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Abstract

Intramuscular fat (IMF) content plays an important role in meat quality. Many genes involved in lipid and energy me-
tabolism were identified as candidate genes for IMF deposition, since genetic polymorphisms within these genes
were associated with IMF content. However, there is less information on the expression levels of these genes in the
muscle tissue. This study aimed at investigating the expression levels of sterol regulating element binding protein-1c
(SREBP-1c), diacylglycerol acyltransferase (DGAT-1), heart-fatty acids binding protein (H-FABP), leptin receptor
(LEPR) and melanocortin 4 receptor (MC4R) genes and proteins in two divergent Banna mini-pig inbred lines
(BMIL). A similar growth performance was found in both the fat and the lean BMIL. The fat meat and IMF content in
the fat BMIL were significantly higher than in the lean BMIL, but the lean meat content was lower. The serum
triacylglycerol (TAG) and free fatty acid (FFA) contents were significantly higher in the fat than in the lean BMIL. The
expression levels of SREBP-1c, DGAT-1 and H-FABP genes and proteins in fat BMIL were increased compared to
the lean BMIL. However, the expression levels of LEPR and MC4R genes and proteins were lower.
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Introduction

In pig production, intramuscular fat (IMF) content is

an important determinant of meat quality characteristics

such as tenderness, juiciness and flavor (Fernandez et al.,

1999). Because of the importance of IMF on the economics

of pig production, it is important to elucidate the molecular

mechanisms underlying intramuscular fat deposition

(Wood et al., 2008). Particularly, in the Chinese local pigs,

the IMF content is higher than in other commercial pig

breeds (Zhao et al., 2009), which makes them an ideal

model for elucidating the mechanism of IMF deposition.

During the past decades, many efforts have been

made to appoint possible candidate genes for IMF deposi-

tion (Schwab et al., 2009). Sterol regulating element bind-

ing protein-1c (SREBP-1c), acyl CoA:diacylglycerol acyl-

transferase (DGAT-1) (Mourot and Kouba, 1998; Ding et

al., 2000; Chen et al., 2008; Switonski et al., 2010) and the

intracellular heart fatty acid binding protein (H-FABP) af-

fect the IMF content in pigs (Gerbens et al., 1997, 1998,

1999, 2000; Glatz et al., 2003; Gardan et al., 2007; Li et al.,

2007; Li et al., 2010; Switonski et al., 2010). Genetic vari-

ants of the leptin receptor (LEPR) and the melanocortin 4

receptor (MC4R) genes were reported to be associated with

IMF deposition (Mackowski et al., 2005; Ovilo et al., 2005;

Bruun et al., 2006; Jokubka et al., 2006; Kim et al., 2006;

Piórkowska et al., 2010; Fan et al., 2009, 2010; Li et al.,

2010; Switonski et al., 2010). Although LEPR and MC4R

are mainly studied in hypothalamus, some reports indicated

that they could be expressed in muscle tissue as well

(Stinckens et al., 2009; Li et al., 2010; Larkina et al., 2011;

Tyra et al., 2011). Global genomics analyses also led to the

hypothesis that IMF deposition could be affected by both

lipid metabolism and energy metabolism (Liu et al., 2009;

Cánovas et al., 2010). However, most of the studies only

focused on lipogenic genes, ignoring energy metabolism

genes (Mourot and Kouba, 1998; Zhao et al., 2009). More-

over, these reports usually used different pig breeds as fat

and lean models, which were fed diets according to their in-

dividual nutritional standard. These studies could not rule

out the possibility that the different expressions of genes

might be due to breed characteristics rather than to actual

variations in IMF deposition.
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The Banna Mini-pig Inbred Line (BMIL) was estab-

lished in China in 1980 (Huo et al., 2012). The original an-

cestors were a sow and her son. The further reproduction

occurred by full-sibling or parent-offspring mating. Pro-

gressive inbreeding generated the fat and the lean BMIL.

