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Abstract
This is a selective review of recent publications on dengue clinical features,
epidemiology, pathogenesis, and vaccine development placed in a context
of observations made over the past half century. Four dengue viruses
(DENVs) are transmitted by urban cycle mosquitoes causing diseases
whose nature and severity are influenced by interacting factors such as
virus, age, immune status of the host, and human genetic variability. A
phenomenon that controls the kinetics of DENV infection,
antibody-dependent enhancement, best explains the correlation of the
vascular permeability syndrome with second heterotypic DENV infections
and infection in the presence of passively acquired antibodies. Based on
growing evidence   and  , the tissue-damaging DENVin vivo in vitro
non-structural protein 1 (NS1) is responsible for most of the
pathophysiological features of severe dengue. This review considers the
contribution of hemophagocytic histiocytosis syndrome to cases of severe
dengue, the role of movement of humans in dengue epidemiology, and
modeling and planning control programs and describes a country-wide
survey for dengue infections in Bangladesh and efforts to learn what
controls the clinical outcome of dengue infections. Progress and problems
with three tetravalent live-attenuated vaccines are reviewed. Several
research mysteries remain: why is the risk of severe disease during second
heterotypic DENV infection so low, why is the onset of vascular permeability
correlated with defervescence, and what are the crucial components of
protective immunity?
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Introduction
Dengue viruses (DENVs) are relatively new pathogens. Trans-
mission of virus from human to human by the bite of the 
mosquito Aedes aegypti began around three centuries ago1,2. 
Establishing an urban cycle required three separate emergence 
events: (a) evolution of a West African tree hole-breeding ances-
tor into Aedes aegypti, an anthropophilic domestic-breeding 
sub-species, and transportation of this mosquito (b) to tropical 
America via the slave trade and (c) in reverse direction to Europe 
and Asia where each of the four DENVs were introduced into 
the urban transmission cycle3,4. These emergence events in all 
likelihood were preceded by the circulation of a parental virus in 
sub-human primates throughout greater Southeast Asia during the 
Quaternary ice age5. Oceans rose to isolate populations of den-
gue-infected sub-human primates on mainland Asia and on the 
islands of Indonesia and the Philippines6. Viral evolution did the 
rest. Now these viruses cause a global pandemic, a consequence 
of jet airplane distribution of viremic humans throughout a 
tropical world comprehensively infested by Aedes aegypti7,8.

The world of dengue is massive and its features are constantly 
changing, as evidenced by the expanding scientific literature. 
Studies on dengue as an arthropod-borne viral disease contrib-
ute to three areas of research: (a) one on mosquito vectors, their 
bionomics, virus–host interactions, epidemiology, and control; 
(b) a literature on the virus itself; and (c) another describing 
DENV–human interactions. This review is directed to the last of 
these, focusing on clinical features, epidemiology, pathogenesis, 
and vaccine development.

The four DENVs are genetically related and biologically simi-
lar. Dengue is not the only human viral pathogen to circulate in 
biologically or genetically related groups. Many enteroviruses 
and respiratory viruses exist in groups of closely related patho-
gens. Although some degree of cross-protection may accompany 
sequential infections with members of these groups, most such 
outcomes are not well studied or understood. Dengue differs 
for researchers, a clear-eyed view of the observed complexity 
of dengue 1, 2, 3, and 4 (DENV) interactions with humans is cru-
cial. For details of dengue disease features and pathogenesis, see 
my previous F1000 report9. Infection with a single virus is fol-
lowed by up to three outcomes: (1) durable protection against 
infection with a strain of the same DENV, (2) brief protection 
against infection or disease with a different dengue serotype, and 
(3) a breakthrough infection with a different dengue serotype that 
may result in severe disease10–12. This last outcome has a unique 
variant: dengue infection in the presence of passively acquired 
multitypic dengue antibodies may produce severe disease13. 
Severe dengue in infants born to dengue-immune mothers is an 
important problem where dengue is highly endemic, causing 5% 
of dengue hospitalizations of children14–17.

