SVs, such as chromothripsis that cannot be
revealed by m-FISH.
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Fig. 3 The haplotype graphs and reconstructed karyotypes of cancer cell lines. The haplotype graph is composed of nodes and segment edges from two
haplotypes (green and blue boxes) and reference edges and SV edges (black and coloured lines, respectively). The copy numbers of allelic segments are
represented by the colour intensities (one to five copies). SVs included in karyotype analysis are denoted by D (deletion), TD (tandem duplication),

T (translocation), FB (fold-back inversion) and C (complex SVs). a=e Sets of interchromosomal SVs across chromosomes and their karyotypes of the H292

(a), A549 (b), H226 (¢) and Hela (d, e) cell lines are shown.

The H292 cell line showed chromoplexy (rearrangement
chains)3! among chromosomes 6, 8, 11 and 19 (T3-T6 and C2
in Fig. 3a), resulting in der(6)t(6;8), der(11)t(11;19) and der(19)t
(11;19). The A549 cell line was triploid and showed chromo-
thripsis in chromosomes 3 and 15 (C1 and C2, respectively, in
Fig. 3b). We reconstructed der(19)t(15;19)x2 that was generated

from chromothripsis of chromosome 15. In addition, we
reconstructed the karyotype of the H226 cell line, which was
tetraploid, with balanced translocations, t(8;19) and t(9;20) (T2-3
and T4-5, respectively, in Fig. 3c), and unbalanced translocations,
t(7;10), t(10;15) and t(20;21) (T1, T6 and T7, respectively, in
Fig. 3c). The derivative chromosomes were duplicated, which
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Table 1 Performance of karyotype reconstruction for cancer cell lines.

Translocation Karyotype
Cell line Ploidy Precision Recall Precision Recall
H292 Diploidy 1.000 (5/5) 0.625 (5/8) 0.800 (40/50) 0.870 (40/46)
A549 Triploidy 1.000 (2/2) 0.500 (2/4) 0.924 (61/66) 0.968 (61/63)
H226 Tetraploidy 0.875 (7/8) 0.583 (7/12) 0.775 (69/89) 0.863 (69/80)
Hela Triploidy 0.890 (8/9) 0.400 (8/20) 0.680 (53/78) 0.828 (53/64)

suggested that translocations were followed by whole-genome
duplications (WGDs).

For the HeLa cell line (Supplementary Note 2 and Supple-
mentary Fig. 8), we identified nine translocations, of which, eight
matched the translocations identified by m-FISH. The unmatched
translocation was between 3p and a near-centromeric region of
the chromosome, representing centromeric noise (T3 in Fig. 3d).
Notably, we reconstructed representative HeLa derivative chro-
mosomes [der(1)t(1;3), der(12)t(3;12) and der(19)t(13;19)]3? with
InfoGenomeR at the base-pair resolution (Fig. 3d). Our results
showed that chromosome 11 had the excessive SVs with the loss
of heterozygosity (LOH), implicating that chromothripsis under-
lay der(11)t(7;11) (Fig. 3e).

Further, we found TP63 and MYC tandem duplications with
arm-level amplifications and focal YAPI amplification in der(11)t
(7;11) in the HeLa cell line (Supplementary Fig. 9); these
amplifications are recurrent in cervical cancer3®. In addition, we
analysed changes in expression levels according to SVs using
matched RNA-seq data3? (Methods). We detected a homozygous
exonic deletion in the LRP1B tumour suppressor gene and four
head-to-tail or tail-to-head gene fusions (DNER-TRIPI2,
SLC12A3-NLRC5, KLHDC4-SLC7A5 and TEAD2-LAIRI). These
data were validated using discordant reads of matched RNA-seq
data30 (Supplementary Fig. 9). The gene expression in derivative
chromosomes was upregulated proportionally to the increased
copy number, as confirmed by the reconstructed karyotypes
(Supplementary Fig. 10). Taken together, the reconstructed
genome was supported by the earlier published report in cervical
cancer and RNA expression data.

InfoGenomeR can characterise complex SVs and karyotypes in
cancers. Having shown that InfoGenomeR could construct kar-
yotypes of cancer cells, we applied InfoGenomeR to different data
sets of breast invasive carcinoma (BRCA, n = 90)29, glioblastoma
multiforme (GBM, n=37)2! and ovarian serous cystadeno-
carcinoma (OV, n=47)?? taken from TCGA. InfoGenomeR
identified 223, 124 and 275 somatic SVs on average from BRCAs,
GBMs and OVs data sets, respectively, of which >20% were
complex SVs (Supplementary Fig. 11). We performed clustering
analysis of these complex SVs from the haplotype graph, defining
an SV cluster as a set of closely rearranged focal segments
(Supplementary Note 3 and Supplementary Fig. 12). The land-
scapes of somatic SVs and SV clusters of the total 174 data sets
are described in the Supplementary Note 4. We further classified
SV clusters from BRCA, GBM, and OV into three amplification
types: (1) HSR (an SV cluster with high amplification (>10
copies) connected to a chromosomal arm); (2) HSR/DM (an SV
cluster with high amplification connected to a chromosomal arm
and a cycle with at least five multiplicities); and (3) DM (an SV
cluster with a cycle with at least five multiplicities, without any
connection to a chromosomal arm). HSR/DM amplification type
represents either SV clusters of unclear distinction between HSRs
and DMs or simultaneous existence of HSRs and DMs!234. We
also classified a deletion type chromothripsis, an SV cluster with
interspersed LOH19-3>,

Next, we individually examined data from each cancer type. In
the BRCA data set, we derived the karyotype structures of nine
patients with rearrangement in chromosome 17 (Fig. 4a). In our
results, chromosomes 11 and 17 were the most commonly
rearranged chromosomes and exhibited HSR or HSR/DM type
SV clusters. Also, HSRs and HSR/DMs accompanied CTs to
generate derivative chromosomes. Our results showed that
interchromosomal SVs caused frequent clustering of ERBB2 on
chromosome 17 with other amplified oncogenes in HSRs and
HSR/DMs (Fig. 4a and Supplementary Fig. 13). Further, CCNDI
on chromosome 11 clustered most commonly with ERRB2,
followed by MECOM, FGFRI and MYC. Taken together, these
findings provide karyotypic evidence for the co-localisation of
oncogenes and suggest that CT's are associated with the HSR, and
HSR/DM frequently observed in BRCAs.