The body weight of mature pigs reaches about 45.00 �

1.50 kg. They are ideal experimental models for a better un-

derstanding of the genetic mechanisms leading to divergent

fat deposition phenotypes, because they have the same or a

very similar background genotype and were fed the same

diets in the same environment (Guo et al., 2008). The aim

of this study was to compare the expression levels of the

SREBP-1c, DGAT-1, H-FABP, LEPR and MC4R genes

and proteins in fat and lean BMIL and to explain the

phenotypic variations of IMF deposition in these two diver-

gent BMILs.

Materials and Methods

The animal experiments and protocols used in this

study were approved by the Yunnan Agricultural Univer-

sity Institutional Animal Care and Use Committee. The fat

and lean BMIL were fed in the Yunnan Key Laboratory of

BMIL, Yunnan Agricultural University, China.

Fat and lean BMIL animals of the 25th generation

were selected, with an inbreeding coefficient of 99.56%. A

total of twelve healthy pigs were fed ad libitum the same

corn-soybean diets (Table 1) in the same environmental

conditions for 1.5-1.6 � 0.45 years. Their body weights

were determined every week, and their growth perfor-

mances were calculated. Then the pigs were slaughtered by

exsanguination after electrical stunning, and their hot car-

cass weight was measured. The fat-free lean and fat con-

tents were calculated from the left side of the carcass, after

a 20 h chill at 2 °C. The average backfat thickness of the

first, tenth, last-rib and last-lumbar sites were calculated.

Longissimus muscle samples from the last ribs were col-

lected from each one of the animals, snap-frozen in liquid

nitrogen, and stored at -80 °C prior to analysis.

IMF content

The IMF content, expressed as weight percentage of

dry muscle tissue, was evaluated 24 h after slaughter, using

the Soxhlet petroleum-ether extraction method.

Serum parameters

Blood samples were centrifuged at 600 x g for 15 min.

Serum was obtained and stored at -20 °C for posterior anal-

yses. Serum FFA and TG concentrations were determined

using the respective commercial kit assays (Nanjing

Jiancheng Biochemical Reagent Co., Nanjing, China) ac-

cording to the protocols provided by the manufacturer.

RNA extraction and Reverse transcription (RT)

Total RNA was extracted from the muscle tissues us-

ing Trizol reagent according to the manufacturer’s protocol

(Takala, Japan). Total RNA concentration was then quanti-

fied by measuring the absorbance at 260 nm in an Eppen-

dorf Biospectrophotometer (Eppendorf AG, Hamburg,

Germany). The absorption ratios (260/280 nm) ranged

from 1.8 to 2.0. The integrity of the RNA was verified by

1.4% agarose-formaldehyde gel electrophoresis. Total

RNA (2 �g) was then reverse-transcribed by incubation at

42 °C for 1 h in a 25 �L mixture consisting of MMLV

(Promega Co., Shanghai, China), RNase inhibitor (Pro-

mega), and oligo dT. The reaction was terminated by heat-

ing to 95 °C for 5 min and quick cooling on i.e. cDNA was

stored at -20 °C for PCR amplification.

Real-Time Quantitative PCR (RT-qPCR)

RT-qPCR was performed to quantify the mRNA ex-

pression abundance of genes SREBP1c, H-FABP, DGAT1,

LEPR and MC4R. ß-actin was used as internal control. The

25 �L PCR mixture contained 12.5 �L of 2iQ SYBR Green

Supermix, 0.5 �L (10 mM) of each primer (Table 2), and

1 �L of cDNA. Mixtures were incubated in an iCyler iQ

Real-time Detection system (Bio-Rad Laboratories, Hercu-

les, CA, USA). A melting curve analysis was performed to

ensure that only a single PCR product was amplified. Con-

trol reactions were set for each sample. PCR amplification

efficiencies were between 91% and 103%. The amount of

specific target was calculated according to the following
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Table 1 - Composition of diets.