Clinical responses
Dengue clinical responses are subject to constraints imposed by 
infecting virus, epidemiology, human immune status, and human 
genetic makeup. These are reviewed briefly. Dengue disease 
severity differs by infection parity. Disease may accompany a first 

or second dengue infection and is infrequent during a third and 
absent during a fourth18–20.

First infections
Intuitively, infection should result in a dengue clinical outcome. 
This is far from being the case. Age and viral type have an impact. 
In young children, primary dengue 1–4 infections are frequently 
inapparent21–24. As children age, disease response, particularly 
after puberty, becomes more adult-like. The infecting dengue 
type interacting with age also controls disease severity. In adults, 
primary dengue 1 and 3 infections result in high rates of classic 
dengue fever but dengue 2 and 4 infections cause milder disease 
and are often inapparent12,25. Primary dengue 2 and 4 infections in 
children of all ages frequently are inapparent24,26. Primary dengue 
1 infections in children are modestly severe to the point of 
requiring hospitalization26.

Second infections
Second heterotypic dengue disease has been observed in 12 
sequences19. In children, overt disease is recognized clinically 
in perhaps 20 to 30% of second heterotypic dengue infections 
and severe disease in about 2%12,27,28. A high incidence of severe 
disease has been reported for infection sequences with DENV1–2, 
3–2, 4–2, 1–3, and 2–127,29–32. The severity of second heterotypic 
dengue infections is controlled by age at the time of infection 
and the interval between first and second infections. Owing 
to their intrinsic risk of severe vascular permeability, young chil-
dren are at higher risk of fatal outcome with heterotypic DENV 
infections33. Exposure to DENV at intervals of less than 2 years 
may inhibit infection and suppress disease severity19,34. Short-
term protection and ultimately enhanced second heterotypic 
DENV infection outcome may be controlled by natural declines 
or changes in heterotypic antibodies (or both) following a 
first DENV infection35,36. An increase in disease severity was 
observed when the interval between first and second infections 
was 20 years as opposed to 4 years30. As an explanation, it was 
observed that severe disease at a long interval was correlated with an 
observed steady decrease in heterotypic antibody titers over a long 
period37,38. During secondary dengue infections, adults are at 
greater risk than children of bleeding whereas children are at 
greater risk than adults of vascular permeability39. Human genetic 
inhomogeneity, particularly across ethnic groups, affects disease 
expression in a variety of ways40–43. The most notable genetic 
effect is the suppression of severe disease accompanying a sec-
ond heterotypic dengue infection that has been observed in black 
patients in sub-Saharan Africa and is linked to a gene that regu-
lates cellular dengue infection via lipid metabolism44. A final 
pathophysiological constraint during secondary dengue infec-
tion is the fact that the onset of vascular permeability is correlated 
with defervescence. Mechanisms controlling these constraints are 
not well understood.

Despite a consensus on the importance of early recognition of 
the remediable dengue vascular permeability syndrome (DVPS) 
(fever, thrombocytopenia, abnormal hemostasis, elevated liver 
enzyme levels, hypoalbuminemia, complement activation, and 
vascular permeability), there is not wide agreement about how 
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to define dengue disease45. “Severe dengue” may include life-
threatening conditions such as severe bleeding or impaired central 
nervous system, heart, or kidney functions in the absence of 
vascular permeability. This wide range of poorly defined and 
diverse pathophysiological endpoints may impede the early rec-
ognition and rapid and accurate assessment of fluid losses to be 
followed by accurate management of fluid resuscitation. Criti-
cally, research to identify pathophysiological mechanisms 
of the vascular permeability syndrome requires relevant and 
standardized case definitions46.

A literature describing unusual clinical features or outcomes of 
dengue infections continues to grow at a record pace fueled by 
the hundreds of thousands of dengue cases that present yearly 
to sophisticated health-care systems. It is often difficult to 
place these cases into a pathogenic context because of missing viral, 
immunological, or epidemiological details (see above). Needed 
are virus type, age and sex of patients, and infection parity (for 
example, IgM/IgG ratio) and, if there is a second heterotypic 
infection, evidence concerning the interval between first and 
second infections and the identity of first infecting DENV type.

