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ABSTRACT
Background. Vegetation dynamics is defined as a significant indictor in regulating
terrestrial carbon balance and climate change, and this issue is important for the
evaluation of climate change. Though much work has been done concerning the
correlations among vegetation dynamics, precipitation and temperature, the related
questions about relationships between vegetation dynamics and other climatic factors
(e.g., specific humidity, net radiation, soil moisture) have not been thoroughly
considered. Understanding these questions is of primary importance in developing
policies to address climate change.
Methods. In this study, the least squares regression analysismethodwas used to simulate
the trend of vegetation dynamics based on the normalized difference vegetation index
(NDVI) from 1981 to 2018. A partial correlation analysis method was used to explore
the relationship between vegetation dynamics and climate change; and further,the
revised greyscale model was applied to predict the future growth trend of natural
vegetation.
Results. The Mann-Kendall test results showed that th e air temperature rose sharply
in 1997 and had been in a state of high fluctuations since then. Strong changes
in hydrothermal conditions had major impact on vegetation dynamics in the area.
Specifically, the NDVI value of natural vegetation showed an increasing trend from
1981 to 2018, and the same changes occurred in the precipitation. From 1981 to 1997,
the values of natural vegetation increased at a rate of 0.0016 per year. From 1999 to
2009, the NDVI value decreased by an average rate of 0.0025 per year. From 2010 to
2018, the values began an increasing trend and reached a peak in 2017, with an average
annual rate of 0.0033. The high vegetation dynamics areas were mainly concentrated in
the north and south slopes of the TianshanMountains, the Ili River Valley and the Altay
area. The greyscale prediction results showed that the annual average NDVI values of
natural vegetation may present a fluctuating increasing trend. The NDVI value in 2030
is 0.0196 higher than that in 2018, with an increase of 6.18%.
Conclusions. Our results indicate that: (i) the variations of climatic factors have caused
a huge change in the hydrothermal conditions in Xinjiang; (ii) the vegetation dynamics
in Xinjiang showed obvious volatility, and then in the end stage of the study were higher
than the initial stage the vegetation dynamics in Xinjiang showed a staged increasing
trend; (iii) the vegetation dynamicswere affected bymany factors,of which precipitation
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was the main reason; (iv) in the next decade, the vegetation dynamics in Xinjiang will
show an increasing trend.

Subjects Climate Change Biology, Ecohydrology, Environmental Impacts, Spatial and Geographic
Information Science
Keywords Vegetation dynamics, Climate change, Temperature, precipitation, Hydrology, Partial
correlation, Greyscale model, prediction, Xinjiang

INTRODUCTION
As an important part of terrestrial ecosystems, vegetation links among atmosphere, soil
and water interactions. It plays an important role in the global biogeochemical and energy
cycles (Hao et al., 2016). In terms of environmental protection, vegetation can prevent wind
and sand erosion, slow soil erosion, and effectively prevent desertification (Salomao, Silva
& Machado, 2019; Zhang et al., 2019a; Zhang et al., 2019b). In terms of the energy cycle,
vegetation can effectively reduce the concentration of greenhouse gases, facilitate global
carbon balance, and maintain the global climate stability (Ndehedehe & Ferreira, 2019;
Servera Vives et al., 2014). It is important to monitor the long-term growth and change
of vegetation and to explore its relationship with climate change in the study of global
change (Mancino et al., 2013; Shao & Zhang, 2016). In particular, vegetation dynamics are
very sensitive to climate change in arid and semi-arid areas (Zhang et al., 2019a; Zhang et
al., 2019b; Shao et al., 2019a). Using remote sensing data to dynamically monitor the inter-
annual variation of long-term sequence vegetation has become a prevailing research topic
(Ernst-Brock et al., 2019; Teh et al., 2015). Some scholars have used different vegetation
indices and models to simulate and monitor changes in vegetation dynamics (Cui et al.,
2018; Elhakeem & Elshorbagy, 2015;Herrmann et al., 2005). TheNDVI has beenwidely used
for research on vegetation dynamics, vegetation productivity measurements, responses to
climate change, and desertification (Li & Guo, 2012; Los, 2013; Luan et al., 2013; Wingate,
Phinn & Kuhn, 2019). The application of the NDVI value to monitor vegetation dynamics
was the basis for better understanding the feedback between vegetation and the atmosphere.
Therefore, we used the NDVI of natural vegetation to indicate the response of vegetation
dynamics to climate change at regional level.