In the GBM data set, DMs, the main hallmarks of oncogene
amplifications were observed in 16.2% (6/37) of the samples®3°
(Fig. 4b). DMs were absent from chromosomes with
excisions**37 or CTs, while the remaining segments were joined
together to generate LOHs. We observed HSR/DMs in 59.4% (22/
37) of the samples. Since DMs required a stringent condition of
no connection to a chromosomal arm, most of the SV clusters
were classified as HSR/DMs. The major GBM oncogenes, namely
CDK, MDM2, KIT, PDGFRA and EGFR, were amplified in HSR/
DMs and DMs (Supplementary Fig. 14). Further, CDK4 and
MDM?2 were the most frequently clustered partners on chromo-
some 12, while KIT, PDGFRA and EGFR showed interchromo-
somal clustering with CDK4 and MDM?2. Notably, their
amplifications were high and focal, suggesting the possibility of
DMs, which appeared to have developed via a mechanism
different from that of the HSR observed in BRCAs.

OVs were characterised by arm-level CNAs and clusters of
fold-back inversions suggesting breakage-fusion-bridge (BFB)
cycles!1:38, which were common on chromosome 19 (n=7,
14.9% of OVs). Fold-back inversions induce inverted repeats
generating HSRs, and they are strongly associated with poor
prognosis in OVs3%. We observed HSRs with BFB cycles (fold-
back inversions >5) in derivative chromosomes with interchro-
mosomal SVs, where BRD4 and CCNEI were frequently amplified
on chromosome 19 (Supplementary Fig. 15). Along with BFB
cycles, HSRs with CTs, similar to those in BRCAs, were also
observed in derivative chromosomes with BRD4 and CCNE]I
amplification, suggesting that different mechanisms could be
involved in their amplifications.

Application of multi-sample WGS data to reveal tumour evo-
lution. Tumour evolution has been investigated in the context of
single nucleotide variants (SNVs) and CNAs?33%40, However,
differentiation between private and shared SVs in primary or
metastatic cells have been less-thoroughly investigated due to false-
positive SVs and inconsistent SV calling rates between multi-
samples*!. We applied InfoGenomeR to multi-sample WGS data
from locally relapsed or metastatic breast cancer samples (Meth-
ods), downloaded from the EGA (EGAD00001002696)**. We
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Fig. 4 The karyotypic landscape of BRCAs and GBMs. Karyotypic possibilities of BRCAs and GBMs from The Cancer Genome Atlas (TCGA), where SV
clusters from the haplotype graph are represented in brackets. SV clusters are denoted by HSR, HSR/DM, DM and CT with concomitantly amplified
cancer-related genes (red texts). The patient identifier of TCGA is shown at the top of each karyotype. Repetitive cycles that imply DM formations are
represented as circles. a Commonly rearranged chromosomes 17 with interchromosomal SV clusters in BRCAs. SV clusters in BRCAs are connected to
chromosomal arms or telomeric ends, forming derivative chromosomes with HSRs and CTs usually accompany them. Each chromosomal end at which SV
clusters are located is represented with edges (grey lines). b Commonly rearranged chromosomes 4, 7 and 12, and DM formations in GBMs. DMs below
chromosomal karyotypes are shown with amplified cancer-related genes in the SV clusters.

analysed 34 tumour samples from 15 patients with lesions described
as primary and/or metastatic.

Six patients showed a higher accumulation of private SVs in
primary tumours than in metastatic tumours (Fig. 5a). Two of these
patients (PD4252 and PD4820) showed new SV clusters in primary
tumours (Fig. 5b, ¢, Supplementary Fig. 16). Patient PD4252 had a
LOH deletion of 9q in the primary tumour, where the remaining
segments were incorporated into chromosome 1 with a LOH of 1p,
forming an HSR with NFIL3 amplification (PD4252a). Patient
PD4820 had an HSR/DM with ERBB2 and BRD4 amplification and
an HSR with PAKI amplification, and these were passed on during
lymph node (LN) metastasis (PD4820c). A new SV cluster (cluster
3) identified in the primary tumour was generated with inverted
repeats showing FOXO3 amplification. These results indicate the
acquisition of the SV cluster in primary tumours after LN
metastasis. Although there is a possibility that a minor subclone
without the SV cluster might have metastasised to the LN, we

discounted the idea since no sub-clonal CNA was observed in the
primary tumours (Supplementary Fig. 16).

The results from the other nine patients showed that
metastases were enriched in SV clusters that had either
accumulated or were newly generated through evolutionary
processes, thereby indicating metastatic evolution (Fig. 5a). Two
of these patients (PD11460 and PD9193) showed new SV clusters
in metastatic tumours. We found divergent evolution between the
metastatic lesions and the primary tumour in patient PD11460.
Further, the loss of 11p evolved only in the metastatic LN tumour
(PD11460c), while a new cluster (PD11460 cluster 2) was
generated in the metastatic skin tumour between chromosomes
8 and 11. This new cluster exhibited focal amplification of FGFRI
and CD82 (>10 copies), thereby developing an HSR in the
derivative chromosome (Fig. 5d and Supplementary Fig. 16¢). In
patient PD9193, the primary tumour (PD9193a) had an SV
cluster (PD9193 cluster 1) that was inherited by the metastatic LN
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Fig. 5 The evolution of breast cancer genomes. a Bar plots of SVs and SV clusters discovered in metastatic and relapsed breast cancer from the European
Genome-phenome Archive (EGA) data set?3. The four cancer types studied included: primary tumour, local relapse, synchronous axillary LN metastasis

and distant metastasis. The cancer types were sorted in the listed order, and

the patients were classified as having primary or metastatic evolution

depending on the accumulative patterns of SVs. b Patient PD4252 showed karyotypic evolution of chromosomes 1 and 9. ¢ Patient PD4820 showed

karyotypic evolution of chromosome 6. d Patient PD11460 showed karyotypic
evolution of chromosomes 11 and 14. b-e The patient identifier of the EGA is
red texts.