A subset of severe dengue cases, hemophagocytic lymphohis-
tiocytosis (HLH), is increasingly recognized. HLH, a rare and 
potentially fatal disorder associated with acute infections, is 
characterized by fever, pancytopenia, hepatosplenomegaly, and 
increased serum ferritin. In Puerto Rico, 22 dengue HLH cases, 
including one death, were detected from 2008 to 2013. Cases were 
often infants, who frequently had influenza co-infections and were 
satisfactorily treated with steroids47. There have been a number 
of individual case reports of HLH, predominantly from Asia48. 
Many of these occurred after prolonged fever49. An early diagno-
sis of HLH could deflect from a careful search for vascular per-
meability and promote the premature use of steroids that have 
been widely but ineffectively used to treat vascular permeability 
shock syndrome50.

Thrombocytopenia accompanies many dengue infections. The 
widely used term “dengue hemorrhagic fever” has sensitized 
doctors and patients alike to the possibility that severe life- 
threatening bleeding may occur without warning. For this reason, 
low platelet counts are widely considered to be an indication 
for the prophylactic administration of platelets. Clinical experts 
have uniformly advocated against this expensive and potentially 
dangerous practice51–54. Investigators in Singapore and Malay-
sia conducted an open-label, randomized, superiority trial of 
platelet transfusion and enrolled 372 persons (21 years old or older) 
with acute laboratory-confirmed dengue with thrombocytope-
nia (not more than 20,000 platelets per microliter) but no severe 
or persistent mild bleeding. After enrollment, the subsequent 
frequency of clinical bleeding was slightly higher (26%) in 
the transfusion group, 13 of whom had adverse events, than in 
controls. No deaths were reported55.

Progress is being made in identifying and interpreting 
physiological signals in patients who may progress to shock syn-
drome. A low echocardiographic stroke volume index and reduced 
left ventricular function plus high admission venous lactate 

levels identified dengue patients at high risk of recurrent shock 
and respiratory distress56. In 2000, age of 5 to 15 years, a history 
of vomiting, higher temperature, a palpable liver, and a lower 
platelet count were risk factors for dengue shock while, during 
illness, absolute values and rate of daily decline of platelet 
counts successfully predicted shock57.

Epidemiology
During yellow fever epidemics, it was well understood that mul-
tiple cases occurred among members of households but also in 
persons who visited infested homes. Though less obviously, this 
same epidemiological feature applies to dengue. Careful pro-
spective studies in the city of Iquitos on the Amazon River in 
Peru successfully tracked household members throughout the city 
during DENV transmission seasons58. For individuals, the risk 
of DENV infection is controlled by the presence or absence of 
Aedes aegypti in places visited during the daytime. Risk is not 
a matter of vector abundance but of vector presence. Individu-
als increased their estimated transmission rate from 1.3 if they 
stayed at home to 3.75 when they visited other locations dur-
ing daytime hours (for example, markets or homes of friends 
or relatives)59. DENV is not spread significantly by sick indi-
viduals. Those who developed dengue fever spent more time at 
home, visited fewer locations, and in some cases visited locations 
closer to home and spent less time at certain types of locations 
than did individuals who were well60.

In highly endemic southern Vietnam and Yogyakarta, a city 
in Indonesia, mobility data collected from children and young 
adults via prospective travel diaries found that all ages spent about 
half of their daytime hours (5 a.m. to 9 p.m.) at home while 
children under the age of 14 years spent a greater proportion of 
their time within 500 m of home than did older respond-
ents. Mobility of specific age groups within populations must 
be taken into consideration in planning dengue preventive 
interventions61,62.