Global warming has become an indisputable fact (Chapman, 2015; Vale et al., 2018).
However, there is no complete assessment of the regional influence under the worldwide
climate policy targets. Xinjiang is located in the center of the Eurasian continent. There is an
extremely fragile mountain-desert-oasis landscape. The climate has undergone an obvious
change, with the average temperature rising significantly and precipitation increasing
slightly under the combined influence of global warming and human activities, which
may have a huge substantial impact on the natural ecosystems of the region (Chen et al.,
2015; Shao, Zhang & Wang, 2017). For example, the plants transpiration and soil moisture
consumption may increase in the plain desert areas. This phenomenon may lead to the
death of shallow roots (Han et al., 2018). So it is important to monitor vegetation dynamics
underground climate change.
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In the context of climate change, the monitoring of inter-annual variation vegetation
dynamics has become one of the hotspots of ecological, environmental and energy cycle
research. In recent research, the NDVI has been widely applied to study the vegetation
dynamics and the relationship among vegetation dynamics and climatic factors (Du
et al., 2015; Fensholt et al., 2012; Xu et al., 2015; Yan, Wu &Wang, 2013). Most of these
scholars directly discussed the correlation between vegetation index and precipitation and
temperature. However, vegetation dynamics has been changed under the combined effects
of many climatic factors. The cultivated plants, shrubs, and deserts are significantly and
positively related to both the increasingmaximum temperature andminimum temperature,
meanwhile different vegetation types have different responses to asymmetric warming (Ma
et al., 2019a; Ma, Xia & Meng, 2019b). The influence of elevation gradients on the start
of the growing season, end of the growing season, and the length of growing season
on a spatiotemporal scale has been evaluated (Xia et al., 2019). Therefore, in addition
to temperature and precipitation, some other climatic factors such as soil moisture, net
radiation, and surface specific humidity will be discussed to form a more complete eco-
hydrothermal system in this study. In addition, the current research works on vegetation
dynamics were analyzed based on historical data. Accurate prediction of the future
vegetation dynamics based on the past regular pattern of vegetation dynamics is pivotal for
the environmental protection organizations to formulate a reasonable climate policy for
climate change.

Xinjiang is particularly vulnerable to climate change (Zhou et al., 2019), and it has
experienced significant climate warming in the past 40 years. As a part of the arid region, the
vegetation dynamics in Xinxiang are an important ecological barrier to maintain ecological
balance (Fang et al., 2018). Over the past few decades, although vegetation restoration
appeared in some regions due to numerous vegetation-related programs implemented,
vegetation degradation also occurred in several regions due to rapid urbanization. In view of
the whole province, the impacts of climatic factors extreme on vegetation dynamics remain
unclear inXinjiang. Therefore, it is crucial to determine the response of vegetation dynamics
to climate change by using partial correlation analysis method and Mann-Kendall (MK)
test (Sáenz-Romero et al., 2012; Shao et al., 2019b). We will make a reasonable prediction
of future vegetation dynamics by constructing a greyscale prediction model in Xinjiang
(Zhao et al., 2019). Consequently, our objectives are for following purposes: (1) to discuss
the variations of climatic factors; (2) to analyze the spatiotemporal variations of NDVI
during 1981-2018 in Xinjiang; (3) to study the relations among climatic factors and NDVI
in Xinjiang; (4) to predict and analyze the future vegetation trend from 2019 to 2030. Our
study can reveal the precise characteristics of vegetation dynamics in Xinjiang and identify
the driving factors that lead to dynamic changes in vegetation. At the same time, this study
will provide a theoretical basis for the environmental protection organizations to cope with
future climate change and formulate ecological protection policies in Xinjiang.
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MATERIALS & METHODS
Study area
Xinjiang with an area of approximately 1.66 × 104 km2 (75◦E–95◦E and 35◦N–50◦N), is
located in the center of the Eurasian continent (Fig. 1). It has a geographic location far
from the ocean, a complex terrain surrounded by mountains and the geomorphological
features of a closed inland basin. These special features have a great influence on the
distribution and change of climatic factors in Xinjiang (Du et al., 2015; Wu et al., 2010).
The three major mountain ranges in the territory are the Altai Mountains, the Tianshan
Mountains and the KunlunMountains. The Taklimakan Desert and Gurbantunggut Desert
are divided to form a unique landscape pattern of mountains and basins. The climate of
Xinjiang is typical of inner-continental land masses with a wide temperature range, low
precipitation and low humidity (Wang & Zhang, 2019). The annual precipitation of North
Xinjiang is 100 to 500 mm, while that of South Xinjiang is 20 to 100 mm. The annual
average temperature in North Xinjiang ranges from 4 ◦C to 8 ◦C, and it ranges from 10 ◦C
to 13 ◦C in South Xinjiang (Luo et al., 2019). There are large areas of forest and grassland
vegetation on the Tianshan Mountains, Altai Mountains and Kunlun Mountains. Oases
and cities are distributed in the valley plains. In 2018, forest land and grassland accounted
for 31.29% of the land area, of which grassland was the main type of vegetation.