tumour (PD9193c) (Fig. 5¢). A new DM (cluster 2) was generated
by escaping from chromosome 11 with CT, encompassing focally
amplified CCND1 (>30 copies). The remaining segments of
chromosome 11 had translocated to chromosome 14 by a small
deletion bridge3!. These results demonstrate the evolutionary
processes of HSR and DM generation with CTs.

Discussion
Our graph-based framework, InfoGenomeR, integrates indi-
vidual variant callings for SVs and CNAs, purity and ploidy
measurements, and haplotype estimation. Based on the
breakpoint graph, InfoGenomeR establishes a haplotype
graph, thereby narrowing down the target genome according
to allele- and haplotype-specific information. As a result, it
increases the scope of individual variant-calling and facilitates
the identification of genome-wide SVs, thereby characterising
the karyotypes of target genomes.

InfoGenomeR allows identification of complex rearrangement
topologies (HSR, DM, HSR/DM and CT) in the reconstructed
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evolution of chromosomes 8 and 11. e Patient PD9193 showed karyotypic
shown at the top of each karyotype. Cancer-related genes are shown in

cancer genome karyotypes. In a previous study, the identification
of DM has been conducted using integrating SVs and CNAs!2
but the analysis was restricted to local amplified regions without
recovering haplotype karyotypes. ShatterSeek!? used an inte-
grative approach of SVs and CNAs to identify CT; however, it did
not provide karyotype structures such as derivative chromosomes
and DMs resulted from CT. Recently, a decomposition method
for DMs and/or linear chromosomes based on a haplotype graph
has been introduced?2. Nevertheless, this method lacks inter-
pretation of other topologies such as HSRs, HSR/DMs or CTs.
JaBbA introduced other complex topologies with DMs, except for
karyotypes that were not derived from reconstructed haplotypes.
InfoGenomeR enables us understand complex topologies with
karyotype reconstruction simultaneously at the genome-wide
level, as shown in the analysis of TCGA (Fig. 4) and EGA data
(Fig. 5). InfoGenomeR can help identify the recurrent derivative
chromosomes generated from chromosomes 11 and 17 with
HSRs in BRCA. Our analysis of the SV clusters showed that
CCND1 and ERBB2 were often closely clustered in these
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derivative chromosomes. Besides, we found that GBMs and OVs
were mainly characterised by HSR/DM or DM and HSR by fold-
back inversions on different chromosomes.

CTs were recently reported to be found in more than half of
cancers by ShatterSeek, where CTs with other complex events
were more prevalent than canonical CTs that showed an oscil-
lating pattern between two CN states'®. However, the goal of
ShatterSeek was restricted to figure out SV clusters of CTs, and
the structures of derivative chromosomes were not investigated
comprehensively because of the lack of a reconstruction strategy.
Our results showed HSR, HSR/DM, or DM topologies involved
with CT in chromosomal structures by reconstructing cancer
genome karyotypes. We found that chromosome 17 is a template
chromosome, which was recurrently rearranged with other
chromosomes with CTs in BRCAs, demonstrating that complex
events with CTs in multiple chromosomes generated derivative
chromosomes. It was suggested that complex events involved
with CTs in the formation of derivative chromosomes con-
tributed to the amplification of cancer-related genes, such as
CCNDI, CDK4, MDM2 and ERBB2'°. Our results showed that
cancer-related genes were amplified in the formation of derivative
chromosomes. Overall, we provided insights into the karyotypic
view of complex rearrangements involved with CTs.

Through a multi-sample analysis, we could identify the evo-
lutionary processes of HSR and DM generation with CTs, during
metastatic tumour evolution. Previously, SVs have been investi-
gated to emerge in metastasis. However, the discrimination
between private and shared SVs was unclear, and karyotypic
characterisation has not been performed. We observed that SVs
could be misidentified as private SVs by a simple SV calling
approach, even though they were shared SVs with supporting
CNA evidence existing in primary and metastatic tumour. We
performed imputation for candidate shared SV's that may exist in
both primary and metastatic tumour during breakpoint graph
construction, thus clearly distinguished true private SVs. These
private SVs were shown together in HSR and DM topology with
CT (Fig. 5d, e). We characterised their karyotypes by recon-
structing derivative chromosomes and DMs, thus providing a
basis for structure-based analyses of tumour evolution. Never-
theless, there were limitations in the current analysis. First, our
applications to the primary and metastatic tumours were inde-
pendent with each other even though we adjusted breakpoint
graphs in the intermediate steps during iterative optimisations. In
addition, we did not perform clone-specific interpretation,
although sub-clonal SVs or CNAs may clarify tumour evolution
processes. A joint approach for subclones across multi-samples*3
will be required for future analyses.

