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ABSTRACT
Motivation: RNA H-type pseudoknots are ubiquitous pseudoknots
that are found in almost all classes of RNA and thought to play very
important roles in a variety of biological processes. Detection of these
RNA H-type pseudoknots can improve our understanding of RNA
structures and their associated functions. However, the currently exist-
ing programs for detecting such RNA H-type pseudoknots are still time
consuming and sometimes even ineffective. Therefore, efficient and
effective tools for detecting the RNA H-type pseudoknots are needed.
Results: In this paper, we have adopted a heuristic approach to
develop a novel tool, called HPknotter, for efficiently and accurately
detecting H-type pseudoknots in an RNA sequence. In addition, we
have demonstrated the applicability and effectiveness of HPknotter
by testing on some sequences with known H-type pseudoknots. Our
approach can be easily extended and applied to other classes of more
general pseudoknots.
Availability: The web server of our HPknotter is available for online
analysis at http://bioalgorithm.life.nctu.edu.tw/HPKNOTTER/
Contact: cllu@mail.nctu.edu.tw, chiu@cc.nctu.edu.tw

1 INTRODUCTION
RNA pseudoknots are found in almost all classes of naturally occur-
ring RNAs and play very important roles in a variety of biological
processes, such as RNA replication, transcription and translation
(Kolk et al., 1998). The majority of pseudoknots that have been
described to date are of the so-called H-type (or classical) pseudoknot
in which nucleotides from a hairpin-loop pair with a single-stranded
region outside of the hairpin to form a helical stem that is adjacent
or almost adjacent to the the hairpin stem (Pleij and Bosch, 1989;
Pleij, 1990; ten Damet al., 1992; Pleij, 1994). For instance, there
are 246 different pseudoknots in PseudoBase1, with 224 of them
being H-type. Hence, the detection of H-type pseudoknots should
improve our understanding of RNA structures and their associated
functions. In principle, an H-type pseudoknot (called H-pseudoknot)
may contain two stems (regionsA andC in Fig. 1) and three loops
(regionsB,D and E in Fig. 1), where such stems and loops are
usually represented in the 5′ → 3′ direction asS1 (Stem 1),S2

(Stem 2), andL1 (Loop 1),L2 (Loop 2) andL3 (Loop 3), respect-
ively. However,L2 is absent in the most studied type of pseudoknots
owing to the coaxial stacking of stems. Classical pseudoknots have

∗To whom correspondence should be addressed.
1PseudoBase (http://wwwbio.leidenuniv.nl/∼Batenburg/PKB.html) is a
pseudoknot database maintained by the Leiden Institute of Chemistry and
the Institute of Theoretical Biology at the Leiden University.

Fig. 1. Schematic representation of the H-type pseudoknot.

simple loops in which all nucleotides are unpaired and complicated
loops that contain substructures without pseudoknots, such as several
stems with their own internal, hairpin and multibranch loops. Both
simple and complicated loops are referred to as pseudoknot loops.
For simplicity, all the nucleotides in a pseudoknot loop are counted
and their number equals to the size of this loop, whether they are
unpaired or not. The pseudoknot stems adopted here are those that
are ‘pseudoknotted’ with other stems. They may be interrupted by
some bulge loops (or interior loops). By convention, the unpaired
nucleotides in these loops are, however, not counted for determining
the size of a pseudoknot stem.