There is now better understanding of how DENVs success-
fully maintain transmission when only 20 to 30% of infected 
persons develop a disease. Studies indicate that silent infec-
tions may contribute as much as 84% of total DENV transmis-
sion. In persons who do develop dengue disease, most infections 
of mosquitoes occur prior to the onset of symptoms and only 
1% of mosquito infections occur after symptoms have begun63. 
The substantial role that inapparent infections play during den-
gue epidemics may contribute to more rapid transmission and 
widespread geographic spread of virus, reducing the usefulness 
of case data to predict where an outbreak will occur and what its 
final size will be64,65.

The introduction of a new flavivirus, Zika, into the Western 
Hemisphere in 2015 was the cause of considerable consterna-
tion, not simply because of its unexpected linkage to Guillain–
Barré syndrome; Zika infection of pregnant women also caused 
a congenital Zika syndrome in infants. There were additional 
fears that Zika infections might enhance DENV infections or 
vice versa. An entirely unsuspected outcome has been that Zika 
behaves like a highly effective dengue vaccine. The Zika 
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epidemic of 2015 to 2016 was followed by a reduction in clinical 
dengue cases throughout Latin America from 2,413,693 in 
2015 to about 500,000 in both 2017 and 2018, a 77% reduc-
tion in dengue cases (Pan American Health Organization data). 
Similar outcomes were reported from surveillance studies in 
Salvador, Brazil66,67. It is suspected that Zika infection may have 
served to protect an epidemiologically and clinically important 
group, monotypic dengue-immunes, responsible for secondary 
DENV clinical disease68.

A mystery in the global dengue pandemic is why, in the mid-20th 
century, severe dengue was highly endemic in Southeast but not 
South Asia69. A remarkable nationwide survey of vector mos-
quitoes, dengue antibodies, and clinical disease, conducted in 
Bangladesh, may provide an answer. Out of 97,162 total com-
munities, 70 were randomly selected for visits in 2014 and 2016, 
and one sixth of households, including 5,866 individuals, were 
interviewed70. Many areas of rural Bangladesh were found to 
be devoid of dengue disease with low prevalence of dengue anti-
bodies and low or no populations of Aedes aegypti and Aedes 
albopictus. Residents of Dhaka and Chittagong, where a number 
of recent outbreaks of dengue and chikungunya have occurred, 
had a high prevalence of dengue antibodies, abundant vector 
mosquitoes, and disease. A cluster of smaller cities and villages 
in the Southwestern corner of the country had modest dengue 
endemicity. The epidemiology of dengue in India may have been 
similar to that in Bangladesh today but suffered a steady inva-
sion of Aedes aegypti throughout the country and into rural areas. 
This epidemiological evolution may explain the recent emergence 
of epidemic severe dengue throughout India.

The reason why yellow fever continues to be a major health 
problem in the American tropics is a fateful event that occurred 
centuries ago: the stable introduction of yellow fever virus into a 
complex zoonotic cycle71. All four DENVs circulate as zoonoses 
in Asia and zoonotic dengue 2 was possibly transplanted from 
Asia to Africa. Genetic studies suggest that, during the slave trade, 
the African DENV2 was brought to the American tropics, where 
it entered the urban cycle5. But has a dengue zoonotic cycle been 
established? Only modest efforts have been made to answer this 
question. A search for a sylvatic DENV cycle was initiated in a 
forested area of the eastern Amazon near Iquitos, Peru, a city 
where all four DENVs are endemic. Twenty seronegative Aotus 
monkeys were kept in jungle locations for a total of 10 years 
and were bled for virus and for antibody conversions with no 
evidence of DENV72.

Pathogenesis
Soon after the DVPS was identified, clinical and epidemiological 
data strongly associated it with second heterotypic DENV infec-
tions and also with primary DENV infections of infants born 
to dengue-immune mothers11,73. Pathology studies have consist-
ently demonstrated human DENV infection target cells to be 
of myeloid lineage74. When DENV infections occur in vitro or 
in vivo in the presence of sub-neutralizing dengue antibodies, 
enhanced infections/disease may result35,75. Indeed, the peak of 
early illness viremias or antigenemia successfully predicted disease  
severity26,76,77. This phenomenon, antibody-dependent enhancement 

(ADE) of DENV infection of Fc receptor–bearing cells, differs 
from infection of these same cells in the absence of antibodies 
by two mechanisms: an increase in the number of cells infected 
(extrinsic ADE) or an increase in the intracellular production 
of DENV (intrinsic ADE)78.