Percentage (%)

Corn 68.98

Wheat bran 22.53

Soybean meal 5.62

Fish meal 0.50

Limestone 0.97

Monocalcium phosphate 0.10

Salt 0.30

Premix1 1.00

Calculated nutritional composition

Crude protein 10.42

Total Lysine 0.69

Digestive energy (MJ/kg) 13.11

Calcium 0.46

Total phosphorus 0.37

Available phosphorus 0.14

1Vitamin premix contents per kilogram of diet: vitamin A - 8,267 IU; vita-

min D2 - 2,480 IU; vitamin E - 66 IU; menadionine (as menadionine

pyrimidinol bisulfite complex) - 6.2 mg; riboflavin - 10 mg; Ca d-panto-

thenic acid - 37 mg; niacin - 66 mg; vitamin B12 - 45 �g; d-biotin - 331 �g;

folic acid - 2.5 mg; pyridoxine - 3.31 mg; thiamine - 3.31 mg; vitamin C -

83 �g; Trace mineral premix contents per kilogram of diet: Zn - 127 mg;

Fe - 127 mg; Mn - 20 mg; Cu - 12.7 mg; I - 0.80 mg, in the form of zinc sul-

fate, ferrous sulfate, manganese sulfate, copper sulfate, ethylenediamine

dihydriodide, respectively, with calcium carbonate as carrier, besides

0.3 mg Se per kilogram of diet.



formula: ratio = 2-�CTtarget (sample - calibrator)/2-�CT ß-actin (sample - cali-

brator). All primers used were designed by Primer Premier 5

and synthesized by Shanghai Shenggong Biological Com-

pany (Shanghai, China).

Western blotting

Muscle samples were collected and homogenized on

ice in 700 �L buffer A [50 mM Tris-HCl (pH 7.5), 50 mM

NaF, 5 mM sodium pyrophosphate, 1 mM EDTA, 1 mM

DTT, 0.1 mM phenylmethylsulfonyl fluoride, 10% glyc-

erol] containing 1% Triton X-100, 5 �M aprotinin, leu-

peptin and pepstatin. The lysates were centrifuged at 6000 g

for 20 min at 4 °C to remove insoluble material. Thereafter,

supernatant extracts were collected and protein concentra-

tion determined, using the method described by Bradford

(1976). Then the extracts were frozen at -80 °C until the

western blot analyses were performed.

To measure SREBP-1c, DGAT-1, H-FABP, LEPR

and MC4R protein expression, 50 �g of total whole-cell

protein extract were separated by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (12% resolving gel),

transferred to a nitrocellulose membrane and probed over-

night, with rabbit polyclonal anti- SREBP-1c, anti-DGAT-

1, anti-H-FABP, anti-LEPR, and anti-MC4R antibodies

(Sigma, USA) at 1:500, 1:500, 1:1000, 1:1000 and 1:2000

dilutions, respectively. The membranes were then probed

with a goat anti-rabbit IgG-horseradish peroxidase conju-

gate (1:20,000 dilution) (Sigma, USA) for 1 h at room tem-

perature. Blots were developed using the SuperSignal West

Pico Chemiluminescent Substrate system (Bio-Rad, Her-

cules, CA, USA) and imaged on X-film, for image analysis

and densitometry. Signal intensity was quantified using the

Quantity One 1-D analysis software (Bio-Rad, Hercules,

CA, USA).

Statistical analysis

Data regarding growth performance, sera parameters

and mRNA expression were analyzed using paired t-tests

with the Statistical Packages for Social Science (SPSS)

12.0 software. All data were presented as mean � S.E.M.

Differences were considered statistically significant if

p < 0.05.

Results

Growth performance, carcass traits and serum
parameters

Growth performance, carcass traits and serum param-

eters are presented in Table 3. There was no significant dif-

ference in growth performance between the fat and lean

BMIL (p > 0.05). A significant reduction in fat percentage

was found in the fat BMIL compared to the lean BMIL

(p < 0.05). A significant increase of lean meat was observed

in the fat BMIL (p < 0.05). The serum concentrations of TG

and FFA as well as the IMF content were significantly

higher in the fat BMIL than in the lean BMIL (p < 0.05).