In the standard thermodynamic model, a pseudoknot-free RNA
secondary structure of minimum free energy (MFE) can be computed
using dynamic programming inO(n3) time (Zuker and Stiegler,
1981; Zuker and Sankoff, 1984; Zuker, 2003; Hofacker, 2003). How-
ever, when (general) pseudoknots are allowed in the RNA secondary
structure, the computation becomes intractable since it has been
shown to be an NP-hard problem (Lyngsø and Pedersen, 2000;
Akutsu, 2000). Currently, several polynomial-time algorithms have
been proposed to find an MFE secondary structure with a restricted
class of pseudoknots (Rivas and Eddy, 1999; Akutsu, 2000; Lyngsø
and Pedersen, 2000; Dirks and Pierce, 2003; Reeder and Giegerich,
2004). Rivas and Eddy (1999) first proposed the dynamic program-
ming algorithm that could handle a large class of special pseudoknot-
ted structures. However, the major limitation of this algorithm is
its high running time ofO(n6) and space ofO(n4), wheren is
the length of RNA sequence. With other more restricted classes of
pseudoknots, Lyngsø and Pedersen (2000) proposed an algorithm of
O(n5) time andO(n3) space, Akutsu (2000) designed an algorithm
of O(n4) time andO(n3) space, Dirks and Pierce (2003) described an
algorithm ofO(n5) time andO(n4) space, and Reeder and Giegerich
(2004) gave an algorithm ofO(n4) time andO(n2) space. All these
algorithms above can be used to predict an MFE secondary structure
of an RNA sequence with H-pseudoknots. However, they are not
yet practical for large-scale sequences owing to their high running
time and/or space. In addition, our experimental results showed that
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these algorithms may not be effective to detect an H-pseudoknot that
is actually present in the native structure of a long RNA sequence.
However, our finding showed that when they were applied to the
sequence fragment exactly harboring the H-pseudoknot in a long
RNA sequence, they gave a very high probability of successfully
folding this fragment into the H-pseudoknot structure. Based on these
observations, in this paper we propose a heuristic approach to design
a novel tool, called HPknotter, for efficiently and accurately detecting
RNA H-pseudoknots in an RNA sequence by incorporating several
existing algorithms RNAMotif (Mackeet al., 2001), PKNOTS (Rivas
and Eddy, 1999), NUPACK (Dirks and Pierce, 2003) and pknot-
sRG (Reeder and Giegerich, 2004), where RNAMotif is an RNA
structural motif search tool, and PKNOTS, NUPACK and pknot-
sRG are the implemented programs of the algorithms of Rivas and
Eddy, Dirks and Pierce, and Reeder and Giegerich, respectively. The
key idea of our approach is as follows. For a given RNA sequence,
RNAMotif is first used to search for all the subsequences (called hits)
that meet the criteria dictating the structural motifs (such as stems
and loops) of an H-pseudoknot. PKNOTS/NUPACK/pknotsRG is
then used to determine if these hits indeed fold into a stable H-
pseudoknot. The purpose of using RNAMotif is to screen out those
subsequences that do not possess the required structural motifs in
an H-pseudoknot in sequence level, such that the worst case of
applying PKNOTS/NUPACK/pknotsRG to all subsequences of the
initial RNA sequence can be avoided and as a result, the testing
time of PKNOTS/NUPACK/pknotsRG can be greatly shortened.
To further speed up the overall performance, a hit filter is designed
between RNAMotif and PKNOTS/NUPACK/pknotsRG and its func-
tion is to discard those hits that are not possible to fold into a stable
pseudoknotted structure. Thus, only a small number of the remaining
hits are processed by PKNOTS/NUPACK/pknotsRG. Finally, based
on the concept of maximum weight independent set in graph the-
ory, the mutually disjoint H-pseudoknots with minimum total free
energy are computed from the remaining hits capable of folding
into stable H-pseudoknots to serve as the final output of HPknotter.
We have demonstrated the practicability and effectiveness of HPknot-
ter by testing it on several RNA sequences, most of which have been
proven to contain the H-type pseudoknotted structures in laboratory
approaches.

In addition to the above thermodynamic approaches, several other
approaches for predicting RNA secondary structures with (H-type)
pseudoknots have been proposed, such as maximum weighted match-
ing (Cary and Stormo, 1995; Tabaskaet al., 1998; Ieonget al., 2003),
quasi-Monte Carlo searches (Abrahamset al., 1990; Gultyaev, 1991),
genetic algorithms (van Batenburget al., 1995; Gultyaevet al., 1995;
Shapiro and Wu, 1997), stochastic context free grammar (Brown and
Wilson, 1996; Caiet al., 2003), and others (Ieonget al., 2003; Tahi
et al., 2003; Ruanet al., 2004). Particularly, Shapiro and Wu (1997)
developed a parallel genetic algorithm for detecting H-pseudoknots
on a massively parallel supercomputer MasPar MP-2 with 16 384
processors. Recently, this parallel genetic algorithm has been adap-
ted to MIMD parallel machines (Shapiroet al., 2001), such as
SGI ORIGIN 2000 with 64 processors and CRAY T3E with 512
processors, which seem to be hardly accessible to the ordinary users.