DENV ADE has been observed in animal models. Second het-
erotypic DENV2 infections produced enhanced viremia but not 
vascular permeability in rhesus monkeys79. Efforts to reliably 
achieve vascular permeability disease during second heterotypic 
DENV infections in animals, including mice, have not been suc-
cessful80. When DENV antibodies were passively transferred 
to rhesus monkeys prior to infection with DENV2, enhanced 
viremias were observed but without vascular permeability. 
Administration of monoclonal or polyclonal dengue antibodies 
to mice has regularly resulted in enhanced DENV infections accom-
panied by vascular permeability and other features of DVPS81. 
Also, it has been possible to produce vascular permeability in 
DENV-infected infant mice born to dengue-immune mothers82. 
But other hypotheses of severe dengue pathogenesis that attribute 
disease (1) to a weakened ability of secondary T cells to contain 
DENV infection because of the original antigenic sin phenom-
enon, (2) to the hyper-production of endothelium-damaging sec-
ondary infection T-cell cytokines and chemokines, (3) to the 
DENV non-structural protein 1 (NS1) heterophile antibod-
ies raised during first DENV infections that damage platelets, 
endothelial cells, or blood clotting proteins during second infec-
tions, or (4) to the ability of dengue IgG immune complexes to 
stimulate mast cells to release vasoactive amines fail to satisfy 
the requirements of Occam’s razor83–86. None of these hypotheses 
explains the phenomenon of infant DVPS where B- and T-cell 
responses are primary and anti-DENV or anti-NS1 IgG antibody 
concentrations at the onset of illness are absent or very low.

ADE is a kinetic force of infection but by itself is not a direct 
cause of pathology. Recent work in several laboratories has 
uncovered a pathogen that mediates DVPS with enhanced infec-
tions that occur with actively or passively acquired dengue antibod-
ies. It was long known that fatal DENV infections of mice could 
be prevented by anti-NS187. NS1 is produced during all 
four DENV infections as well as those of other pathogenic  
flaviviruses88. Instead of remaining cell-bound, dengue NS1 is 
released as a hexamer circulating in great quantities in acute-phase 
blood89. A perceptive study, published in 2006, suggested that the 
high levels of circulating NS1 documented in patients with severe 
dengue might activate complement to mediate vascular perme-
ability90. Dengue NS1 has been shown to activate complement 
by the alternative pathway, target liver cells promoting intracel-
lular DENV infection, complex with thrombin in acute-phase 
blood of severe dengue, activate platelets in vitro via Toll-like-
receptor 4 (TLR4), and produce thrombocytopenia in TLR4 
knockout and normal mice90–93. In 2015, an analogy between 
the cellular biology of bacterial lipopolysaccharides (LPSs) and 
that of DENV NS1 was discovered94. Each interacts with TLR4 
on the surface of monocytes, macrophages, and endothelial cells, 
inducing the release of a range of cytokines and chemokines. Some 
of these same cytokines and chemokines have been found in the 
blood of patients accompanying DVPS. In vitro, NS1 disrupted 
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endothelial cell monolayer integrity. The authors concluded 
that DVPS was a viral protein toxicosis. NS1-mediated cytokine 
release could be inhibited by the TLR4 antagonist LPS– 
Rhodobacter sphaeroides, suggesting an avenue for therapeutic 
intervention.