NDVI data
The NDVI dataset from 1981 to 2006 was obtained from the Global Inventor Modeling
and Mapping Studies (GIMMS) of the National Aeronautics and Space Administration
(NASA) at a spatial resolution of 8×8 km and a 15-day temporal resolution. TheMoDerate-
resolution Imaging Spectroradiometer (MODIS) NDVI dataset from 2000 to 2018 was
collected from the United States Geological Survey (USGS) at a spatial resolution of 1×1
km and a 16-day temporal resolution. Finally, an NDVI annual dataset with a spatial
resolution of 8×8 km was obtained. After consistency testing, the R2 between the two
datasets was 0.96, which was checked by a confidence at the 0.01 level.

Climatic data
The temperature and precipitation dataset of 33 observation sites from 1981 to 2018 in
Xinjiang was obtained from the National Meteorological Information Center of China.
We obtained a climate raster dataset whose pixel size and projection was same as GIMMS
data by using AUNSPIN to interpolate the climate data. ANUSPLIN is a software Package
developed by Australians to simulate surfaces with functions. It has been used to analyze
and interpolate multivariate data using a smooth spline function. It can perform reasonable
statistical analysis and data diagnosis on data, and can analyze the spatial distribution of
data to realize spatial interpolation (Hutchinson, 1998; Xia et al., 2019).

The soil moisture data at different depths, net longwave radiation, net shortwave
radiation, and surface specific humidity were collected from the Global Land Data
Assimilation System (GLDAS). The GLDAS dataset was estimated against available data
from multiple sources. In this study, we used GLDAS 2.0 data (NOAH, 0.25◦ ×0.25◦) for
the period 1981–2010 and GLDAS 2.1 data (NOAH, 0.25◦ ×0.25◦) from 2001 to 2018. We
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Figure 1 Study area (boundary information was obtained from State Key Laboratory of Desert and
Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Approval
number: Xinjiang S(2018)033). Three color lines represent three mountains. Purple line represent the
boundary of south and north of Xinjiang. Purple stars represent meteorological observation sites. The
numbers represent the names of the places which will be mentioned in the text. Map credit: c© State Key
Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy
of Sciences; CC BY NC 4.0.

Full-size DOI: 10.7717/peerj.8282/fig-1

built a linear relationship model to extend the GLDAS-2.0 dataset to 2018 by using data
from two datasets overlap periods. The depths of the four soil layers ranged from 0 to 10,
10 to 40, 40 to 100, and 100 to 200 cm.

Land use/Land cover data
The land use/land cover (LULC) data of Xinjiang came from the National Land Use
Dataset (NLUD), which was obtained from the Remote Sensing Survey of the Resources
and Environment of the Chinese Academy of Sciences. Based on Land satellite (Landsat)
MSS/TM/OLI data from America and the China-brazil earth resource satellite (CBERS)
from China (Table 1), six major landscape types—cultivated land, woodland, grassland,
waterbodies, construction land, and unused land—were extracted from the satellite
images through supervised classification (Pan et al., 2019). The classification accuracy
was evaluated by overall accuracy and kappa coefficient. The overall accuracy, which
represents the probability that the classification result of each random sample is consistent
with the actual type of the corresponding region, was the number of all cells that were
correctly classified for LULC categories divided by the total number of pixels (Tottrup &
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Table 1 Accuracy evaluation of LULC data.

Year Image source Spatial
resolution/m

Overall
accuracy

Kappa
coefficient

1980 Landsat MSS 79 87.50 0.84
1990 Landsat TM 30 90.00 0.86
2000 Landsat TM, CBERS 30, 19.5 92.00 0.89
2010 Landsat TM, CBERS 30, 19.5 90.67 0.88
2018 Landsat OLI 30 92.26 0.90

Rasmussen, 2004). The kappa coefficient was used to characterize the degree to which the
two maps agreed (category maps are consistent with Google Earth high-resolution images
or field-measured data or credible classification maps), and it considered both the correct
and the incorrect point. When the kappa coefficient was greater than 0.75, we believed that
there was a good agreement between the two images (Yang & Xue, 2016).

Theil-Sen Median analysis and Mann-Kendall test
We have carried out the Mann-Kendall (MK) trend significance test to study the vegetation
characteristics through NDVI and climatic factors in Xinjiang (Tong et al., 2018). The
MK test, proposed by Kendall and Mann, is a non-parametric test that does not require
the data to be normally distributed and has low sensitivity to outliers in the time series
(Xiong, Kim & Qiu, 2019). Therefore, this method has been commonly applied to study
long-term analysis of meteorological factors and vegetation. This method mainly contains
two parameters: Z and β. The standard normal test statistic Z, used for testing trend and
significance of the time series, is calculated as follows:

Z =


s−1
√
Var(s)

,S> 0

0,S= 0
s+1
√
Var(s)

,S< 0

S=
n∑

i=2

i−1∑
j=1

sign(xi−xj)

sign(xi−xj)=


−1,for(xi−xj)< 0
0,for(xi−xj)= 0
1,for(xi−xj)> 0

Var =
n(n−1)(2n+5)−

∑1
k−1 tk(tk−1)(2tk+5)

18
where n is the number of data points, xi and xj are the sequential data in the series, l is the
number of tied groups, and tk is the number of data points in the kth group.