Expression levels of genes and proteins

Figures 1 and 2 show the expression levels of the

SREBP1c, H-FABP, DGAT1, LEPR and MC4R genes and

proteins in muscle tissue of fat and lean BMIL animals. The

expression levels of the H-FABP, SREBP-1c and DGAT1

genes and proteins were significantly higher in the fat

BMIL than in the lean BMIL (p < 0.05). The mRNA and

protein abundance of MC4R and LEPR was lower in the fat

BMIL compared to the lean BMIL. The difference in LEPR

gene expression between the fat and lean BMIL was signif-

icant (p < 0.05).
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Table 2 - Specific primers used for real-time quantitative PCR (RT-qPCR)

Gene name Sequence Product size Position Accession number

�-actin F: 5’-GCCGCACCACTGGCATTGTC-3’ 399 bp Exon 2 DQ845171

R: 5’-AGGTAGTTTCGTGGATGCCGCAG-3’ Exon 3

SREBP-1c F: 5’-GCGACGGTGCCTCTGGTAGT-3’ 218 bp Exon 1 AY496867

R: 5’-CGCAAGACGGCGGATTTA-3’ Exon 2

H-FABP F: 5’-CCTGGAAGCTAGTGGACAGC-3’ 227 bp Exon 1 AJ416019

R: 5’-TGCCTCTTTCTCGTAAGTGC-3’ Exon 2

DGAT-1 F: 5’- AAGGACGGACACGACGATG-3’ 289 bp Exon 1 AY093657

R: 5’- GGAACGCAGTCACAGCAAAG-3’ Exon 5

LEPR F: 5’-GTGATAACTGCATTTGACTTGGC-3’ 285 bp Exon 1 NM001024587

R: 5’-CTGCAATGTTGTCTGCATGTACAG-3’ Exon 1

MC4R F: 5’-TGGAGAAAATCGCTGAGGCTACC-3’ 632 bp Exon1 NM214173

R: 5’-ATGATGAACAAAACACCCGACACC-3’ Exon2



Discussion

In this study, the growth performance of fat and lean

BMIL animals showed no significant difference. However,

an increase in fat meat as well as in IMF content and re-

duced lean meat content in the fat BMIL compared to the

lean BMIL was found. As a rule, animal obesity models
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Figure 1 - mRNA expression levels of SREBP-1c, H-FABP, DGAT1, LEPR and MC4R (A, B, C, D and E, respectively) in the fat and lean BMIL. Means

� SE with asterisk indicate a significant difference between the two groups (p < 0.05).

Table 3 - Growth performance, carcass traits and serum parameters

Indexes Lean BMIL Fat BMIL

Growth performance Daily feed intake (g/d) 22.57 � 0.06 28.67 � 0.01

Daily gain (g/d) 122.00 � 24.98 121.00 � 25.02

Gain: feed ratio 4.11 � 0.01 4.20 � 0.01

Carcass traits Lean meat percentage (%) 41.75 � 1.01* 31.00 � 0.77

Fat meat percentage (%) 34.33 � 1.68 53.10 � 0.62*

Average backfat thickness (cm) 1.31 � 0.20 4.61 � 0.13*

IMF(%) 4.51 � 0.10 7.82 � 0.08*

Serum parameters Triacylglycerol (mg/100 mL) 52.63 � 1.77 61.97 � 2.01*

EFFA (�Eq/L) 211.34 � 19.99 266.99 � 20.17*

Values are expressed as means � SE; values in the same row with asterisk are significantly different at p < 0.05.



weigh more than their lean counterparts. However, a simi-

lar feed intake was also reported in the lean Yorkshire and

fat Ossabaw pigs (Wangsness et al., 1980). This may sug-

gest that the different fat deposition in the fat and lean

BMIL pigs does not result from their feed intake, but rather

from their genotypes for fatness traits.