Crucially, the same observation was confirmed in an in vivo 
model95. DENV2 NS1 inoculated intravenously at physiologi-
cally relevant concentrations in sub-lethally DENV2-infected 
C57BL/6 mice resulted in lethal vascular permeability. Vaccina-
tion of mice with DENV2 NS1 protected them against endothelial 
leakage and death from lethal DENV2 challenge. Mice immu-
nized with all four DENV NS1 proteins were completely  
protected against homologous DENV challenges, whereas immu-
nization with DENV1 NS1 partially protected against heterolo-
gous DENV2 challenge. Furthermore, DENV NS1 was shown to 
directly alter the barrier function of pulmonary endothelial cell  
monolayers through disruption of the endothelial glycocalyx-like 
layer (EGL) by triggering the activation of endothelial sialidases, 
cathepsin L, and heparanase, enzymes responsible for degrading 
sialic acid and heparan sulfate proteoglycans96. Separately, dis-
ruption of endothelial glycocalyx components had been shown 
to correlate with plasma leakage during severe DENV infection 
in humans97,98. More recently, the contribution of these DENV 
NS1-induced endothelial cell–intrinsic pathways to NS1-medi-
ated vascular leakage was demonstrated to be independent of 
inflammatory cytokines but dependent on the integrity of endothe-
lial glycocalyx components both in vitro and in vivo99. A DENV 
NS1 vaccine is taking shape100. In conclusion, NS1 toxicosis is 
demonstrably an efferent mechanism of vascular permeabil-
ity in mice and is controlled by DENV production in cells and, 
in turn, by ADE88.

As described, DVPS is a rare outcome of a second heterotypic 
DENV infection. Identifying those at risk and understanding 
why they develop overt versus silent infections continue to be 
focuses of research. In a long-standing children’s cohort in Kam-
phaeng Phet, Thailand, peripheral blood mononuclear cells 
(PBMCs) were collected from children prior to their experienc-
ing second heterotypic DENV infections, whether overt or silent. 
Cultured pre-infection PBMCs were stimulated with DENV1–
4 antigens. Of 30 cytokines or chemokines studied, six had 
elevated responses in children who experienced silent second 
DENV infections and three had elevated responses in children 
who developed symptoms during a subsequent DENV infection. 
Significant differences were found in cytokine production based on 
both the type of DENV used for stimulation and the occurrence 
of clinical illness. Secretion of interleukin 15 (IL-15) and mono-
cyte chemotactic protein 1 (MCP-1) was significantly higher by 
PBMCs of subjects who later developed symptomatic DENV 
infection. These studies are beginning to show how genetic and 
metabolic phenomena differing between individuals may control 
infectious processes and host responses101.

Vaccines
Dengvaxia
The most advanced dengue vaccine is a chimera of structural genes 
of the four DENVs with the yellow fever vaccine non-structural 
genome. This vaccine was tested for vaccine efficacy and safety 

in placebo-controlled clinical trials enrolling 35,000 children 
(2 to 16 years old) in 10 dengue-endemic countries102. Efficacy 
results were mixed. Through year 3 after the first dose, vac-
cine protection against hospitalization of children at least 9 years 
old was 65.5% but among children 8 years old or younger was 
44.6%102. In the 2- to 5-year-old age group, vaccinated children 
were hospitalized five times more frequently than those in the 
placebo group. Among the 11% of children whose serostatus 
(when vaccinated) was known, protection in seronegative chil-
dren 8 years old or younger was 14.4% but in those 9 years old 
or older was 52.5%. These data led the manufacturer and expert 
committees to recommend that vaccine be restricted to children 
9 years old or older102,103. A new serological test made it possi-
ble to distinguish those who were seronegative from those who 
were dengue-immune at the time of vaccination104. When this test 
was applied to sera from a 10% randomized cohort of phase 3 
children, dengue seronegativity rather than age controlled risk 
to severe hospitalized dengue disease (platelet count of less than 
100,000 mm3 evidence of vascular permeability) over the period 
5 to 6 years after first dose in children given vaccine105. With 
this evidence of declining efficacy, the World Health Organiza-
tion (WHO) Scientific Advisory Group of Experts, the Global 
Advisory Committee on Vaccine Safety, and the WHO Dengue 
Vaccine Working Group in 2016 recommended that vaccine 
be given to individuals with known past dengue infection or to 
populations with 80% DENV seroprevalence106.