Despite the successful application of InfoGenomeR for genome-
wide karyotype construction, there are clear opportunities to
improve and extend this framework in the future. For instance, we
filtered out potential false SVs at each iteration of the optimisation
procedure, and they have not added to the graph, except at the
intermediate SV-adding step (Fig. 1b). However, this may prevent
recalls of true SVs. Furthermore, some translocations were not
recalled from initial SV callings in the HeLa cell line, which might
have occurred in centromeric or non-mappable repetitive regions.
Long-read sequencing is required to find SVs that cannot be
identified by short-read sequencing. Our framework is likely to
benefit from long-read sequencing technologies so that SV calls
from short-read sets could be integrated. Further, as the current
framework constructs a representative graph for dominant tumour
cells from the bulk WGS data, we eliminated minor changes in CN
during the optimisation procedures. However, a few minor sub-
clonal populations might have been removed during this process.
Moreover, this elimination might be problematic for samples where
sub-clonal populations form a considerable population (here, we

focused on nonclonal samples with a cancer purity >70%). The
integration of deconvolution methods!71843-45 for CNAs and SVs
into our framework will further allow the investigation of sub-clonal
structures and produce multiple breakpoint graphs for them.
Finally, we have initiated the graph-based reconstruction of multi-
sample genomes, thereby providing a basis for structure-based
analyses. We propose that a phylogenetic method is now required
to investigate karyotypic evolution (i.e. the measurement of an edit
distance in the breakpoint graph). InfoGenomeR is not limited to
cancers but can be used for other genetic diseases. A potential
application is the analysis of somatic mutations in neurological
diseases in which somatic SNV’ reportedly contribute to the genetic
diversity of human neurons*¢. Somatic SVs have not been investi-
gated comprehensively in neurological diseases, although micro-
scopic abnormalities have been shown®®. The application of
InfoGenomeR may discover genetic variations that have not been
detected in SNVs.

In summary, we developed a method to reconstruct cancer
genome karyotypes and explored the karyotypes of complex SVs
in three cancer types (BRCAs, GBMs and OVs) and multi-sample
data with primary and metastatic cancer cells. More cancer types
should be explored to determine the wider karyotypic changes
that occur during cancer development and evolution. We expect
that cancer driver genes in these complex SVs can be used for
identifying candidates for clinical treatment.

Methods

Initial SV detection by InfoGenomeR. The variant callers DELLY26, Manta’ and
novoBreak® were used with default parameters to detect initial SVs with or without
controls (total or somatic). Low-quality SVs, defined as <3 variant supporting reads or
a mapping quality <20, were filtered out. Breakpoints of an SV were sorted by the
chromosomal and coordinate order in the reference sequence, and the SV was
annotated as head-to-head (HH), head-to-tail (HT), tail-to-head (TH) or tail-to-tail
(TT) depending on the orientation of breakpoint adjacencies to the genomic seg-
ments. The head and tail are the 5" and 3’ coordinates in the reference genome,
respectively. Detailed settings for SV detection were shown in Supplementary Table 4.
SV sets from individual SV callers were unified as the input of InfoGenomeR.
Breakpoints predicted by the SV callers could differ for the same SV (if breakpoints of
SVs were overlapped in <100 bp, they were considered as the same SV), and we
empirically selected one of their breakpoints when SV sets were unified.

Breakpoint graph construction. InfoGenomeR constructs a breakpoint multi-
graph G(S, E) from genomic segments and SVs. A node set S has two types, head
nodes (S;,) and tail nodes (S;), representing the head and tail sides of genomic
segments, respectively. In the breakpoint graph, the i genome segment is repre-
sented by a pair of the head and tail node, (s}, s}). An edge set (E) has three types:
segment edge (E,), reference edge (E,) and SV edge (E,). The segment edge con-
nects the head node (5}'1) and tail node (sf) of the ith genomic segment, and the
multiplicity of the segment edge represents the CN of the genomic segment. The
reference edge connects the tail node (s}) and the head node (sil“) between ith and
i+ 1th segment, representing the adjacency between adjacent genomic segments
present in the reference genome. Conversely, the SV edge represents a novel
adjacency between genomic segments that does not exist in the reference genome.
The following iterative procedures are used to construct the breakpoint graph:

Iterative step 1

Local CN segmentation. InfoGenomeR divided the genomic regions using current SV
breakpoints. Then, in the pre-divided regions, it performed local CN segmentation
with BIC-seq2?* with the main penalty parameter 1, and measured the copy ratio
between observed and expected read counts (from a control, if available) in the
genomic regions. Briefly, BIC-seq2 uses the Bayesian information criterion to deter-
mine breakpoints that are composed of two terms?4: the negative log likelihood term,
which explains how well the model with the breakpoint fits the read-depth data, and
the penalty term, which is proportional to the number of breakpoints and prevents
over-segmentation. The parameter A adjusts the penalty term, with higher A pre-
venting excessive breakpoints. InfoGenomeR used different A for first- and second-
round iterations, where the second iterations used a higher penalty, thereby allowing
the mis-segmented regions without SV evidence to be merged. In the present analysis,
the parameter values of bin size = 100, initial A = 1 and final A = 16 were used for the
simulated data. Cancer cell line data showed a higher noise level than the simulated
data, and the parameter values of bin size = 100, initial A = 1 and final A = 2000 were
used for cancer cell line data, where the reconstructed karyotypes were well matched
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with the m-FISH karyotypes. The same parameters used in cancer cell line data were
used for TCGA and EGA data subsequently.

Iterative step 2

Purity and integer CN estimation. The copy ratios of genomic segments were
measured by local CN segmentation, and the cancer purity (p) and ploidy (1) were
estimated using ABSOLUTE?®. The end sides of a genomic segment were repre-
sented by a head and tail node, and the copy ratio and integer CN of the genomic
segment of the node s (head or tail) were denoted by copyratio(s) and CN(s),
respectively. The copyratio(s) was fitted with a Gaussian mixture model, each
component of which was a Gaussian distribution representing the integer CN state
(g) with a mean copy ratio, mg = {gp + 2(1 — p)}/D. Here, q took an integer CN (0,
1, 2,...) in the cancer genome, and D = pt+ 2(1 — p) was the average ploidy of
cancer and normal cells. ABSOLUTE estimated cancer purity and ploidy from the
copy ratios, and the integer copy number CN(s) was assigned according to the
highest posterior probability of integer copy number of the states from the
Gaussian mixture model. Because ABSOLUTE assigns the predefined maximum
integer CN when the copyratio(s) is larger than the estimation limit, in this case, we
calculated non-integer CN'(s) satisfying the copy ratio equation,

copy ratio(s) = {CN’(s)p + 2(1 — p)}/D. Then, CN(s) is assigned as [CN'(s)],
rounding of the non-integer CN'(s). Perturbations were performed in low-
confidence segments and their integer CNs were decided during the next integer
programming step. The segment of the node s was defined as low-confidence if: (1)
the posterior probability of the integer CN, p(CN(s)) < 0.95, (2) the segment size(s)
<50 bp or s had no depth information (unmappable regions) or (3) |CN(s) —
CN/(s)| >0.35 for high CNs. The purity estimations were repeated during the
InfoGenomeR iterations, and the final purity was decided in the last iteration.