2 ALGORITHMS
To simplify algorithmic computation, the H-pseudoknots are
classified into four classes as shown in Table 1 based on the sizes

Table 1. The conditions of four classes of H-pseudoknots

Class Condition 1 Condition 2

1 size(S1) ≤ size(S2) size(L1) ≤ size(L3)

2 size(S1) ≤ size(S2) size(L1) ≥ size(L3)

3 size(S1) ≥ size(S2) size(L1) ≤ size(L3)

4 size(S1) ≥ size(S2) size(L1) ≥ size(L3)

of their stems and loops, where the case of size(S1) = size(S2) and
size(L1) = size(L3) is allowed to belong to any of four classes. Basic-
ally, our designed HPknotter works with five phases as follows (see
Fig. 2 for its flow diagram). In the first phase, it runs RNAMotif on
the input RNA sequence with a user-specified descriptor for a class of
H-pseudoknots, which produces a list of sequence fragments, called
hits, that match the user-specified descriptor. RNAMotif (Macke
et al., 2001) is an RNA structural motif search tool to find the
fragments of a given RNA sequence that conform to a predefined
descriptor of defining a particular structural motif. In Figure 3, the
RNAMotif descriptor used in our HPknotter to describe the H-type
pseudoknotted structures of class 2 is shown. To define the descriptor
of each class of H-pseudoknots that fits as closely as possible to
the naturally occurring pseudoknots, we further count the frequen-
cies of the occurring stem sizes and loop sizes in PseudoBase (van
Batenburget al., 2000, 2001). The stem- and loop-size distributions
of S1,S2,L1,L2 andL3 are shown in Figure 4, where 4 (respectively,
1 and 3) pseudoknots with big loop-size (≥100 bp) are omitted in the
case ofL1 (respectively,L2 andL3). Then the size ranges that cover
the most parts of the distributions are chosen to serve as the default
size ranges of the stems and loops in HPknotter, where these default
size ranges can be modified by the users to meet their requirements
according to their biological knowledge about the tested data.

The hit sequences contained in the output of the first stage then
serve as input to the next phase. Note that at this moment, each
hit has the possibility of folding into the pseudoknotted structure
of the H-type as defined in the descriptor of RNAMotif (herein,
the H-pseudoknot of this kind is referred to as an RNAMotif
H-pseudoknot for convenience). However, whether or not this
RNAMotif-pseudoknotted structure is the native structure of the hit,
i.e. the stable structure with minimum energy, is still unknown. The
simplest verification way is to apply the currently existing prediction
program (like PKNOTS/NUPACK/pknotsRG) to each hit sequence
and examine whether it indeed folds into a stable H-pseudoknot con-
forming to the descriptor. However, such a verification for all hit
sequences is impractical. The reason is that even for a short RNA
sequence, a great number of hit sequences are usually produced by
RNAMotif and hence the verification of each hit sequence using
PKNOTS, NUPACK or pknotsRG costs much time, which leads the
overall process of verification above to being extremely time consum-
ing. Therefore, a more efficient verification is needed to improve the
overall performance, especially in speed.

From the thermodynamic viewpoint, a pseudoknotted structure
of a hit sequence with very low energy (or the lowest energy) is
more likely to form in the native structure of the hit sequence. For
a hit sequence, however, if the energy of the pseudoknotted struc-
ture with possible stems in their loops (defined by the descriptor)
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Fig. 2. The flow diagram of HPknotter.

parms
wc += gu;
chk_both_strs = 0;

descr
h5(tag=’S1’, minlen=3, maxlen=8) # for 5’ side of stem 1
ss(tag=’L1’, minlen=1, maxlen=20) # for loop 1
h5(tag=’S2’, minlen=3, maxlen=11) # for 5’ side of stem 2
ss(tag=’L2’, minlen=0, maxlen=2) # for loop 2
h3(tag=’S1’) # for 3’ side of stem 1
ss(tag=’L3’, minlen=0, maxlen=18) # for loop 3
h3(tag=’S2’) # for 3’ side of stem 2

score{
s1 = length(h5(tag=’S1’)); # for stem 1
s2 = length(h5(tag=’S2’)); # for stem 2
l1 = length(ss(tag=’L1’)); # for loop 1
l2 = length(ss(tag=’L2’)); # for loop 2
l3 = length(ss(tag=’L3’)); # for loop 3
if (s1 > s2) # violate the conditions of class 2

