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Abstract: (1) Objective: to investigate the association between the total burden of cerebral small vessel
disease (CSVD) and cognitive function in Parkinson’s disease (PD). (2) Methods: this retrospective
study compared clinical and neuroimaging characteristics of 122 PD patients to determine the
association between cognitive decline and total burden of CSVD in PD. All patients underwent brain
MRI examinations, and their total CSVD burden scores were evaluated by silent lacunar infarction
(SLI), cerebral microbleeds (CMB), white matter hyperintensities (WMH), and enlarged perivascular
spaces (EPVS). The cognitive function was assessed by administering Mini-Mental State Examination
(MMSE). Receiver-operating characteristic (ROC) curve and the area under the ROC curve (AUC)
were performed to quantify the accuracy of the total burden of CSVD and PVH in discriminating
PD patients with or without cognitive impairment. (3) Results: the PD patients with cognitive
impairment had a significantly higher SLI, CMB, periventricular hyperintensities (PVH), deep white
matter hyperintensities (DWMH), enlarged perivascular spaces of basal ganglia (BG-EPVS), and
the total CSVD score compared with no cognitive impairment. Total CSVD score and MMSE had a
significant negative correlation (r = −0. 483). Furthermore, total burden of CSVD and PVH were the
independent risk factors of cognitive impairment in PD, and their good accuracy in discriminating
PD patients with cognitive impairment from those with no cognitive impairment was confirmed
by the results of ROC curves. (4) Conclusions: total burden of CSVD tightly linked to cognitive
impairment in PD patients. The total burden of CSVD or PVH may predict the cognitive impairment
in PD.

Keywords: Parkinson’s disease; cerebral small vessel disease burden; cognitive function

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder commonly seen in the
elderly, characterized by bradykinesia, resting tremor, rigidity, and postural dysfunction.
In addition to the typical motor symptoms, PD also has prominent non-motor symptoms
including mood and cognitive changes, autonomic dysfunction, sleep disorders, olfactory
disorders, as well as sensory abnormalities. Clinically, compared with motor symptoms,
non-motor symptoms are usually more difficult to identify, and the treatment is relatively
insufficient [1].

In PD, cognitive impairment (CI) is a common non-motor symptom, manifested by
memory loss and executive function decline, and it severely affects patients’ quality of life.
Some studies have shown that about 30–35% of PD patients have cognitive impairment [2].
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Approximately 20% of new-onset PD is combined with mild cognitive impairment (MCI) [3].
More than 40% of PD patients without cognitive impairment will progress to MCI within
6 years [4], and more than 80% of PD patients will develop dementia after 20 years [5]. Once
diagnosed with MCI, individuals are at a significantly increased risk of deterioration within
a few years. Previous studies have shown that multiple factors are associated with cognitive
decline in PD, including lower education level, disease duration, and comorbid vascular
disease (diabetes, hypertension, and hyperlipidemia) [6]. There remains some research
supporting the link between increasing age and male sex and the cognitive impairment
observed in PD [7]. Cognitive impairment has a profound impact on the outcome of PD
treatment and mortality in PD, and PD patients may die approximately 3 to 4 years after
developing dementia [8,9]. Therefore, predicting and identifying cognitive impairment in
PD patients early is critical to treating the disease, which may be helpful in improving their
self-care abilities and prolonging their life expectancy.

Cognitive impairment is often diagnosed on the basis of clinical examination, and no
reliable biomarkers have yet been identified. Studies that combine advanced structural and
functional neuroimaging techniques may help to gain a better insight into the evaluation of
non-motor symptoms in PD.