Iterative step 3

Integer programming for finding edge multiplicities. At this step, the optimal
breakpoint graph representing the cancer genome was reconstructed, where the
multiplicities of edges satisfied the CN balance condition (Eq. (1))26. The CN
balance condition ensured Eulerian paths from one telomere to another for each
linear chromosome. The multiplicity of an edge (e) was denoted by u(e), and a
segment edge, SV edges (multiple SVs can exist) and a reference edge adjacent to a
node (s), were denoted by ey(s), E,(s), and e,(s), respectively. The multiplicity of a
segment edge p(ey(s)) is the sum of the multiplicity of a reference edge u(e,(s)) and
multiplicities of SV edges p(e,(s)) for node s.

uley(s)) = ple(s)) + Z( u(v), Vs € S\telomeric ends 1)
vEE,(s)

The multiplicities of edges satisfying the CN balance condition were determined by
integer programming. For a confident segment edge, the multiplicity was given by the
integer CN of the segment, which was an estimate of the previous copy (constant if
the segment of the node was confident). To determine multiplicities of variable edges
(reference and SV edges, and low-confidence segment edges), we first found an
interrelated subset of nodes (Syelatea) and then solved the integer programming pro-
blem (Eq. (2)) to find the multiplicities of edges adjacent to interrelated nodes but
independent from the other subsets. The interrelated subset was defined inductively
by including adjacent nodes, Adj(s) from the start node (sr) and could be found in a
breadth-first search (BFS) manner. Note that if the BFS encountered a confident node,
it stopped to propagate in the segment edge direction (the adjacent node by the
segment edge, Adj(s) was not included, whereas the other adjacent nodes by the
reference and SV edges, Adj,,,(s), were included). For any Syare Srelated = {Sstart) Was
constructed, and then S,eaeq Was expanded as follows.

Adj, , () C Sigaea if CN(s) is low-confident, Vs € §
Adj, (5) C Siejatea if CN(s) is confident, Vs € §,

related
related

Given the constant integer CN states of segments in each interrelated subset, the
multiplicities of reference edges and SV edges were decided with a small perturbation
of integer CNs of low-confidence segments. An optimisation problem was defined to
satisfy the CN balance condition (Eq. (1)) for all nodes in Syejateq. The IpSolveAPI R
package was used to solve the integer programming problem.

Minimise sesz (u(ey(s)) — ple(s)) — vg%(g)‘“(v))

subject to

pley(9) = ple,(s) + VGEZ(S) u(v)

2 HO) S o) — e (Ady () @

If size(s) < 50 bp, u(ey(s)) € [0, max CNJ,

elseif sislow-confident, u(e,(s)) € {CN(s), alternative CN(s)},

else, p(e,(s)) = CN(s).
The first constraint prevented nonsense solutions wherever adjacencies exceeded CNs
of segments. The second constraint was for an upper bound of the multiplicities of SV

edges, which did not exceed the difference between multiplicities of adjacent segment
edges in the SV breakpoint. This maximally preserved the existing reference edges

between adjacent segment edges. For rare cases where SV breakpoints were exactly
reciprocal, SVs could be filtered out by the second constraint, and to restore them, a
virtual (zero-length) segment was left between the reciprocal breakpoints. The third to
fifth constraints were for integer CNs of segments. If the size of the segment was too
small to measure the CN or if mis-segmentation by SV breakpoint errors occurred,
the CN was imputed between zero and the maximum CN. Here, the minimum size
threshold was set at 50 bp. For the segments >50 bp, if s was confident, the multi-
plicity was fixed by the original estimate CN(s); otherwise, the multiplicity changed
within an alternative-CN range, alternative CN(s), which was set to the next best
integer state from ABSOLUTE in the current analysis.

In cases with multiple solutions, the one with (1) the maximum multiplicities of
SV edges and (2) the multiplicities of segment edges closest to the initial CNs is
selected. Maximising SV edges recalls true SVs as much as possible while it still
excludes false SVs (false SVs hardly satisfy the CN balance condition), and prevents
null solutions in cases where SV multiplicities become zero, such as simple
inversions and balanced translocations. The solution can be found by gradually
changing the bounding constraints for SV and segment edges.

> p(e,(s)) >the mininum bound for SV edges

S € Sretated

> |u(ey(s)) — CN(s)| < the maximum bound for segment edges

$ € Orelated

Notably, SVs with zero multiplicities are false positives and are removed before the
next iteration.

The iterative steps restart with the SV set obtained after filtering out SVs with
zero-multiplicity. The different A parameter values in BIC-seq2 are used for the first
and second iterations. Before the second iterations and settling the breakpoint
graph, SV edges are added by remapping discordant and unmapped reads to de
novo references?’ from candidate adjacencies (Supplementary Note 5). For the
somatic mode (a control exists), germline variants are excluded, and additional
processes are performed to reconstruct cancer genome graphs with somatic SVs
(Supplementary Note 6).