REJECT;
if (l1 < l3)

REJECT;
}

Fig. 3. The RNAMotif descriptor used to describe the H-type pseudoknotted structures of class 2.

is much greater than that of its pseudoknot-free secondary struc-
ture with minimum energy, this hit sequence is unlikely to fold
into a native pseudoknot that conforms to the descriptor. And as
a result, this hit sequence can be discarded directly without any
verification. Based on this observation, a hit filter is designed
herein to filter out those hit sequences whose energies calculated
based on their RNAMotif-pseudoknotted structures with possible
stems in their loops are greater than the minimum energies of their
pseudoknot-free secondary structures predicted by the pseudoknot-
free secondary structure prediction programs. To make this compar-
ison, the energies of the above pseudoknotted and pseudoknot-free
structures are recalculated using the energy computation program
provided by NUPACK such that the computed energies are based
on the same energy rules and thermodynamic parameters. Note
that when computing the energy of the pseudoknotted structure

of each hit sequence, we also count the possible energy contrib-
uted by the interaction between the hit sequence and the flanking
sequences.

Currently, the cost of calculating a secondary structure without
pseudoknots is much less than that of predicting a secondary structure
with pseudoknots. For example, PKNOTS and NUPACK both cost
O(n3) time for predicting the pseudoknot-free secondary structures
of an RNA sequence fragment of lengthn, whereas these programs
as well as pknotsRG costO(n6), O(n5) andO(n4) time respectively,
for the case with pseudoknots. With the aid of the hit filter, most hits
are determined withinO(n3) time, instead ofO(n5),O(n6)orO(n4).
In the second phase, the HPknotter extracts the hit sequences from
the output of the first stage and passes them to the hit filter to check
if they have the possibility of folding into stable H-pseudoknots.
We call the hit sequences passing through the hit filter as filtered hits.
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Fig. 4. Frequencies of stem- and loop-sizes of pseudoknots in PseudoBase.
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According to our experiments (described in next sections), the hit
filter significantly speeds up the overall performance of verification
because a large number of hit sequences have been filtered out.

In the third phase, the filtered hits are further double checked by the
pseudoknotted prediction program PKNOTS/NUPACK/pknotsRG
to check whether or not they indeed fold into the stable pseudo-
knots. A filtered hit is then called as an H-pseudoknot candidate
if PKNOTS/NUPACK/pknotsRG is able to fold it into a stable
pseudoknot.

It is worth mentioning that each H-pseudoknot candidate gener-
ated in the third phase may not be an H-pseudoknot, or may be
an H-pseudoknot not capable of conforming to the user-specified
descriptor. The reason for the former case is that PKNOTS and
NUPACK can predict a more general class of pseudoknots. One
reason for the latter case is that one of its H-pseudoknot stems
may contain a long loop that violates the known biological know-
ledge. According to the H-pseudoknots maintained in PseudoBase,
most of them contain no loop in their pseudoknot stems. Only a
few H-pseudoknots contain one loop in their pseudoknot stems and
most of them contain either an interior loop of size 2 or a bulge
of size 1. Another possible reason is that the candidate is indeed
a stable H-pseudoknot, but it belongs to a different class of H-
pseudoknots. Based on these observations, in the fourth phase we
further design an H-pseudoknot filter to filter out those H-pseudoknot
candidates that are not the desired H-pseudoknots or contain a
long loop in their stems. We call the remaining H-pseudoknot
candidates passing through the H-pseudoknot filter as the filtered
H-pseudoknots.

In fact, several filtered H-pseudoknots may overlap among their
ranges in the sequence, which means that they cannot exist in the
stable structure of a given RNA sequence simultaneously. Among
the filtered H-pseudoknots, therefore, we further find the mutually
disjoint H-pseudoknots whose total free energy is minimum in the
fifth phase. Actually, this problem becomes a well-known combinat-
orial problem, called the maximum weight independent set problem
on interval graphs, if the range of each filtered H-pseudoknot is con-
sidered as an interval in the sequence associated with the magnitude
of its free energy as the weight. The maximum weight independent
set problem on interval graphs can be solved in linear time (Hsiao
et al., 1992). In HPknotter, we have implemented this algorithm to
compute the mutually disjoint H-pseudoknots with minimum total
free energy among the filtered H-pseudoknots and use them as the
final output of HPknotter.