In a two-tailed test, the null hypothesis H0 of no trend should be rejected at the α
significance level for |Z |> Z1−α/2, which indicates that the time series have a significant
variability. The slope (β) of Theil-Sen Median indicates that the increasing or decreasing
rate of the time series can be obtained using following equation:
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β =Median xi−xj
i−j for all j <i.

Partial correlation analysis
Partial correlation only analyzes the degree of correlation between two variables by
removing the influence of the remaining variables when one variable is related to multiple
variables at the same time. The absolute values of each partial correlation coefficient were
categorized as greater than or equal to zero and less than or equal to one.When the absolute
value of a partial correlation is equal to one, the two variables are completely related. In
contrast, when a partial correlation is equal to zero, the two variables are completely
unrelated (Xia et al., 2018).

The statistical significance of the partial correlation coefficient between annual mean
NDVI and temperature after other climatic factors was evaluated by the t -test as follows:

t = r
[
(n−p−1)/(1+ r2)

]1/2
where n is the total number of years; q is the number of independent variables; r is the
partial correlation coefficient between annual mean NDVI and temperature after other
climatic factors.

Greyscale prediction model
Grey system theory (GST), founded by Deng Julong, includes grey system analysis,
modelling, prediction, decision-making, control and so on. It has become a useful tool in
processing uncertain systems with small samples and poor information (Tian, Minggang
& Chuankun, 2014). Grey prediction is an important branch of GST. It can predict the
evolution of a system’s behavioral eigenvalues. It can also predict systems that contain both
known and uncertain information, such as predicting the ash processes associated with
time series that vary within a certain range. It has been widely used in the prediction of
risk, minerals, population, water resources, and meteorological factors and so on by grey
models (GMs) (Hamzacebi, Karakurt & Effects, 2015; Yang & Xue, 2016; Yuan et al., 2019).
Compared with other forecasting methods, only a limited amount of data are needed to
estimate the behavior of unknown systems without knowing the mathematical model in
the grey system (He et al., 2016).

The equations of the greyscale model are as follows:
(1) The original data are listed as follows:

x(0)=
{
x(0)(1),x(0)(2),..., x(0)(n)

}
(m= 1,2,...)

After the accumulation, a new data list is obtained as follows:

x(m)
=
{
x(m)(1),x(m)(2),..., x(m)(n)

}
(m= 1,2,...)

Find the average and obtain the mean sequence as follows:
z (m)
={z (m)(2),z (m)(3),...,z (m)(m)(n)}(m= 1,2,...)

Then the white differential equation corresponding to the grey differential equation of
the GM (1, 1) model as follows:

dx(1)

dt
+αx(1)=β
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where α is the development coefficient; and β is the ash effect.
(2) By solving the white differential equation, the prediction model as follows:
X(1)(k+1)=

[
x(0)(1)− β

α

]
e−αk+ β

α
(k = 1,2,...)

where α and β are unknown parameters to be determined, and k is a time serial number.
(3) To verify the credibility of the prediction results that were obtained according to the

greyscale model, a correlation test was required. In the greyscale model, the correlation
coefficient between the measured value and the predicted value at k time was defined as
follows:

ξij(k)=
1min+ρ1max

1ij(t )+ρ1_max

The overall correlation between the measured value and the predicted value was:

Rij(k)=
1

n− i

n−1∑
k=1

ξij(k)

1ij (k)=
∣∣xi(k)−xj(k)∣∣

where1ij (k) is the absolute difference between the measured value and the predicted value
at k time; 1min is the minimum value of the absolute difference; 1max is the maximum
value of the absolute difference; ρ= 0.5 is the resolution coefficient.

RESULTS
Spatiotemporal changes in the climatic factors
The spatial distribution of temperature trends indicated that the areas with accelerated
warming were mainly concentrated in the southern margin of the Altai Mountains, the
north and south slopes of the Tianshan Mountains and the northern margin of the Kunlun
Mountains (Fig. 2A). From 1981 to 2018, the annual temperatures in Xinjiang showed a
clear upward trend at a rate of 0.328/10 years (0.01 confidence level) (Table 2). In 1997,
there was a sharp increase in the temperature change trend in Xinjiang according to the
results of MK test, and it has remained at a high level since then (Table 2, Fig. 2C).

The spatial distribution of precipitation trends from 1981 to 2018 indicated that areas
with significant increases in precipitation concentrated in the Urumqi, Changji, Ili, Bozhou,
and southwestern Taklimakan Deserts (Fig. 2B). From 1981 to 2018, the precipitation
showed a slightly increasing trend in Xinjiang with a rate of 14.482 mm/10 years (0.01
confidence level) (Table 2). Moreover, the decadal fluctuation amplitude was greater in
Xinjiang than the overall global level. The annual precipitation in Xinjiang increased from
1981 to 1997 at a rate of −11.517 mm/10 years (0.05 confidence level) (Table 2). The
results of MK test indicated that it reached a peak in 1998. From 1998 to 2018, the annual
precipitation trend showed an increasing trend with a rate of 10.590 mm/10 years (0.05
confidence level) (Table 2, Fig. 2D).