In addition, after breakpoint construction, SVs are classified as simple or
complex SVs, based on the respective breakpoint graph (Supplementary Note 7).
Germline variants and short simple SVs (<100 kb) are bottlenecks for karyotype
reconstruction, because they do not have sufficient allelic information for the allele-
specific graph and may cause an over-segmentation of the genome. Assuming that
they are negligible in the karyotyping view, we simplify the breakpoint graph by
removing SV edges and CN bins for germline variants (Supplementary Note 8 and
Supplementary Fig. 17).

Allele-specific CN estimation. In addition to integer CNs based on total read
depths, read depths of heterozygous SNPs provide information about allele-specific
CN. The integer CN, u(ey(s)) of each segment from the breakpoint graph is divided
into allele-specific CNs, ASCN(s), using heterozygous SNPs (if a control exists, all the
heterozygous SNPs in the control are used). Let A = {A}, A, ..., Ay )+ 1721}
denote all the possible states of allele-specific CNs that the genomic segment can have,
where the integer CN can be divided into a set of [(u(e(s)) + 1)/2] possible cases, and
for each A;={A;}, A;2}, Aiy + Aip = uleds)). For example, if the multiplicity of the
segment edge, u(ey(s)) = 3, there are two cases, A; = {0, 3} and A, = {1, 2}. Given the
A; of each segment, the read depths of N heterozygous SNPs, 0; = (0;1, 0j2), can be
fitted using negative binomial (NB) distributions when the allele-specific copy num-
bers for each SNP, denoted by a;= (a;;, a;), are given. The pair of SNP depths, o},
and 0;,, are observed from a;; and a;,, respectively. Here, the allele-specific copy
numbers of heterozygous SNPs are latent variables.

N
P(O|®) = Hzajp(ojvaj‘h7p7¢17¢2) (3)

j=1

p(ojla;, b.p, ¢, ¢,) = NB(0;,|b(pa;, + (1 — p)), ¢;1)NB(0;,|b(pa;, + (1 — p)), ¢;,)

4)
Given the purity p measured from the previous breakpoint graph construction, p(O|®)
per segment is maximised by estimating the haplotype base coverage b and dispersion
parameters ¢; and ¢, of the negative binomial distributions for A;; and A;,, respec-
tively. The EM algorithm is used to estimate the maximum likelihood parameters for a
given A; (Supplementary Note 9). The maximum likelihood, L(A;) and the likelihood
score, Score; (A;) for each A; are obtained from the iterative divisions of u(e(s)), and
ASCN(s) = A such that maximised likelihood score is selected.

L(a;) = P(OI6)) ©)
_ L&y

Score; (4;) = Zji(Aj) (6)

A= argmaxA’I:(Ai) (7)

Nevertheless, not all of the initial estimations of ASCN(s) were confident, and
ASCN(s) were defined as low-confidence if (1) ScoreL(A) <0.8, or (2) the number of
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heterozygous SNPs <5. For the low-confidence segments, we searched for the best
ASCNs that minimised the objective function during the next round of allele-specific
breakpoint graph construction.

Allele-specific breakpoint graph construction. Based on the ASCNs, an allele-
specific breakpoint graph AG(S, E) was constructed, where the node set § =

SU S, US, was composed of balanced (S) and imbalanced nodes (S, and S, for
temporal two haplotypes), which denote the heads and tails of genomic segments
with balanced and imbalanced ASCNs, respectively. In the allele-specific break-
point graph, the imbalanced nodes are assigned to haplotype 1 or haplotype 2
temporally, whereas the balanced nodes are not assigned. The phased states
(haplotype 1 and haplotype 2) of imbalanced nodes are preserved within the
imbalanced ASCNs and can be switched across genomic segments with

balanced ASCNs.

In detail, genomic segments with imbalanced ASCNs, named imbalanced AS
segments, were represented by two head (S, , and S, ,) and tail nodes (S, and S, ;).
Genomic segments with balanced ASCNs, named balanced AS segments, were
represented in the same way as in the breakpoint graph. Thus, the multiplicities of
the segment edges for the imbalanced and balanced segments were ASCNs and
total copy numbers, respectively. The allele-specific graph implied that if the
multiplicities of segment edges are imbalanced, the SV edges can be assigned to one
of the alleles. In the case of imbalanced AS segments, differences between adjacent
segments depended on the temporal phased state of AS segments, such that we
could assign SV edges aligning imbalanced AS segments uniquely to satisfy the
copy balance condition. However, with balanced AS segments, the phased state of
AS segments and SV edges was not determined uniquely since the value of the
objective function did not dependent on the phased state. The allele-specific
breakpoint graph was constructed by following integer programming problem. To
adjust multiplicities for low-confidence segments, all the candidate integer divisions
were searched with a penalty function & added to the objective function. This was
proportional to the rank of the likelihood score of the integer divisions for low-
confidence segments, and was zero for the confident segments. Since the penalty of
the low-confidence segment was added twice for the head node and tail node for
the segment, the penalty was divided by two while adding it to the objective
function.

Minimise sgs(y(es(s)) — ule,(s)) — e%( )H(V) + £(s)/2)

subject to
p(e(s)) = ule,(s)) + VE(S)W)

V2 ) < (e(9) = ple (A, )

If sislow-confident, ®)
{u(ey(s)), uley(sy))} € {ASCN(S), alternative ASCN(3)} fors ¢ S,

ples)) = ple,(3)fors € §,
else,

{uley(s))), ule(sy))} = ASCN(S)fors ¢,
ue(s)) = u(es) fors € .

This integer programming problem, where s in the objective function can be s; and
s, for imbalanced AS segments, requires exponential time for u(e(s;)) and p(ey(s,))
to alternate between ASCN; (5) and ASCN,(S), or ASCN,(5) and ASCN; (5),
respectively, when the ASCN measurement of the node § is denoted by

ASCN(S) = {ASCN;,(5), ASCN,(5)}. Here, s denotes a node in the previous
breakpoint graph, which can be expanded to s, and s, or remain intact if ASCN(5)
is balanced. To solve the integer programming problem in the series of imbalanced
AS segments, a heuristic was used to determine the multiplicities of segment edges
in a greedy manner. The detailed objective function and the heuristic method are
described in the Supplementary Note 10 and Supplementary Fig. 18.