A disease characterized by a pathological change in the microvasculature of the brain
is known as cerebral small vessel disease (CSVD) [10]. Recent studies have continued
to confirm the comorbidity of Parkinson’s disease with CSVD. Cerebral hypoperfusion
and neuroinflammation may underlie comorbid CSVD in Parkinson’s patients, given that
these processes are involved in the progression of both Parkinson’s disease and CSVD.
Approximately 76% of Parkinson’s patients may have a comorbid cerebral small vessel
disease [11], which has been found to be closely associated with the progression of motor
and some non-motor symptoms in PD patients [12]. Among these, comorbidity of CSVD
may aggravate gait impairment and is significantly associated with depression/anxiety in
PD patients. CSVD has been demonstrated to be strongly linked to cognition decline [13].
In addition, cognitive function has been reported to deteriorate as the burden of CSVD
(measured by white matter lesions) increases over time [14]. It has been found that imaging
markers of CSVD-related parenchymal lesions can be assessed by magnetic resonance
imaging (MRI)of the brain [13]. The characteristic manifestations of CSVD on MRI include
silent lacunar infarction (SLI), white matter hyperintensities (WMH), cerebral microbleeds
(CMB), and enlarged perivascular spaces (EPVS) [14–16]. Some studies have found that
SLI, as a common CSVD manifestation, could lead to cognitive impairment associated
with post-infarction damage, neurofibrillary tangles, and amyloidosis [17]. Similar to SLI,
several studies have found that WMH is associated with cognitive impairment, especially
with worse performance in memory, executive functioning, and information processing [18].
One study reported that CMB was significantly associated with impairment in all cognitive
domains except language function [19,20]. Moreover, CMB has been shown to be a risk
factor for cognitive impairment in patients with subcortical vascular dementia [21]. EPVS of
the brain, also known as Virchow-Robin space, is a potential fluid-filled space surrounding
small vessels, and it can separate small vessels from brain parenchyma [22]. Hansen et al.
reported that enlarged perivascular spaces of basal ganglia (BG-EPVS) correlate with the
development of cognitive decline or dementia [23]. Furthermore, BG-EPVS may be a
useful prognostic marker for cognitive decline in PD [24]. The total burden of CSVD was
calculated by a cumulative score based on partial or full of manifestations of SLI, CMB,
WMH, and EPVS on MRI. Most of the current studies had explored the correlation between
SLI, CMB, WMH, or EPVS and cognition function. In contrast to those studies, we can
gain a more intuitive and further understanding of the impact of total burden of CSVD on
cognitive impairment by evaluating the total CSVD burden score, which may help guide
clinical diagnosis and treatment.

Based on the relatively little research on PD cognitive impairment and the advantages
of MRI, this study adopted the technology of MRI to investigate the impact of total burden
of CSVD as well as CSVD-related MRI markers on cognitive function in Parkinson’s
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disease, in the hope that it can provide support for the prediction of total burden of CSVD
in cognitive impairment of PD patients.

2. Materials and Methods
2.1. Patient Selection

This is a retrospective monocenter study from the Department of Neurology, Fujian
Medical University Union Hospital, from October 2017 to December 2019. Initially, we
recruited 130 PD patients. Patients with PD were diagnosed according to The International
Parkinson and Movement Disorder Society (MDS)Task Force on the Definition of PD in
2016 [25]. If one or more of the following conditions existed, patients were excluded:

(a) the presence of atypical, secondary, or hereditary parkinsonian syndromes.
(b) head trauma history.
(c) strokes associated with large vessel diseases (atherothrombotic strokes).
(d) MRI contraindications.
(e) incapable of completing assessments.
(f) evidence of a brain tumor or hydrocephalus on MRI imaging.

Patients who had the psychiatric illness and a history of definite encephalitis were not
included. This study was approved by the Ethics Committee of Fujian Medical University
Union Hospital. All patients provided informed consent to this study.

2.2. Clinical Assessment of PD

The clinical assessments were conducted by well-trained movement disorder neurol-
ogists blind to the MRI results. The participants’ demographic information and clinical
histories were recorded. The sociodemographic information included age, sex, and level
of education (defined illiterate as level 0, elementary school as level 1, junior high school
as level 2, high school or secondary school as level 3, college or university and above as
level 4). The clinical histories included the age of onset, the duration of PD (from the
occurrence of motor symptoms until the end of imaging and cognitive testing), symp-
toms and progression of PD and the vascular risk factors of the history of hypertension
(defined by regular use of antihypertensive agents or a systolic pressure greater than
140 mmHg or a diastolic pressure greater than 90 mmHg, as demonstrated by repeated
examinations), diabetes (defined by the self-reported history of diabetes or fasting blood
glucose ≥ 126 mg/dL), and smoking (currently or previously smoking). The severity of PD
was assessed using the Hoehn Yahr (H-Y) staging and Unified Parkinson’s Disease Rating
Scale (UPDRS III) part III. Overall cognitive performance was assessed with a Mini-Mental
State Examination (MMSE). A score of 27–30 on the MMSE indicates normal, while a score
less than 27 indicates cognitive impairment [26]. To understand the clinical and imaging
features of cognitive impairment in detail, the patients were divided into the PD-CI group
(MMSE < 27) and PD-NCI group (MMSE ≥ 27) according to MMSE score. All patients
would have their cognitive assessments and MRI examination on the same day.