3 IMPLEMENTATION
Based on the phases described in the previous section, we have
implemented a novel tool, the HPknotter, by incorporating sev-
eral existing programs, RNAMotif (Mackeet al., 2001), PKNOTS
(Rivas and Eddy, 1999), NUPACK (Dirks and Pierce, 2003) and
pknotsRG (Reeder and Giegerich, 2004), for detecting the H-
pseudoknots of a given RNA sequence. The HPknotter was written
in Perl. Its web server, implemented in PHP, is available for online
analysis at http://bioalgorithm.life.nctu.edu.tw/HPKNOTTER/. We
incorporated the well-developed programs PKNOTS, NUPACK and
pknotsRG into our HPknotter pipeline, and compared this com-
bination with these three programs used as stand-alone tools. The
experiments were carried out on a number of RNA sequences with
known H-pseudoknots. Unless otherwise specified, all programs

Table 2. The sequence and H-pseudoknot information of the tested
sequences, where the accession number of HIV-1-RT is not available and
TMV-3′-down contains two H-pseudoknots with one in class 2 and the other
in class 3

RNA Sequence Accession No. Length (bp) H-Pseudoknots No. Class

5S-rRNA V00336 120 0 —
HIV-1-RT N/A 35 1 1
TMV-3′-up AJ011933 84 3 1
T2 X12460 946 1 1
T4 J02513 1340 1 1
TYMV-3 ′ X16378 86 1 2
BCV-3′ AF220295 345 1 2
MHV-3′ AF201929 315 1 2
SARS-TW1-3′ AY291451 341 1 2
TMV-3′-down AJ011933 105 2 2,3
HPeV1-5′ L02971 45 1 3

were run with default parameters on IBM PC with 3.06 GHz
processor and 2 GB RAM under Linux system.

4 SELECTION OF THE TEST DATA
The tested sequences were taken from the 5S rRNA ofEscherichia
coli (5S-rRNA) (Cannoneet al., 2002), the RNA sequence inhibiting
human immunodeficiency virus type 1 (HIV-1-RT) reverse tran-
scriptase (Tuerket al., 1992), the 3′-UTR of tobacco mosaic virus
(TMV-3′) (van Belkumet al., 1985), the turnip yellow mosaic virus
(TYMV-3 ′) sequence (Rietveldet al., 1982), the 5′-UTR of human
parechovirus (HPeV1-5′) (Nateriet al., 2002), the bacteriophage T2
and T4 gene 32 mRNA sequences (T2 and T4) (McPheeterset al.,
1988), and the 3′-UTRs of several coronaviruses (BCV-3′, MHV-
3′ and SARS-TW1-3′) including severe acute respiratory syndrome
virus (SARS) (Williamset al., 1999; Tsaiet al., 2004) (see Table 2 for
the information of the tested sequences and their H-pseudoknot num-
bers). All sequences above, except 5S-rRNA, are known to contain
at least one H-pseudoknot as reported in the literature.

5 EVALUATION AND OBSERVATIONS
A summary of the overall sensitivity and specificity for all exper-
iments, which were run using the general class of the descriptor
without an interior or bulge loop in the pseudoknot stems, is shown in
Tables 3, in which we letSbp(Sensitivity)= (100× TP)/(TP+ FN),
Pbp(Specificity)= (100× TP)/(TP+ FP) and � = (number of
correctly predicted H-pseudoknots)/(number of predicted
H-pseudoknots) (i.e. the fraction of the correctly predicted
H-pseudoknots), where TP= true positive (i.e., the number of
the correctly predicted base-pairs in the predicted H-pseudoknots),
FN= false negative (i.e. the number of the base-pairs in the pub-
lished H-pseudoknots that were not predicted), FP= false positive
(i.e. the number of the incorrectly predicted base-pairs in the
predicted H-pseudoknots). The correctly predicted H-pseudoknots
denote those predicted H-pseudoknots reported in the literature.