The annual mean net radiation significantly (p < 0.01) increased at a rate of 2.243W/10
years in Xinjiang during 1981 to 2018 (Table 2, Fig. 3A). From Fig. 3B, it was observed that
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Figure 2 The spatiotemporal changes in temperature and precipitation during 1981–2018. (A) Trend
of temperature in Xinjiang. (B) Trend of precipitation in Xinjiang. (C) Annual temperature anomalies of
Globe, China and Xinjiang. (D) Annual precipitation anomalies of Globe, China and Xinjiang. Map credit:
c© State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chi-
nese Academy of Sciences; CC BY NC 4.0.

Full-size DOI: 10.7717/peerj.8282/fig-2

Table 2 Trend test of NDVI and climatic factors in Xinjiang in different periods.

Indicator 1981–2018 1981–1997 1998–2018

Annual NDVI (/10a) 0.008** 0.006** 0.000
0–10 cm (Kg/(m2.10a)) 0.351 −0.782** 1.010**

10–40 cm (Kg/(m2.10a)) 2.525** −0.503* 5.020**

40–100 cm (Kg/(m2.10a)) 6.097** 0.412* 11.042**

100–200 cm (Kg/(m2.10a)) 10.008** −0.198 18.743**

Net Radiation (W/(m2.10a)) 2.243** 6.900** −0.301*

Specific Humidity (10−3/10a) −0.223** −0.254** −0.470*

Precipitation (mm/10a) 14.482** −11.517* 10.590*

Temperature (◦C/10a) 0.328 0.539* 0.252

Notes.
*Significant at the 0.05 level.
**Significant at the 0.01 level.

the net radiation showed large regional differences, increasing from the south to the north
of Xinjiang. The high net radiations were detected in the Gurbantonggute Desert, Bozhou
and Ili region.

The annualmean specific humidity showed a decreasing trend at a rate of 0.223×10−3/10
years (0.01 confidence level) during 1981 to 2018 (Table 2, Fig. 4A). Figure 4B indicates
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Figure 3 Spatiotemporal changes in the annual net radiation in Xinjiang from 1981 to 2018. (A)
Anomalies in the annual net radiation in Xinjiang. (B) Distribution of the net radiation in Xinjiang. Map
credit: c© State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography,
Chinese Academy of Sciences; CC BY NC 4.0.

Full-size DOI: 10.7717/peerj.8282/fig-3

Figure 4 Spatiotemporal changes in the annual specific humidity in Xinjiang from 1981 to 2018. (A)
Anomalies in the annual specific humidity in Xinjiang. (B) Distribution of the specific humidity in Xin-
jiang. Map credit: c© State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and
Geography, Chinese Academy of Sciences; CC BY NC 4.0.

Full-size DOI: 10.7717/peerj.8282/fig-4

that there are significant regional differences in the annual precipitation variation trend.
The low specific humidity regions were mainly located in the three mountains (including
Altai Mountains, Tianshan Mountains and Kunlun Mountains).

The soil moisture at different depths showed different variations in Xinjiang. The soil
moisture at 0–10 cm showed an increasing trend at a rate of 0.351 kg/ (m2.10 years) during
1981 to 2018, but did not reach a significant level (p= 0.072). The soil moisture at other
depths significantly (p < 0.01) increased at different rates. There were similarities at the four
depths, such as the low soil moisture regions were mainly located in two deserts (including
Gurbantonggute Desert and Taklimakan Desert) (Fig. 5). In the horizontal distribution,
the shallow soil moisture in the southern Tianshan Mountains was significantly lower
than that in the north of the Tianshan Mountains (Fig. 5A). In sub-shallow soils, the soil
moisture in the Taklimakan Desert and the Gurbantunggut Desert was significantly lower

Zhuang et al. (2020), PeerJ, DOI 10.7717/peerj.8282 10/23

https://peerj.com
https://doi.org/10.7717/peerj.8282/fig-3
https://doi.org/10.7717/peerj.8282/fig-4
http://dx.doi.org/10.7717/peerj.8282


Figure 5 Average soil moisture at different depths from 1981 to 2018. (A) 0–10 cm; (B) 10–40 cm; (C)
40–100 cm; (D) 100–200 cm. Map credit: c© State Key Laboratory of Desert and Oasis Ecology, Xinjiang
Institute of Ecology and Geography, Chinese Academy of Sciences; CC BY NC 4.0.