2.3. Brain MRI Acquisition and Definition of CSVDs

All Brain MRI examinations were performed using a 3.0 T GE scanner (MR Discovery
750). The imaging protocol involved routine T1 weighted image (T1WI), T2 weighted
image (T2WI), fluid-attenuated inversion recovery imaging (FLAIR), diffusion-weighted
imaging (DWI), and enhanced T2*-weighted angiography imaging (SWAN), The SWAN
parameters settings were: 4.8 mm layer with 0 mm layer spacing; repetition time (TR)
43.7 ms; echo time (TE) 23.9 ms; field of view (FOV) 22 × 20 mm; and matrix 44 × 44; Scan
area ranged from the foramen magnum to the cranial vault.

SLI was defined as a round or ovoid fluid-filled cavity with the cerebrospinal fluid
(CSF)-like signal, the diameter of which was between 3 and 15 mm, with the location in
the subcortex. SLI usually appears as a hypointense lesion with a hyperintense rim on
FLAIR images, DWI images show a hypointense vacuolated lesion [27]. WMH, defined as
hyperintense lesions on T2- and FLAIR-weighted images, would be divided into two parts
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including periventricular hyperintensities (PVH)and deep white matter hyperintensities
(DWMH). PVH and DWMH were rated, respectively, according to the Fazekas scale ranging
from 0 to 3 from T2- and FLAIR weighted images [28,29]. (DWMH: 0 = absent, 1 = punctate
foci, 2 = beginning confluence of foci, and 3 = large confluent areas). The presence of CMB
was indicated by hypodense lesion (diameter < 10 mm) on SWAN [30], presenting a blank
signal area on MRI T1-weighted or T2-weighted and FLAIR sequence (See Figure 1). EPVS
defined as CSF-isointense lesions with an ovoid, round, or linear shape, were rated on MRI
in the basal ganglia and centrum semiovale [31,32]. The number of EPVS would be stratified
into five groups: 0 if no EPVS, 1 if EPVS = 1–10, 2 if EPVS = 11–20, 3 if EPVS = 21–40, and
4 if EPVS > 40.
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Figure 1. Characteristics of four CSVD-related imaging findings. The red arrow points to the location
where the CSVD-related feature was examined. CSVD, cerebral small vessel disease. (a) SLI, silent
lacunar infarction; (b) WMH, white matter hyperintensities; (c) CMB, cerebral microbleeds; (d) EPVS,
enlarged perivascular spaces.

MR images were independently evaluated by two senior neuroradiologists blinded to
clinical information, and the mean score was obtained when there was a divergence. Finally,
the total burden of CSVD was assessed by a total CSVD score using a validation scale of
0 to 4. One point was allocated to each of the following parameters [33]: the presence of
SLI; the existence of cerebral microbleeds (CMB); the DWMH Fazekas score reached 2 or
PVH Fazekas score reached 3; BG-EPVS score reached 2 or enlarged perivascular spaces of
centrum semiovale (CS-EPVS) reached 3 [29]. The score 0 indicated there was no significant
CSVD and 4 indicated there were 4 types of CSVD on imaging. In this study, a region of
interest, enlarged perivascular spaces of the midbrain (Midbrain-EPVS), was additionally
selected by us to represent the enlarged perivascular spaces of midbrain substantia nigra
and its surroundings, which were classified into two grades: 0 (no enlarged perivascular
spaces of the substantia nigra and its surroundings) and 1 (enlarged perivascular spaces of
the substantia nigra and its surroundings).