In this set of experiments, PKNOTS and NUPACK were not
able to deal with the cases of T2, T4, BCV-3′, MHV-3′ and
SARS-TW1-3′, owing to the running out of memory. For the other
sequences, PKNOTS and NUPACK exhibited almost the same
prediction results in which the H-pseudoknot of HIV-1-RT was
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Table 3. Summary of prediction results on several RNA sequences, where all experiments are run using the general class of the descriptor and the version of
PKNOTS is 1.01

Experiment HPknotter
PKNOTS NUPACK pknotsRG PKNOTS-kernel NUPACK-kernel pknotsRG-kernel
Sbp Pbp � Sbp Pbp � Sbp Pbp � Sbp Pbp � Sbp Pbp � Sbp Pbp �

5S-rRNA — — 0/0 — — 0/1 — — 0/0 — — 0/1 — — 0/1 — — 0/2
HIV-1-RT 100 100 1/1 100 100 1/1 100 100 1/1 100 100 1/1 100 100 1/1 100 100 1/1
TMV-3′-up 0 0 0/0 0 0 0/0 71.4 62.5 3/3 100 77.8 2/2 100 77.8 3/3 71.4 62.5 3/3

77.8 87.5 0 0 88.9 100 77.8 87.5
88.9 100 66.7 66.7 88.9 100 88.9 100

T2 — — —/— — — —/— 100 100 1/1 100 100 1/4 100 100 1/10 100 100 1/16
T4 — — —/— — — —/— 0 0 0/1 100 100 1/3 100 100 1/17 100 100 1/17
TYMV-3 ′ 0 0 0/0 0 0 0/1 100 80 1/2 100 80 1/1 62.5 55.6 1/2 100 80 1/2
BCV-3′ — — —/— — — —/— 100 100 1/1 100 100 1/1 94.4 100 1/3 100 100 1/3
MHV-3′ — — —/— — — —/— 100 100 1/3 100 100 1/3 100 100 1/5 100 100 1/6
SARS-TW1-3′ — — —/— — — —/— 0 0 0/0 93.8 100 1/2 93.8 100 1/3 100 100 1/5
TMV-3′-down 0 0 0/0 60.9 42.4 1/1 0 0 0/0 100 100 2/2 100 100 2/2 100 100 2/2

91.3 91.3 95.7 100 100 95.7
HPeV1-5′ 0 0 1/1 0 0 1/1 54.5 54.5 1/1 100 100 1/1 100 100 1/1 100 100 1/1

It should be noted that PKNOTS of version 1.04 can successfully predict two H-pseudoknots of TMV-3′-down. The reason that HPknotter with PKNOTS-kernel missed the second
H-pseudoknot of TMV-3′-up is that PKNOTS is not able to fold its corresponding sequence into a pseudoknot.

identified, but the H-pseudoknots of TMV-3′-up, TYMV-3′ and
HPeV1-5′ were missed2. (Note that PKNOTS could predict two
real H-pseudoknots of TMV-3′-down, if the version of PKNOTS
was 1.04, instead of 1.01.) Notably, most of the above results were
improved when we conducted all the experiments using pknotsRG.
However, the H-pseudoknots of T4, SARS-TW1-3′ and TMV-3′-
down were still missed by pknotsRG. The inability of detecting the
real H-pseudoknots described above evidences the fact that for the
long RNA sequence, the MFE model might miss the H-pseudoknots
that are actually present in the native structure. In our experiments
(Table 3), however, this situation was significantly improved by our
HPknotter, because most of the real H-pseudoknots of TMV-3′-up,
T4, TYMV-3′, SARS-TW1-3′ and TMV-3′-down were detected with
high sensitivity and specificity.

6 DISCUSSION
The key point lies in the fact that our HPknotter first uses RNAMotif
to search for all fragments of the given RNA sequence that have
the possibility of folding into an H-pseudoknot and then applies
PKNOTS/NUPACK/pknotsRG to these fragments for determining
if their MFE structures are indeed H-pseudoknots. In this situ-
ation, without effect on the nucleotides outside the fragments,
PKNOTS/NUPACK/pknotsRG seems to give a higher probability of
successfully recognizing the pseudoknotted structures of fragments.
This approach, of course, inevitably increases the number of incor-
rectly predicted H-pseudoknots, because it ignores the global effect
of all input nucleotides by considering just the local fragments of
the input RNA sequence. In fact, our experiments showed that the
number of the incorrectly predicted H-pseudoknots was reasonable
because among all these predicted H-pseudoknots, HPknotter applies

2Actually, PKNOTS and NUPACK both predicted an H-pseudoknot for
HPeV1-5′, but with zero sensitivity and specificity as a result of incorrect
base pairings.

the concept of maximum weight independent set at the last stage to
compute the mutually disjoint H-pseudoknots with minimum total
free energy.