Full-size DOI: 10.7717/peerj.8282/fig-5

than that in other regions (Figs. 5B and 5C). In the deep soil, the soil moisture was lower
overall in Xinjiang, and the Taklimakan region had the lowest soil moisture (Fig. 5D).

Spatiotemporal changes in the annual mean NDVI
We clipped the NDVI raster data to obtain the distribution of natural vegetation NDVI
by using the LULC data to create a mask. The NDVI annual average anomaly of natural
vegetation can be obtained by statistics (Fig. 6A). During the entire study period, the annual
NDVI value of natural vegetation showed an increasing trend with a rate of 0.008/10a (0.01
confidence level) (Table 2). The trend of NDVI was consistent with the annual change
trend of precipitation with a characteristic of ‘‘firstly increasing, then decreasing and finally
increasing’’. From 1981 to 1997, the NDVI value of natural vegetation increased at an
annual rate of 0.0016. However, the growth trend has reversed since 1998. From 1999 to
2009, the NDVI value decreased at an average rate of 0.0025 per year. From 2010 to 2018,
the NDVI value showed an increasing trend with an average annual growth rate of 0.0033
and reached a peak in 2017.

The vegetation in Xinjiang is dominated by desert vegetation mixed with alpine and
oasis vegetation patches. The NDVI annual value was calculated by the maximum synthesis
method. In the longitudinal distribution, the distribution of the NDVI showed a gradual
decrease from the west to the east, influenced by the westerly circulation from 1981 to
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Figure 6 Spatiotemporal changes in the annual NDVI in Xinjiang from 1981 to 2018. (A) Anomalies in
the annual NDVI of natural vegetation in Xinjiang. (B) Distribution of the natural NDVI in Xinjiang. Map
credit: c© State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography,
Chinese Academy of Sciences; CC BY NC 4.0.

Full-size DOI: 10.7717/peerj.8282/fig-6

2018. On the whole, its distribution characteristic was consistent with the distribution
characteristic of sub-shallow soil moisture. In the latitude distribution, the NDVI values of
vegetation in northern Xinjiang were generally higher than the NDVI value of vegetation
in southern Xinjiang. The high vegetation dynamics areas were mainly concentrated in the
north and south slopes of the Tianshan Mountains, the Ili River Valley and the Altay area
as these areas had relatively more precipitation (Fig. 6B).

Correlation between NDVI and climatic factors
To further examine the impacts of climatic factors on vegetation in Xinjiang. We used
partial correction coefficients to determine the relationship between annual mean NDVI
and climatic factors (Table 3). The annual mean NDVI was significantly and positively
correlatedwith average soilmoisture at 10–40 cm, 40–100 cm, 100–200 cmandprecipitation
during 1981 to 2018. However, there was not significant correlation between annual NDVI
and average soil moisture at 0–10 cm, net radiation, specific humidity and temperature.
Table 3 showed that the annual mean NDVI was most significant and positively correlated
with precipitation (exceeding the 0.01 confidence level), whereas it was negative correlated
with specific humidity (not reach significance level, R2

=−0.217).
In different periods, there were obvious variations in the relationships between annual

mean NDVI and climatic factors. From 1981 to 1997, the overall relationship between
annual mean NDVI and climatic factors was lower than the level of the whole study
period (Table 3). Only two factors (soil moisture at 40–100, R2

= 0.568, exceeding the 0.05
confidence level; precipitation, R2

= 0.727, exceeding the 0.01 confidence level) reached
significant level. The soil moisture at 0–10 cm and temperature were negative correlated
with the annual mean NDVI (R2

= −0.054, −0.039, respectively). From 1998 to 2018,
the overall relationship between annual mean NDVI and climatic factors was obviously
higher than the level of the whole study period (Table 3). The soil moisture at 10–40 cm,
40–100 cm, 100-200 cm and precipitation exceeded the 0.01 confidence level (R2

= 0.616,
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Table 3 Relationships among annual NDVI and average soil moisture, net radiation, specific humid-
ity, precipitation and temperature in Xinjiang from 1981 to 2018.

Indicator NDVI
1981–2018 1981–1997 1998–2018

0–10 cm 0.141 −0.054 0.123
10–40 cm 0.494** 0.304 0.616**

40–100 cm 0.502** 0.568* 0.631**

100–200 cm 0.474** 0.067 0.617**

Net radiation 0.264 0.070 0.459*

Specific humidity −0.217 0.131 −0.417
Precipitation 0.699** 0.727** 0.666**

Temperature 0.164 −0.039 0.177

Notes.
*Significant at the 0.05 level.
**Significant at the 0.01 level.
NDVI, natural vegetation annual NDVI.
Average Soil Moisture at 0–10 cm; 10–40 cm, Average Soil Moisture at 10–40 cm; 40–100 cm, Average Soil Moisture at 40–100
cm; 100-200 cm, Average Soil Moisture at 100–200 cm.

Table 4 Accuracy evaluation between exited data and predictive data.