Haplotype segments. Haplotype segments H = {H;, H, .., H,} are defined from
the allele-specific graph AG(S, E), and each element H; = {H;,, H;,} is a set of
imbalanced AS segments for haplotype 1 and haplotype 2, where heterozygous
SNPs are phased by (1) allelic imbalances, and (2) focal (<1 Mb) nonhomologous
SVs. First, sets of consecutive imbalanced AS segments between the balanced AS
segments in the allele-specific graph are collected, where the phase of imbalanced
AS segments in each set was determined by the integer programming in the pre-
vious allele-specific breakpoint graph construction section. Then, SVs between
segments from two sets of imbalanced AS segments were classified into homo-
logous (>100 bp homology) and nonhomologous SVs (<100 bp homology)*3, and
subsequently the presence of nonhomologous SVs was checked between the
imbalanced AS segments (Supplementary Fig. 19a). The focal nonhomologous SVs
were assumed to occur in a single allele, excluding rare possibilities in which
homologous chromosomes were exchanged by nonhomologous mechanisms at the
same focal breakpoints. The assumption simplified the haplotype phasing problem
by preventing incorrect allelic switching (haplotype switching errors), and the
sequences of imbalanced AS segments were merged into a haplotype segment. For

example, if two sequences of imbalanced segments, namely, k, k + 1, ...,k + k'
segments and the I,/ + 1, ..., + I segments, existed and nonhomologous SVs were
found between them, then, the haplotype segment was defined as:

Hyy = A B ), (R BT, (Ll ), RSS9

Hi.2 = {(h];,hv hg.t)v (hIZC;xr K ’ h];;r k')v (hlz.hv h12.1)7 M) (hIZJ;II ) h12+t I’)} (10)

The head and tail node pair (h]f.h, h]f_t) indicated the kth segment of haplotype 1,
which was assigned based on the nodes from the allele-specific graph (st , sk ) or
(s’z"wslg_’t). The assignment was determined by the integer programming for the
copy number balance condition in H;, with the constraint for nonhomologous SVs
(Supplementary Note 11). SNPs in the haplotype segment were phased by max-
imising the likelihood in Eq. (4), given the ordered state of imbalanced AS seg-
ments from the haplotype segment. For example, if 0;; was observed from snp; ; in
the kth segment in Hj, the heterozygous SNPs, snp;,; and snp;, would correspond to
H;; and H;,, respectively, if,

P((0;1+ 03 )1y ), e, (S 1)), @) > p((0; 5, 0, )y ), e (B 1)), ©).

Haplotype breakpoint graph construction. Previously, in the allele-specific
breakpoint graph, the sequences of imbalanced AS segments and nonhomologous
SVs defined haplotype segments H, and heterozygous SNPs in imbalanced ASCNs
of haplotype segments were phased. The haplotype breakpoint graph was con-
structed by phasing SNPs in balanced AS segments using population information
and determining the end-to-end order of the haplotype segments. A haplotype was
obtained by using a constrained version of the Viterbi algorithm for the hidden
Markov model (HMM) of BEAGLE, where the transition and emission prob-
abilities were defined from the localised haplotype-cluster graph?’. As imbalanced
heterozygous SNPs were already phased in haplotype segments, the Viterbi path
was enforced to follow the phased order of SNPs (Supplementary Note 12 and
Supplementary Fig. 19b, ). The Viterbi path decided the order of haplotype seg-
ments, while simultaneously phasing heterozygous SNPs in balanced ASCNs.
Finally, the haplotype graph HG(S, E) was constructed. We denoted haplotype-
specific copy numbers, which were derived from the haplotype phasing of allele-
specific copy numbers of the node § (indicating §, or §,) from the allele-specific
graph, as HSCN (5) and HSCN,(5). For the imbalanced nodes, HSCN, (s) and
HSCN, (5) were p(ey(5,)) and p(e,(s,)) or u(ey(s,)) and pu(e,(s;)), respectively,
depending on the phased states of heterozygous SNPs in the imbalanced segments.
For the balanced nodes, HSCN, (§) = HSCN,(5) = u(e(5))/2. After the haplotype-
specific copy numbers were obtained, a haplotype graph was constructed by fol-
lowing integer programming. In other words, the multiplicities of segment edges
from imbalanced nodes were ordered with expansions of balanced nodes from the
allele-specific graph, and the multiplicities of reference and variant edges were
assigned to minimise the objective function.

Minimise sgzg(y(es(s)) — u(e,(s)) — ve%(s) u(v))

subject to

U 2 ue ) + X ul)
o M) < (e — e A ()]

ule(s)) = HSCN, (¥)
Ule(s,)) = HSCN,(3)

(11

Enumeration of Eulerian paths. To identify the candidate genomes, Eulerian
paths were enumerated to alternate between segment edges and SV/reference edges
on the haplotype graph constructed in the previous step. Head and tail nodes that
did not satisfy the copy number balance condition (including original telomere
ends) were considered as ends of the reconstructed chromosomes P, which could
also be true ends or breaks due to missing SVs or miscalculated CNs. Circular
chromosomes, C, included in the DM cluster were observed as circular paths.
Eulerian decomposition problem (EDP) was defined to find linear and circular
chromosomes from the breakpoint graph?2. Although the min-EDP, which mini-
mised the number of paths and cycles, |P| + |C|, was previously suggested to
describe the most possible karyotype#2, the min-EDP was not always biologically
relevant (i.e. the max-EDP could be the case). In this study, we formulated
minimum-entropy Eulerian path enumeration that prioritised the decomposition
of P and C with the minimum entropy. To enumerate candidate Eulerian paths, we
used a multiway tree structure?, in which each tree node represents the pairing
state of the breakpoint graph edges. The multiway tree was expanded in a root-to-
leaves model by sequentially increasing the level and processing of each node in the
breakpoint graph (Supplementary Fig. 20 and Supplementary Note 13). Leaf nodes
represented possible edge-pairing states delineating Eulerian paths reaching every
genomic segment.