Generally speaking, as shown in Table 3, our HPknotter greatly
improves sensitivity, specificity and the fraction� of correctly
predicted H-pseudoknots when compared with original PKNOTS,
NUPACK and pknotsRG. It should be noted that the number of
incorrectly predicted H-pseudoknots in the cases with PKNOTS-
kernel are not greater than those in the cases with NUPACK-kernel
and pknotsRG-kernel, which seems to imply that PKNOTS itself is
more accurate than NUPACK and pknotsRG, even though PKNOTS
is more time consuming than NUPACK and pknotsRG from the
computational point of view.

It is worth mentioning that as shown in Table 4, the overall pre-
diction accuracy will be further improved if we rerun all tested RNA
sequences above, except 5S-rRNA containing no H-pseudoknot, by
choosing the specific class to which the predicted H-pseudoknots
belong, instead of using the general class of descriptor. Particularly,
the� values (Table 4) and the performance of running time (Table 5)
were greatly improved. These experiments indicate that our HPknot-
ter can be served as an effective tool for validating if the tested RNA
sequences have the same kind of H-pseudoknots as other closely
related RNA sequences whose H-pseudoknots are already known in
advance. For instance, SARS, BCV and MHV are all coronaviruses,
and the H-pseudoknots of BCV-3′ and MHV-3′, both of which belong
to class 2 of H-pseudoknots, are already known and have been proven
by previous experiments (Williamset al., 1999). It is reasonable to
expect that SARS-TW1-3′ may contain an H-pseudoknot of class 2.
Therefore, we can apply our HPknotter to SARS-TW1-3′ by specify-
ing the descriptor to be class 2 so that we are able to quickly obtain
the same result as the general descriptor.

In fact, our HPknotter is not CPU intensive at all because based
on our experiments, a great number of the hit sequences produced
by RNAMotif were filtered out by the hit filter. Take the experiments
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Table 4. Summary of prediction results on several RNA sequences, where experiments 1–4, 5–9 and 10–11 are run using the descriptors of classes 1, 2 and 3,
respectively

Experiment HPknotter
PKNOTS NUPACK pknotsRG PKNOTS-kernel NUPACK-kernel pknotsRG-kernel
Sbp Pbp � Sbp Pbp � Sbp Pbp � Sbp Pbp � Sbp Pbp � Sbp Pbp �

HIV-1-RT 100 100 1/1 100 100 1/1 100 100 1/1 100 100 1/1 100 100 1/1 100 100 1/1
TMV-3′-up 0 0 0/0 0 0 0/0 71.4 62.5 3/3 100 87.5 2/2 0 0 2/2 0 0 2/2

77.8 87.5 0 0 88.9 100 77.8 87.5
88.9 100 66.7 66.7 88.9 100 88.9 100

T2 — — —/— — — —/— 100 100 1/1 100 100 1/3 100 100 1/6 100 100 1/14
T4 — — —/— — — —/— 0 0 0/1 100 100 1/3 100 100 1/11 100 100 1/11
TYMV-3 ′ 0 0 0/0 0 0 0/1 100 80 1/2 100 80 1/1 62.5 62.5 1/1 100 80 1/1
BCV-3′ — — —/— — — —/— 100 100 1/1 100 100 1/1 94.4 100 1/2 100 100 1/1
MHV-3′ — — —/— — — —/— 100 100 1/3 100 100 1/1 100 100 1/3 100 100 1/4
SARS-TW1-3′ — — —/— — — —/— 0 0 0/0 93.8 100 1/1 93.8 100 1/3 100 100 1/3
TMV-3′-down 0 0 0/0 0 0 0/0 0 0 0/0 100 100 1/1 100 100 1/3 100 100 1/1
TMV-3′-down 0 0 0/0 60.9 42.4 1/1 0 0 0/0 91.3 91.3 1/1 95.7 100 1/1 100 95.7 1/1
HPeV1-5′ 0 0 1/1 0 0 1/1 54.5 54.5 1/1 100 100 1/1 100 100 1/1 100 100 1/1

The first H-pseudoknot of TMV-3′-up was missed by HPknotter with NUPACK-kernel and pknotsRG-kernel because it was filtered out owing to the incorrect class. Notice that
TMV-3′-down contains two H-pseudoknots with one in class 2 (that was tested in experiment 9) and the other in class 3 (that was tested in experiment 10).