Year Exited
value

Predictive
value

Difference Similarity
(%)

1981 0.2876 0.2854 −0.0022 99.23%
1990 0.3134 0.3030 −0.0104 96.68%
2000 0.2996 0.3010 0.0014 99.53%
2010 0.3092 0.3183 −0.0091 97.06%
2018 0.3174 0.3209 0.0035 98.90%

0.631, 0.617, 0.666, respectively), while the net radiation reached 0.05 confidence level
(R2
= 0.459). However, there was no significant correlation between the annual NDVI and

soil moisture at 0–10 cm, specific humidity and temperature during 1998–2018. The results
showed that the relationship between annual NDVI and precipitation was highest in any
periods, so we can determine that precipitation was the main factor affecting vegetation
dynamics.

Prediction of the natural vegetation dynamics
The values of the parameters α and β were calculated to be −0.002424 and 0.295315,
respectively. Thus, the prediction model was X(1)(k+1) = 122.131814e0.002424k−
121.845414. According to experience, we let ρ = 0.5, and then made a relevance test
for the model. If the degree of correlation is greater than 50%, we believed that the
credibility passed the test. The results showed that the similarity between the measured
value and the predicted value was 98.28% (Table 4).

The predicted results demonstrated that the average annual NDVI of natural vegetation
fluctuated from 2019 to 2030 in Xinjiang, and the average value in 2030 increased by 0.0196
relative to that in 2018 with an increase of 6.18%. The annual average NDVI of natural
vegetation reaches 0.3337 during the period 2019 to 2030. Figure 7 shows that 1999–2009
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Figure 7 Temporal variation in average annual NDVI of natural vegetation from 1981 to 2030. The
black line on the left indicates historical data. The brown line represents predicted value. The histogram
shows the average of NDVI over different periods. The numbers in the box represent the ranges of change
in the average NDVI.

Full-size DOI: 10.7717/peerj.8282/fig-7

was the worst decade for vegetation growth, the annual average of NDVI was only 0.2959
during this period. This phenomenon occurred under the combined effect of climatic
factors. Statistics showed that soil moisture at different depths and precipitation during
this period were lower than the entire study period, temperature was higher than the entire
level (Table 2). After 2010, vegetation dynamics showed a steadily improving trend with an
average annual rate 0.0026 under the influence of climate and environmental conditions.

DISCUSSION
Trends of vegetation dynamics
In section ‘‘Spatiotemporal Changes in Annual Mean NDVI’’, we found that the annual
mean NDVI showed an increasing trend in Xinjiang during 1981 to 2018. This result
was similar to previous studies. Ma et al. (2019a) suggested that vegetation variability to
asymmetric warming is important to understand the changes in vegetation photosynthetic
activity under global warming and ultimately influences regional and hemispheric-scale
carbon balances.Cui et al. (2019) found that the annualmeanNDVI over thewhole Yangtze
River Basin showed a significantly increasing trend during 1982–2015. Spatially, annual
mean NDVI significantly increased in the northern, eastern, and parts of southwestern
Yangtze River Basin, while it decreased in the parts of southern YRB. Yao et al. (2019)
showed that greening speed may be slower in arid than in humid regions, and in urban
cores than in rural areas. Thus some benefits from vegetation greening may be much less
in arid than in humid regions, and in urban cores than in rural areas.

Du et al. (2016a) and Du et al. (2016b) showed that the vegetation greenness in growing
season (including spring, summer, and autumn) increased significantly from 1982 to 2012
in Xinjiang. The NDVI in growing season increased significantly from 1982 to 1998, then
decreased significantly from 1998 to 2012; this trend was also observed in summer and
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autumn seasons. Similar to the changes in greenness at regional scales, the percentages of
land areas experiencing positive anomalies also increased significantly during 1982 to 2012.
Xu et al. (2015) found that the NDVI values in growing season were high in the west and
northwest and low in the south and southeast. The area with increased NDVI values was
much larger than the area with decreased NDVI values during the study period in Xinjiang.
The values of NDVI in the cropland area significantly increased whereas the values of
NDVI in the grassland area significantly decreased. The center of vegetation moved from
north to south in the whole study area, moved from southwest-northeast in the north
to the Tianshan Mountains and moved from west to east in the south to the Tianshan
Mountains.

The effects of climate change on NDVI
Previous studies showed that climate is themajor factor influencing the vegetation dynamics
(Chen et al., 2015; Li et al., 2015). Qu et al. (2018) showed that temperature is a controlling
factor determining the vegetation greenness in the Yangtze River Basin, and the response
of vegetation to precipitation is relatively lower because of the abundant water. Xia et al.
(2019) suggested that the variation in vegetation responses to diurnal temperature changes
is important for understanding the changes in vegetation photosynthetic activity in a
warming world. Meanwhile, land use changes caused by ecological restoration project
is the major driving factor for improving vegetation conditions in YRB, and the spatial
distributions between human-induced GSN increasing trends and areas with increased
forest have a strong consistency in the north of YRB. In this study, we discussed the
correlation between NDVI and climatic factors.