Why did Dengvaxia fail to protect seronegative children? 
When vaccinated children developed dengue disease despite  
circulating tetravalent DENV neutralizing antibodies, this pro-
vided solid evidence that conventionally measured human  
neutralizing antibodies were not protective102,107–110. New observa-
tions suggest that it may be necessary to redefine the design of 
classic neutralization tests. When live DENV1 virus recovered 
from humans during the acute phase of a dengue infection was 
used to measure neutralization by antibodies, this virus was neu-
tralized only by homotypic antibodies. By contrast, DENV1 grown 
in C6/36 or Vero tissue cultures was highly neutralized by 
homotypic and heterotypic dengue antibodies. Why? DENV1 
grown in humans was found to be fully mature and 50- to 700-
fold more infectious in cell culture than virus harvested after 
one passage in C6/36 or Vero cells. Human plasma and cell cul-
ture–derived DENV1 virions had identical genome sequences, 
indicating that differences in the neutralization of virus were 
attributable to the maturation state111. Might DENV maturation 
status affect biological outcomes of DENV–antibody interactions, 
such as heterotypic protection or ADE?

Another explanation for Dengvaxia protection failure is that 
antibodies raised by vaccine may be poorly matched to the spe-
cific DENV genotypes in circulation. Two groups found genetic 
differences in the DENVs recovered during the first 25 months 
after first dose from placebos or vaccinated children112,113. 
The DENV4 in the Sanofi vaccine is genotype II. Genotype 
I (GI) and genotype II (GII) DENVs were both circulating in 
Asia during the vaccine trial. Both groups found vaccine effi-
cacy to be higher against GII (83%) compared with GI (47%) 
DENV4s. In fact, Juraska and colleagues demonstrated that 
variations at three positions on the envelope protein of DENV4 
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are strongly correlated with vaccine efficacy112. These three 
amino acid positions map to a region on E protein recognized by 
strongly neutralizing antibodies in people who have been infected 
with DENV4114. Indeed, another study recently demonstrated 
large differences in the ability of sera from naïve subjects who 
received the National Institutes of Health dengue vaccine (also 
based on a DENV4 GII envelope) to neutralize different geno-
types of DENV4115. When Dengvaxia data were stratified by 
age, the effect was stronger in younger than older children112. 
In children 2 to 8 years old, vaccine efficacy against GII viruses 
was 76.3% whereas efficacy against GI viruses was only 23.9%. 
In older children (9 to 14 years old), the vaccine was highly effi-
cacious against both GII (89.8%) and GI (85.5%) viruses. The 
observation that older children who received the Sanofi vac-
cine were equally protected against DENV4 GI and GII viruses 
is best explained by the fact that most of these children had 
immunity to DENVs before vaccination. In this population, the 
vaccine stimulates strongly cross-neutralizing and cross- 
protective antibodies analogous to antibodies that develop after 
natural second DENV infections with a heterologous serotype116. 
These antibodies, which target conserved epitopes between sero-
types, are unlikely to be influenced by subtle differences between 
genotypes. In people with no pre-existing immunity to DENVs, 
current vaccination strategies rely on the ability to induce sero-
type-specific protection. However, Dengvaxia protection is 
not durable. Indeed, over the period of 5 to 6 years after first dose, 
children 2 to 8 years old, vaccinated when seronegative, were 
not protected but neither did they experience enhanced DENV4 
disease105. It is known that Dengvaxia raises DENV4 type- 
specific neutralizing antibodies in seronegative persons116. Per-
haps, early after vaccination, DENV4 GI antibodies circulate 
at levels that protect against vaccine-matched GII but not the 
mismatched GI strains.