Table 5. CPU usage time for PKNOTS, NUPACK, pknotsRG and HPknotter, where in our testing computer environment, PKNOTS and NUPACK cannot
deal with the sequences of length>220 and 180 bp, respectively, owing to the running out of memory

Length PKNOTS NUPACK pknotsRG HPknotter (General class) HPknotter (Specific class)
(bp) PKNOTS-kernel NUPACK-kernel pknotsRG-kernel PKNOTS-kernel NUPACK-kernel pknotsRG-kernel

84 7.3 min 13.1 s 0.05 s 31 s 27 s 26 s 9 s 7 s 6 s
105 35 min 44.7 s 0.1 s 2.2 min 35 s 29 s 38 s 10 s 8 s
200 72 h — 0.8 s 5.2 min 1.8 min 1.5 min 1.6 min 33 s 30 s
341 — — 7.4 s 7.1 min 2.4 min 2.3 min 2.2 min 46 s 45 s
946 — — 10.1 min 13.8 min 7.5 min 6.9 min 4.1 min 2.2 min 2.1 min

1340 — — 43.5 min 35.3 min 11.6 min 10.9 min 11.6 min 3.1 min 2.5 min

with SARS-TW1-3′ in Table 3 for an example. In the first phase,
RNAMotif in total found 2132 hits that conform to the descriptor of
general class. If we directly apply PKNOTS to all these unfiltered hits
to check if they fold into a stable H-pseudoknot, then the program
will require about 51 h to finish the job. However, after running the hit
filter, only 43 different hit sequences remained, which then cost the
following PKNOTS only about 5.2 min to determine if they are stable
pseudoknots. As a result, the third phase of running pseudoknot pre-
diction with PKNOTS left us with only 11 pseudoknot candidates
that could fold into stable pseudoknots. Next, only seven candidates
remained after running the H-pseudoknot filter in the fourth phase.
In fact, some of these filtered H-pseudoknots may have an over-
lap among their ranges in the sequence, which suggests that they
cannot exist simultaneously in a stable pseudoknotted structure in
SARS-TW1-3′. Finally, only two H-pseudoknots with minimum free
energy were selected in the phase of computing the maximum weight
independent set. Table 5 lists the CPU usage time for PKNOTS,
NUPACK, pknotsRG and our HPknotter, where all tests were run
on IBM PC with 3.06 GHz processor and 2 GB RAM under Linux
system.

7 CONCLUSIONS
In this paper, we designed a heuristic approach for efficiently
and accurately detecting RNA H-pseudoknots, the ubiquitous
pseudoknots in the naturally occurring RNAs. The currently exist-
ing thermodynamic-based programs, like PKNOTS, NUPACK and
pknotsRG, are useful for finding stable H-pseudoknots. However,
most of them are highly time consuming and memory consum-
ing, which limits them to predict short sequences of a couple of
hundred bases length. Another main weakness of these programs
is that they may not be effective to detect the actually existing
H-pseudoknots that are contained in a long RNA sequence, as
evidenced by our experiments. Based on our heuristic approach
mentioned in this paper, we have implemented a novel program,
the HPknotter, capable of efficiently and accurately detecting the
H-pseudoknots of a given RNA sequence by incorporating four exist-
ing programs RNAMotif, PKNOTS, NUPACK and pknotsRG. In
summary, we have demonstrated the practicability and effectiveness
of our developed HPknotter by testing it on several RNA sequences,
most of which have been proven to contain the H-pseudoknotted
structures. Through several experiments, our HPknotter has been
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shown to be practical for the detection of H-pseudoknots in RNA
sequences because it is not computationally expensive and has
much better sensitivity and specificity than PKNOTS, NUPACK
and pknotsRG. In addition, it is feasible to extend and apply our
heuristic approach to detecting the other classes of more general
pseudoknots.

Conflict of Interest: none declared.
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