The enumeration for all the Eulerian paths is an NP-hard problem, and we
prioritised Eulerian paths with the minimum entropy as biologically relevant cases.
First, connected chromosomes were segregated, and the enumerations were
performed inside connected chromosomes. For highly segmented genomes, the
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haplotype breakpoint graph could be simplified by further excluding simple SVs
(tandem duplications, deletions, and block-interchange insertions), which did not
significantly affect candidate karyotypes. Then, a minimum-entropy search was
applied to prioritise solutions with the minimum entropy. For instance, a node in
the multiway tree at level [ represented edge-pairing states of a total of I node in the
breakpoint graph, and there were n distinct paths. The total number of paths was
w=w; + W, + ... + w,,, where w; is the multiplicity of ith path. The entropy at level
I, e, was derived from the following formula:

o = — w,/wlog(w,/w) (12)

The low entropy indicated that, a set of SVs was duplicated through additional
amplification processes such as arm-level duplications, WGDs, and other
duplication processes in HSRs and DMs. This required a shorter distance than
individual occurrences of SVs. Branches from the multiway tree were cut if the
solution space grew too rapidly, and candidate genomes were obtained from the
leaf nodes of remaining branches.

Breakpoint graph construction for multi-sample data. For multi-samples, we
unified SV sets from the initial SVs of each sample. Using the unified SV sets, the
breakpoint graph of each sample was constructed. Then, we classified SVs into
private and shared SVs depending on the existence of raw SV evidence (discordant
or split reads) (Supplementary Table 5). If a shared SV is not called in a primary
tumour, it is observed as a private SV in a metastatic tumour and vice versa. This
approach using the unified SV sets has an advantage that uncalled SV edges in each
sample can be added to the graph if there are supporting copy number depths and
adjacent SV information in that sample. For the cases with difficulties in distin-
guishing private and shared SVs, we made another round of iterative optimisation
(Supplementary Note 14).

Simulated data set. First, 12 simulated normal-tumour pairs were created from
the NA12878, HG00732, NA19238 and HG00513 individuals in phase 3 of the
1000 Genomes Project. We simulated approximately 3000 germline and

200 somatic SV per cancer genome, where the proportion and size of each SV type
were derived from the previous studies>*® (Supplementary Note 1, Supplementary
Table 6 and Supplementary Fig. 21). Diploid to tetraploid cancer genomes were
generated by WGD operations, and each cancer genome was mixed with the
matched normal genome with a different purity (60, 75, and 90%). We generated
Ilumina HiSeq 2 x 100 reads from heterogeneous genomes with 3X, 5X, 10X, 15X,
and 20X haplotype fold coverages using ART (version 2.5.8)%%, and reads were
mapped to the GRCh37 reference genome using Burrows-Wheeler Aligner-Max-
imal Exact Matches (BWA-MEM)®(. To compare performance depending on the
human reference genome versions, we generated diploid to tetraploid cancer
genomes from NA12878 based on the GRCh38 reference using the same simula-
tion schemes, and the reads were mapped to the GRCh38 reference genome.

Data acquistion and preprocessing. For data acquistion, the SRA Toolkit (ver-
sion 2.8.2)°! was used to download WGS and RNA-seq data of the HeLa cell line
and WGS data of lung cancer cell lines. The GDC client (version 1.2.0)°2 was used
to download WGS data of TCGA samples. The EGA client (version 2.2.2)%3 was
used to download WGS data of metastatic breast cancers.

Reads from paired-end and mate-pair libraries of the HeLa genome were mapped
to the human reference genome (GRCh37) using BWA-MEM>0 with default
parameters (version 0.7.15). DELLY2, Manta, and novoBreak were used for SV
callings from paired-end data, and DELLY2 was used for mate-pair data. Initial SV
callings from both libraries were merged as the input of InfoGenomeR, and paired-
end data were used for CN callings and allele-specific and haplotype estimation. SNPs
were detected using BCFtools (version 1.3)>%. Reads from three libraries of the HeLa
transcriptome were mapped and quantified using HISAT2> and CuffLinks®%, and
expression values were measured by collecting the mean counts from the duplicates.
The WGS data of lung cancer cell lines, TCGA samples, and metastatic breast cancer
included pre-processed data (BAM) mapped to GRCh37, and variants were called in
the same way as the paired-end HeLa and simulated data sets.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

WGS and RNA-seq data of the HeLa cell line are available in the database of Genotypes
and Phenotypes (dbGaP; accession code No. phs000643.v10.p1). WGS data of lung
cancer cell lines are available in the dbGaP (accession code phs000299.v2.p1). WGS data
of TCGA samples are available in the dbGaP (accession code phs000178.v11.p8). WGS
data of relapsed or metastatic breast cancers are available in the EGA (accession code
EGAD00001002696). Simulated data sets from NA12878 for GRCh37 and GRCh38 are
available in Zenodo [https://doi.org/10.5281/zenodo.4545666]. Simulated data sets from
HG00732, NA19238, and HG00513 for GRCh37 are available in Zenodo [https://doi.org/
10.5281/zenodo.4556315]. The remaining data are available within the Article and
Supplementary Information, or from the authors upon request.

Code availability

InfoGeomeR is implemented by R (version 3.4.3) and C++ (version 4.8.2), and available
on GitHub at https://github.com/dmcblab/InfoGenomeR. The code for cancer genome
simulation is available on GitHub at https://github.com/dmcblab/
InfoGenomeR_simulation.
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