2.4. Statistical Analysis

We used the statistical package SPSS 24.0 (SPSS Inc., Chicago, IL, USA) and GraphPad
prism 7.00 (GraphPad Software, San Diego, CA, USA) to perform statistical analyses.
Continuous variables were expressed as mean and standard deviations (mean ± standard
deviation), and categorical variables were presented as numbers and percentages. We
compared the clinical and neuroimaging characteristics of patients using the t-test for
normally distributed continuous variables and the chi-square test for categorical variables.
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Spearman correlation analysis was performed to assess the association between clinical
characteristics and CSVD variables. Multivariable binary logistic regression was used to
identify the independent risk factors of cognitive impairment. At the same time, we further
used the false discovery rate (FDR) corrected p < 0.05 for multiple testing. To quantify the
prediction efficacy of the total burden of CSVD and PVH in discriminating PD patients
with no cognitive impairment from those with cognitive impairment, the receiver operating
characteristic (ROC) curve analyses, the area under the ROC curve (AUC), the sensitivity,
specificity, and cut-off values were calculated, with comparisons using the DeLong’s test.
ROC curves were generated using the ggplot2 package in R. The results were considered
statistically significant if p < 0.05.

3. Results
3.1. The Clinical and Characteristics of the Study Population

Figure 2 shows the procedure for the selection of PD patients. Among them, 8 patients
were excluded for unfinished MRI scans due to involuntary movements of the head and
limb or claustrophobia. Finally, full clinical, cognitive, and MRI data were collected and
analyzed for a total of 122 patients according to inclusion and exclusion criteria. The
demographic information, clinical characteristics, and CSVD-related characteristics of
patients in the two groups were presented in Table 1. As shown in Table 1, PD patients with
cognitive impairment showed significant differences in age, MMSE, education level, Hoehn-
Yahr staging, and hypertension compared to PD patients without cognitive impairment.
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CSVD, cerebral small vessel disease.

Table 1. Comparison of clinical and neuroimaging characteristics.

All PD Patients
(n = 122)

PD-NCI Group
(n = 53)

PD-CI Group
(n = 69) p

Clinical variables
Male 2 88 (72.1%) 36 (67.9%) 52 (75.4%) 0.364

Age, years 1 64.96 ± 8.94 61.40 ± 9.85 67.70 ± 7.10 0.000 *
MMSE score 1 24.45 ± 4.20 28.02 ± 0.91 21.71 ± 3.62 0.000 *

Duration, years 1 4.17 ± 3.64 3.53 ± 2.82 4.67 ± 4.11 0.088
Education level 3 1.98 ± 1.27 2.68 ± 0.976 1.45 ± 1.21 0.000 *
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Table 1. Cont.

All PD Patients
(n = 122)

PD-NCI Group
(n = 53)

PD-CI Group
(n = 69) p

Diabetes 2 13 (10.7%) 6 (11.3%) 7 (10.1%) 0.835
Smoking 2 22 (18.0%) 6 (11.3%) 16 (23.2%) 0.091

Imaging findings
SLI 1 23 (18.9%) 1 (1.9%) 22 (31.9%) 0.000 *

CMB 1 24 (19.7%) 5 (9.4%) 19 (27.5%) 0.013 *
DWMH 2 0.69 ± 0.88 0.38 ± 0.53 0.93 ± 1.01 0.002 *

PVH 2 0.69 ± 0.98 0.30 ± 0.50 0.99 ± 1.14 0.001 *
CS-EPVS 2 2.45 ± 0.74 2.40 ± 0.77 2.49 ± 0.72 0.468
BG-EPVS 2 1.64 ± 0.68 1.47 ± 0.61 1.77 ± 0.71 0.019 *

Midbrain-EPVS 1 58 (47.5%) 26 (49.1%) 32 (46.4%) 0.769
Total CSVD score 2 1.30 ± 1.07 0.77 ± 0.64 1.70 ± 1.17 0.000 *

Note: Values are expressed as the mean ± SD; 1 Data were analyzed by two independent sample T test; 2 Data
were analyzed by chi-square test; 3 Data were analyzed by rank sum test. PD, Parkinson's disease; MMSE, Mini-
Mental State Examination; NCI, no cognitive impairment; CI, cognitive impairment; SLI, silent lacunar infarction;
CMB, cerebral microbleeds; DWMH, deep white matter hyperintensities; PVH, periventricular hyperintensities;
BG-EPVS, enlarged perivascular spaces of basal ganglia; CS-EPVS, enlarged perivascular spaces of centrum
semiovale; CSVD, cerebral small vessel disease. * p < 0. 05.