The results showed that there was significant correlation between precipitation and
annual NDVI during different periods. Herrmann et al. (2005) showed that vegetation
dynamics in the African Sahel wasmost significant correlated with precipitation and human
activities. Richard & Poccard (1998) showed that precipitation was highly correlated with
NDVI in Southern Africa.

There was not significant correlation between annual NDVI and temperature in
this study (Table 3). Dai, Zhang & Wang (2010) showed that there was a significant
linear relationship between vegetation cover and the monthly average temperature and
precipitation during the years. However, Peng et al. (2011) showed that growing season
NDVI was significantly correlated with temperature in the central and east China. A widely
accepted viewpoint is that vegetation growth in southern China is mainly affected by
temperature, while precipitation is not a limitation for vegetation growth.

There were few studies that focused on the relationship between net radiation (specific
humidity) and annual NDVI. Our results indicated that they were not significantly
correlated with annual NDVI, but they were important factors influencing the vegetation
dynamics.

Consistent with previous studies, our results showed that the soil moisture at different
depthswas significantly and positively correlatedwith annualNDVI except the soilmoisture
at 0–10 cm, and the significance was different at different depths in different periods. Water
is the limiting factor for ecological attributes in arid and semiarid areas, and vegetation
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dynamics are highly sensitive to alterations in water availability. This indicates that water
conveyance is necessary for protecting important vulnerable ecological regions (Alejandro
Saiz-Rodriguez et al., 2019). Peterman et al. (2014) showed that annual was very sensitive
to soil depth in simulations of carbon and hydrological variables.

Credibility of the predicted results
In recent studies, some predictive models have been used to predict vegetation dynamics.
Bai et al. (2019) used pixel trend extrapolation model to predict the vegetation dynamics.
The results suggest that the pixel trend extrapolation model could yield a reasonable
result. Zhu et al. (2019) used the statistical prediction model to vegetation index in the
Three-Rivers-Source Region. Du et al. (2016a) and Du et al. (2016b) used CA-Markov
model to predict the vegetation coverage condition in Shijiazhuang.

There were two main methods for verifying the greyscale prediction results. The first
was the posterior difference test. The posterior difference ratio was obtained through the
standard deviation of the original data column divided by the standard deviation of the
residual data column. The smaller the posterior difference was that the closer the estimated
value was to the actual value. The posterior difference test method has been applied by
many scholars because of its simple and easy-to -calculate characteristics. The correlation
degree of the current prediction result was 98.28%, which was in accordance with the
confidence requirement.

The prediction results of this study showed that the vegetation dynamics fluctuated
upwards in Xinjiang from 2019 to 2030, and the vegetation growth status has been
continuously improved. This result was consistent with the results of many scholars in
Xinjiang and even globally (LeVine & Crews, 2019; Zhu et al., 2016). It was also in line with
our understanding on the ground.

Study limitations
Although we have performed a great deal of work, there were still some shortcomings
in this study. Regarding the data, the NDVI data were collected from different sources,
which have different spatial and temporal resolutions. Although interpolation had been
performed, a linear regression model was established for fitting, and the accuracy test was
passed, but theremay still be a small amount of deviation. In terms of researchmethods, the
annual values of various climatic factors and NDVI values were discussed, but they may not
have been elaborated on the time scale. In addition, we used existing vegetation dynamics
data the annual average of all existing NDVI values to predict future data. The credibility
of the forecast results can only be ensured on an existing basis. The reverse feedback
process of future changes to existing results cannot be ensured. Finally, the research on
the relationships between vegetation dynamics and soil moisture at different depths were
discussed not deep enough. Later, a further study could be carried out based on the type
of vegetation, the depth of the vegetation roots, the type of soil and the topography of the
study area.
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CONCLUSIONS
Our results suggested that the climate has undergone tremendous changes in the past
four decades in Xinjiang. The temperature rose sharply in 1997 and then remained at a
high level, meanwhile the precipitation in Xinjiang showed a trend of rising volatility. The
other climatic factors have also changed to varying degrees. The vegetation dynamics in
Xinjiang showed obvious volatility, and those in the end stage of the study were higher
than the initial stage the vegetation dynamics in Xinjiang showed a staged increasing
trend. The vegetation dynamics were affected by many factors, of which precipitation
was the main reason (exceeding the 0.01 confidence level, R2

= 0.666). The prediction
results of vegetation dynamics indicated that the annual average NDVI value of natural
vegetation in Xinjiang showed a fluctuating upward trend from 2019 to 2030. This study
comprehensively analyzed the effects of climatic factors such as temperature, precipitation,
soil moisture, net radiation and specific humidity on vegetation dynamics. It is important
for how to deal with regional climate change.
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