Another issue is that T-cell immunity may be crucial to durable 
protection. Studies on dengue-immune humans in Sri Lanka 
found that multifunctional CD8+ T-cell responses were corre-
lated with protection from DENV disease117. Functional CD8+ 
T-cell responses were directed at a distinct pattern of non- 
structural protein antigens118. There is growing evidence that 
human T-cell responses directed at epitopes on non-structural  
proteins contribute importantly to homotypic and heterotypic 
DENV protective immunity118,119. These observations were 
extended to human CD4+ T cells that are primed by DENV capsid, 
NS3 and NS5 antigens120,121. CD4+ and CD8+ T cells raised after 
a single dose of a tetravalent live-attenuated dengue vaccine were 
directed to the same repertoire of non-structural protein antigens 
as T cells from naturally infected humans122,123. A high frequency 
of CD107a+ IFN-γ+ CD8+ T cells raised in A 129 mice immunized 
with DENV2 PDK53 live-attenuated vaccine mediated efficient 
viral clearance and superior protection against wild-type DENV 
challenge124. Dengvaxia does not present non-structural DENV 
proteins to the immune system. Might this absence contribute 
to the ineffective vaccine protection of seronegatives?

TAK 003
In January 2018, the Takeda Pharmaceutical Company 
(Tokyo, Japan) announced the completion of phase 3 trials for 
TAK 003125–128. Efficacy and safety data for this vaccine have 

not yet been published (https://www.takeda.com/newsroom/ 
newsreleases/2019/takedas-dengue-vaccine-candidate-meets-pri-
mary-endpoint-in-pivotal-phase-3-efficacy-trial/). The vaccine 
consists of a live-attenuated DENV2 strain and three chimeric 
viruses containing the prM and E protein genes of DENV1, 3, 
and 4 expressed on the backbone of the DENV2 genome129,130. 
Of these four viruses, one is a successful vaccine candidate, 
DENV2 16881 PDK 53. This virus achieved exceptionally 
high rates of seroconversions in seronegative human volunteers 
with minimal dengue signs or symptoms131. Attenuating muta-
tions for all four DENVs were identified, and infectious cDNA 
clones constructed132,133. The vaccine also includes struc-
tural DENV1, 3, and 4 proteins expressed on a DENV2 back-
bone. The developers hope for successful protection against all 
DENV infection/disease on the basis of the broad neutral-
izing antibody responses that follow two doses of TAK 003. 
Publication of clinical data from phase 3 clinical trials is 
awaited with interest.

Live-attenuated tetravalent dengue vaccine
There is good dengue vaccine news. For nearly 20 years, the 
National Institute of Allergy and Infectious Diseases and the 
Johns Hopkins Bloomberg School of Public Health have designed 
and tested dengue vaccine candidates. Some were attenu-
ated by removing nucleotides from the non-translated region of 
the dengue genome. A crucial component of this development 
program was testing monovalent vaccine candidates for immu-
nogenicity and attenuation in seronegative human volunteers134. 
A final product, the live-attenuated tetravalent dengue vaccine 
(LATV), consists of mutated DENV 1, 3 and 4 and a chimera 
of structural DENV 2 on a DENV 4 backbone135–137. Following 
a single dose of LATV, volunteers were solidly protected from 
viremia, dengue symptoms, or anamnestic antibody responses 
after challenge with non-parental wild strains of live DENV2 
(Tonga 74) or 3 (Sleman 78)138 (Dr. Anna Durbin, personal com-
munication, April 4, 2019). That this protection is likely to be 
of long duration is evidenced by the solid immune response 
observed to a booster dose of live-attenuated vaccine given 12 
months after initial dose139. Protection results are complemented 
by evidence that a single dose of LATV raises monospecific 
neutralizing antibodies that are conformationally similar to anti-
bodies raised after human infections with wild-type DENVs that 
correlate with protection140–142. Moreover, the T-cell responses 
to LATV closely resemble those raised after infections with 
wild-type DENVs122,123. Finally, LATV contains genes for three 
of the four DENV NS1 proteins. LATV is in the third year of 
phase 3 clinical testing in Brazil. The rate of accruing dengue vac-
cine efficacy data has been delayed because of an 80% reduction 
of DENV cases following the Zika virus epidemic of 2016–17 
in Brazil143. The outlook for LATV, based on phase 2 clinical tri-
als in humans, is that a single dose of this vaccine will raise 
durable and solid protection against dengue infections in both 
seronegatives and seropositives.
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