3.2. CSVDs and Cognitive Impairment

The cerebral vascular imaging parameters including SLI, CMB, PVH, DWMH, CS-
EPVS, BG-EPVS, Midbrain-EPVS, and total burden of CSVD were also compared between
the PD-NCI group and the PD-CI group. Significant differences were detected in SLI, CMB,
PVH, DWMH, BG-EPVS, and the total burden of CSVD (Figure 3). PD-CI patients had
significantly greater SLI, CMB, PVH, DWMH, BG-EPVS, and the total burden of CSVD.
There were no differences in CS-EPVS and Midbrain-EPVS between the two groups.
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(a) Comparison of the DWMH, PVH, CS-EPVS, BG-EPVS, CSVD in two groups; (b) Comparison of
the SLI, CMB, Midbrain-EPVS in two groups. SLI, silent lacunar infarction; CMB, cerebral microb-
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enlarged perivascular spaces of basal ganglia; CS-EPVS, enlarged perivascular spaces of centrum
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3.3. Cognitive Impairment and Other Influence Factors

After adjusting for covariates, multivariable binary logistic regression including all
collected risk factor data showed that education level (OR 0.285, 95% CI 0.171–0.476,
p = 0.000), total burden of CSVD (OR 2.583, 95% CI 1.342–4.969, p = 0.004), and PVH
(OR 2.523, 95% CI 1.232–5.167, p = 0.011) were independently associated with cognitive
impairment in PD patients. Furthermore, education level was negatively correlated with
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cognitive impairment. In terms of CSVD-related features, the PVH and total burden of
CSVD were positively associated with cognitive impairment. (Table S1, Figure 4).
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3.4. Correlation Analysis of the Total Burden of CSVD and Other Factors

Spearman’s correlation analysis revealed that there was a highly significant positive
correlation between the total CSVD score and age (r = 0.559), hypertension (r = 0.325) as
well as H-Y stage (r = 0.192). Moreover, there is evidence of a negative correlation between
the total CSVD score and both MMSE (r = −0.483) and male (r = −0.269). (Table 2). No
significant difference was found between the total CSVD score and other factors including
PD duration, education level, diabetes and smoking.

Table 2. Correlation analysis of the total burden of CSVD, PVH, MMSE and clinical factors.

The Total Burden of CSVD PVH MMSE

Male −0.269 * −0.197 * ns
Age 0.559 * 0.546 * −0.350 *

MMSE −0.483 * −0.342 * /
Disease Duration ns ns ns
Education level ns ns 0.538 *

Hoehn-Yahr staging 0.192 * 0.252 * −0.277 *
Hypertension 0.325 * 0.241 * −0.244 *

Diabetes ns 0.274 * ns
Smoking ns ns ns

Midbrain-EPVS / / ns
SLI / / −0.335 *

CMB / / ns
DWMH / / −0.303 *

PVH / / −0.324 *
CS-EPVS / / ns
BG-EPVS / / −0.247 *

CSVD / / −0.483 *

Note: Correlation coefficients are listed. SLI, silent lacunar infarction; CMB, cerebral microbleeds; DWMH, deep
white matter hyperintensities; PVH, periventricular hyperintensities; BG-EPVS, enlarged perivascular spaces of
basal ganglia; CS-EPVS, enlarged perivascular spaces of centrum semiovale; CSVD, cerebral small vessel disease;
MMSE, Mini-Mental State Examination. * p < 0. 05; ns represents no statistical significance.

Spearman’s correlation analysis of PVH with gender and other clinical factors in
PD subjects showed that age, hypertension, diabetes, and Hoehn-Yahr stage were posi-
tively correlated with PVH; while MMSE and male were negatively correlated with PVH;
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in addition, disease duration, education, and smoking were not associated with PVH
(see Table 2).

However, the education level correlated to none of the clinical variables and CSVD
variables (Table S2). As shown in Table 2, Spearman’s correlation analysis revealed that
there was a significant correlation between the total CSVD score and MMSE (r = −0.483,
p = 0.000). Moreover, a significant negative correlation was found between some major
CSVD markers and MMSE score, except that MMSE scores were not significantly associated
with Midbrain-EPVS, CMB as well as CS-EPVS.