TAG, the major component of IMF in muscles, is

stored within intramuscular adipocytes (Gao and Zhao,

2009). It could be synthesized using fatty acids which were

de novo synthesized or originated from feed nutrients. Hau-

ser et al. (1997) reported that the plasma of fat pigs had a

higher percentage of triglycerides than the plasma of lean

pigs. Our results also showed that the fat BMIL had higher

serum TAG and FFA concentrations as well as IMF content

compared with the lean BMIL. These data indicate that

more TAG or FFA from feed nutrients may be allotted to

the muscle tissue of fat BMIL, leading to a higher IMF de-

position than in the lean BMIL.

In general, an increase in IMF content is mainly due

to an increase in TG contents (Fernandez et al., 1999). Con-

sequently, the TG metabolism in muscle tissue should be a

target for identification of genes involved in IMF deposi-

tion, especially the TAG synthesis metabolism. SREBP-1c

can stimulate the transcription of genes encoding acetyl-

CoA carboxylase (ACC) (Zhuang et al., 2003) and fatty

acid synthase (FAS) enzymes (Magana et al., 2000). H-

FABP plays a role in transporting the fatty acids, and has

been regarded as a candidate gene for IMF deposition in

pigs (Gerbens et al., 1998; Glatz et al., 2003; Chmur-

zynska, 2006; Damon et al., 2006; Gardan et al., 2007).

DGAT are microsomal enzymes which catalyze the final

step of the triglyceride synthesis pathway (Yen et al.,

2008). Overexpression of DGAT enzymes in transgenic

mice is sufficient to increase cellular TAG storage in skele-

tal muscle (Koliwad et al., 2010). Our results show that the

expression levels of the SREBP-1c, H-FABP and DGAT-1

genes and proteins in the fat BMIL pigs were higher than in

the lean BMIL pigs. However, the difference in DGAT-1

protein expression was not significant. The expression of

the DGAT-1 gene and protein was positively correlated
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Figure 2 - Expression levels of proteins SREBP-1c, H-FABP, DGAT1, LEPR and MC4R (A, B, C, D and E, respectively) in the fat and lean BMIL.

Means � SE with asterisk indicate a significant difference between the two groups (p < 0.05).



(Coleman and Lee, 2004). The results suggest that, in the

fat BMIL, more fatty acids would be synthesized de novo

and transported to store TAG.

Intramuscular TG is a major form of energy storage

and represents a significant fuel for cellular metabolism

(Gao and Zhao, 2009). MC4R and LEPR play an important

role in the control of energy homeostasis. Many reports

have shown that the genetic variants of MC4R and LEPR

are associated with porcine fat deposition (Mackowski et

al., 2005; Ovilo et al., 2005; Bruun et al., 2006; Jokubka et

al., 2006; Kim et al., 2006; Fan et al., 2009, 2010; Li et al.,

2010; Piórkowska et al., 2010; Switonski et al., 2010). The

LEPR gene mediates the regulation of leptin effects

(Halaas and Friedman, 1997; Houseknecht and Porto-

carrero, 1998;Li et al., 2010). The MC4R gene has been

most closely linked to controlling the energy balance in ro-

dents. The interaction between melanocortins and their re-

ceptors in the hypothalamus is one of the main neuro-

endocrine pathways controlling energy balance (Yeo et al.,

2000; Wardlaw, 2001). However, some studies have indi-

cated that these genes could also be expressed in the muscle

tissue (Stinckens et al., 2009; Li et al., 2010; Larkina et al.,

2011; Tyra et al., 2011). Our data show that the mRNA and

protein abundance of LEPR and MC4R in the fat BMIL

was lower than in the lean BMIL. However, the difference

in MC4R protein expression was not significant. This may

be due to the fact that the main function of MC4R is to regu-

late the food intake (Kim et al., 2006). Since in the present

study the feed intake by the fat and the lean BMIL pigs was

similar,this may suggestthat the IMF deposition could be

affected by energy metabolism-related genes.

In conclusion, fat and lean BMIL with divergent phe-

notypes for IMF content did not result from feeding differ-

ences, but rather were influenced by feed nutrients TAG

and FFA and the expression levels of genes and proteins

which participate in the TAG synthesis process and the en-

ergy metabolism.
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