3.5. Accuracy of the Total Burden of CSVD in Detecting Cognitive Impairment

The diagnostic performance of the total burden of CSVD and PVH was evaluated
using the ROC curve and AUC. Figure 5 shows the graphs of the ROC curves, the total
burden of CSVD showed good accuracy in detecting cognitive impairment in PD patients
(AUC = 0.747, 95%CI: 0.656–0.818), with the sensitivity of 52.2% and specificity of 92.5%. In
addition, The AUC of the scores for PVH was 0. 654 (95%CI: 0.571–0.737) for discriminating
between PD patients with cognitive impairment from those with no cognitive impairment,
which had a sensitivity and specificity of 31.9% and 98.1%, respectively.
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4. Discussion

This study looked into the relations between CSVD and cognitive impairment in
patients with PD. The data supports a robust link between the total burden of CSVD, as
reflected by the total CSVD score on MRI, and cognitive impairment in PD, measured by the
MMSE scale. There have been a good number of studies of a significant correlation between
CSVD and cognitive impairment, but most have focused on the influence of individually
different types of cerebral small vascular disease, such as SLI, CMB, WMH or EPVS. Possible
associations between the total burden of CSVD and cognitive impairment have been poorly
investigated. Therefore, the total CSVD score was tried in this study. Moreover, several
studies showed a significant association between total CSVD score and decreased cognitive
function in vascular dementia [34] or stroke or Alzheimer’s disease [35,36]. There were
relatively few studies on cognitive impairment in PD. In the present study, we collected
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a group of patients who were clinically diagnosed with PD. The present study found
statistically significant differences in SLI, CMB, WMH, and BG-EPVS between the PD-CI
and PD-NCI groups (p < 0.05), which was in accordance with the results of the majority
of studies that have shown that BG-EPVS is associated with the development of cognitive
decline or dementia [24,37], while there were no statistically significant differences in CS-
EPVS between the PD-CI and PD-NCI groups (p > 0.05), and the specific mechanism needs
to be further investigated.

A longitudinal study on factors affecting PD symptoms published by Mollenhauer
et al. [38] in 2019 have shown that alcohol abuse, diabetes, hypertension, and hyper-
lipidemia were predictors of cognitive decline in PD by investigating various baseline
predictors, suggesting that vascular risk factors are significant predictors of disease pro-
gression. Consistent with this research results, our results demonstrated that hypertension
affects the cognitive function of PD patients. In contrast, our recent study did not indicate
statistically significant associations between diabetes and cognitive impairment in PD,
which may be attributable to the relatively small sample size of subjects with diabetes
in this study. The results of the present study that age of PD patients is associated with
their cognitive function are consistent with the results of the study carried out by Aarsland
et al. [39]. Some studies have confirmed that the severity of PD symptoms, education, and
severity of motor symptoms significantly affect cognitive function in PD [40,41]. This is
consistent with the results of the statistical analysis comparing the group of PD-NCI and
the PD-CI in this study.

While neurodegeneration is the leading cause of Parkinson’s-related cognitive impair-
ment, it is important to note that other factors, such as certain comorbidities, may also
affect cognitive function in Parkinson’s patients. Prevalence of Parkinson’s disease and
cerebrovascular disease increases with age, and these two diseases can co-exist and interact.
Several studies have shown that comorbidity of CSVD is a major concern in PD and that
CSVD may exacerbate motor symptoms and non-motor symptoms, including cognitive
function, in PD patients [12,42].

The mechanisms by which CSVD causes cognitive impairment in PD patients are un-
clear. CSVD can lead to damage to white matter fiber tracts, which can cause disruption of
the complex network connecting cortical and subcortical areas of relevance [43]. Extensive
damage to important white matter fiber tracts in the cranial brain and disruption of the
integrity of these white matter fiber tracts may be responsible for the cognitive impairment
in PD due to CSVD, and the cognitive domains impaired due to white matter injury in
different brain regions are different [44]. It has been found that the structural network of
brain connections changes under the influence of CSVD, and the changes are characterized
by a decrease in the number of brain network connections and a decrease in the intensity
of brain network connections [43,45]. Anil M. Tuladhar et al. [46] suggested that CSVD
affects brain networks and leads to a decrease in their intensity and a decrease in the overall
and local efficiency of brain networks. Andrew J. Lawrence et al. [47] suggested that the
reduction in efficiency and strength of global and local brain networks, as well as the
severity of brain network disruption, is highly consistent with the severity of CSVD, which
is associated with a reduction in the capacity to integrate information of the global brain as
well as the capacity for local information processing due to CSVD.

WMH is one of the typical neuroimaging manifestations of CSVD and affects the
cognitive function of PD patients as a factor independent of the total burden of CSVD.
Relevant studies have shown that with increased brain white matter lesions, nerve fiber
destruction becomes more severe and cognitive impairment becomes more apparent. A
previous study has identified that severe WMH burden increases the likelihood of cognitive
impairment in the early stages of the disease and causes people suffering from Parkinson’s
disease to experience accelerated cognitive decline [48]. Our current study identified that
PVH and DWMH were significantly greater among PD-CI patients. DWMH may disrupt
short cortical connections composed of bowed “U” shaped fibers that are highly dense
in areas beneath the gray matter. PVH may affect regions containing a high density of
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long-association and projection fiber tracts that connect more distant cortical areas. Other
studies have also shown that WMH has a heterogeneous spatial distribution in PD, with
WMH occurring preferentially in periventricular regions [49]. This was consistent with the
results of the present study, which concluded that the severity of PVH is a risk factor for
cognitive function in PD patients.

Possible mechanisms for the association between other CSVD markers and cognitive
impairment in PD patients are explained as follows. The PVS is considered to be part of
the lymphatic drainage system that eliminates metabolic waste, and an enlarged PVS may
lead to dysfunctional clearance of soluble proteins involved in neurodegenerative diseases,
which would exacerbate the pathology of PD [50]. SLI is thought to cause nerve cell death
and nerve fiber degeneration, which impairs cognition by disrupting the neural structural
basis associated with cognitive function, the white matter pathway [51]. CMB, on the other
hand, has the potential to disrupt regional neural pathways involved in cognitive function,
leading to neural network damage and cognitive impairment [52].

A prospective study regarding CSVD found that total burden of CSVD was signifi-
cantly and independently associated with age, gender, hypertension, and smoking [33,53],
while the present study found that total burden of CSVD in PD patients was correlated
with risk factors such as age, gender, hypertension, and H-Y staging, and spearman cor-
relation analysis of PVH as a part of CSVD with clinical factors showed the same results.
However, the association between the total burden of CSVD and H-Y staging was not
significant after correction of multiple comparison with FDR (p > 0.05). Although the asso-
ciation did not reach the significant threshold, it approached significance (FDR corrected
p = 0.061). Smoking was not correlated with either PVH or total burden of CSVD. The
severity of PD motor symptoms was indicated by H-Y staging, which correlated with, and
may even interact with, the severity of CSVD. After that, we will expand the sample size to
continue analysis and verification. In addition, further research needed to determine the
exact reasons.

The AUC has values between 0.5 and 1, and the closer the AUC is to 1, the better the
diagnosis. Our study concluded that the variable total burden of CSVD has moderate accu-
racy in predicting cognitive impairment in PD patients (AUC = 0.737, 95%CI: 0.656–0.818)
and the variable PVH has a lower predictive accuracy (AUC = 0.654, 95%CI: 0.571–0.737).
DeLong’s test showed that the diagnostic efficacy of CSVD was slightly better than that of
PVH in predicting cognitive impairment in PD patients, and the results were not statistically
significant (p = 0.059).

Clinically, MMSE has obvious limitations and can be easily influenced by age, ed-
ucation, verbal communication, and motor symptoms of PD patients, and the scale can
reflect the cognitive function of patients at the time of testing, which cannot predict the
long-term cognitive development of patients effectively, especially for patients without
obvious cognitive impairment. Although tremor-type PD can affect the completion of MRI
examination, some patients can still complete MRI examination well after pharmacological
control of motor symptoms. Our results showed that CSVD or PVH was an independent
risk factor for decreased MMSE scores in PD patients, which demonstrated that PVH and
CSVD could predict cognitive impairment in PD. In addition, given the inextricable and
stable relationship between CSVD and cognitive impairment, the assessment of CSVD
and total burden of CSVD may be able to predict the long-term cognitive function of PD
patients, which can provide an alternative way of thinking for clinicians to assess cognition
in PD.

5. Conclusions

In conclusion, this study provided further evidence that there was a significant asso-
ciation between total burden of CSVD and cognitive impairment in patients with PD. In
addition, total burden of CSVD or PVH is possible to be a reliable predictor of the long-term
cognitive development in PD patients.
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