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Abstract

Background: Prediction of pathogenic genes is crucial for disease prevention, diagnosis, and treatment. But
traditional genetic localization methods are often technique-difficulty and time-consuming. With the development of
computer science, computational biology has gradually become one of the main methods for finding candidate
pathogenic genes.

Methods: We propose a pathogenic genes prediction method based on network embedding which is called
Multipath2vec. Firstly, we construct an heterogeneous network which is called GP−network. It is constructed based
on three kinds of relationships between genes and phenotypes, including correlations between phenotypes,
interactions between genes and known gene-phenotype pairs. Then in order to embedding the network better, we
design the multi-path to guide random walk in GP−network. The multi-path includes multiple paths between genes
and phenotypes which can capture complex structural information of heterogeneous network. Finally, we use the
learned vector representation of each phenotype and protein to calculate the similarities and rank according to the
similarities between candidate genes and the target phenotype.

Results: We implemented Multipath2vec and four baseline approaches (i.e., CATAPULT, PRINCE, Deepwalk and
Metapath2vec) on many-genes gene-phenotype data, single-gene gene-phenotype data and whole
gene-phenotype data. Experimental results show that Multipath2vec outperformed the state-of-the-art baselines in
pathogenic genes prediction task.

Conclusions: We propose Multipath2vec that can be utilized to predict pathogenic genes and experimental results
show the higher accuracy of pathogenic genes prediction.
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Background
Predicting pathogenic genes is important in disease pre-
vention, diagnosis, and treatment [1, 2]. Understanding
the pathogenic genes is useful to prevent and control those
genetic diseases fundamentally. Revealing the relation-
ship between genetic diseases and disease-causing genes
has become an important goal of human genetics [3].
Researchers are committed to predicting the pathogenic
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genes of diseases and have achieved impressive results
[4, 5]. Though some phenotypically similar diseases have
been confirmed to be related with some specific genes,
many pathogenic genes are still undetected for various
reasons. It’s still a great challenge to detect those unknown
pathogenic genes.

Traditional genetic localization methods are gener-
ally expensive, technique-difficulty and time-consuming.
Therefore, there is an urgent need to develop a high-
precision method for predicting pathogenic genes [6–8]. It
can also improve the efficiency of discovering pathogenic
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genes and shorten the period of discovering pathogenic
genes, laying the foundation for the development of
biotechnology, and personalizing gene therapy, etc.

With the accumulation of protein-protein interaction
data, it has been a research hotspot in bioinformatics
that predicting the pathogenic genes from protein-protein
interaction networks [9–12]. Computational biology has
gradually become one of the main methods for find-
ing candidate pathogenic genes. Calculating the func-
tional similarity between unknown candidate genes and
known pathogenic genes is one of the most popular
methods for finding unknown candidate genes. Discov-
ering pathogenic genes by network topological features
in human protein-protein interaction networks has made
some progress [13, 14]. Moreover, many scholars have
made efforts to identify genetic phenotype associations
rather than gene-diseases associations [10, 15]. Lage et al.
scored protein complexes using gene-phenotype data
and genes are ranked according to their asscioation
with scored protein complex [10]. Wu et al. established
a regression model by calculating a score to mea-
sure the correlation between the phenotype similari-
ties and the functional genetic relatedness of disease
genes [15].

Some studies have shown that similar phenotypes are
generally caused by functionally related genes [16–18].
Driven by this observation, researchers have proposed
another method of prediction of pathogenic genes that
predict candidate pathogenic genes by gene-phenotype
associations [19–22]. Researchers prioritize candidate
pathogenic genes of a given disease phenotype by con-
structing a heterogeneous network that consists of pheno-
type network, gene(protein) network, and known disease
gene-phenotype associations [23]. As it is well known, the
phenotypes are regarded as vertices and the links between
highly similar phenotypes are regarded as edges in the
phenotype network. As for the protein network, the indi-
vidual proteins are regarded as vertices and the detected
protein-protein interactions (PPI) are regarded as edges
between the two corresponding vertices. The two net-
works, i.e., phenotype network and protein network, are
connected by the known disease gene-phenotype associ-
ations. This kind of heterogeneous network can be used
to infer causative genes of a given phenotype. Many meth-
ods calculate the similarities between the candidate genes
and the target phenotype using the heterogeneous net-
work [24, 25]. Li and Patra proposed a random walk
with restart algorithm to infer the gene-phenotype on
the heterogenous network [24]. Yang et al. added the
information of real protein complexes into the heteroge-
nous network, which constructed a novel protein com-
plex network [25]. However, studies are restricted by the
existing big differences between the properties of ver-
tices or links in the heterogenous network. Predicting

pathogenic genes of diseases by the heterogenous network
is restricted by the complex network properties. Recently
in the field of computer science, network embedding
algorithms have been proposed [26–30]. Neural network-
based learning models can represent latent embeddings
into low-dimensional space while capturing the internal
relationships of rich and complex data. It has been proved
that the network embedding algorithms perform well in
clustering, network classification and link prediction, etc
[31, 32]. Deep learning techniques are first introduced to
analyze graphs in Deepwalk algorithm, which have been
proved to be success in natural language processing as
well as network analysis [26, 33, 34]. Abundant stud-
ies extended and modified the basic Deepwalk model in
order to implement this model into the heterogeneous
network.

In this work, we use network embedding to pre-
dict causative genes in human gene-phenotype hetero-
geneous networks. We propose a network embedding
method called Multipath2vec, which aims to precisely
predict pathogenic genes of a target disease. In Multi-
path2vec, we first construct a human gene-phenotype
heterogeneous network. And we design the multi-path
which can better capture correlations between different
types of vertices to guide random walk in the human
gene-phenotype heterogeneous network. Then we use
network embedding algorithm to learn features of the
constructed networks. Finally, we calculate the similari-
ties between genes and the target phenotypes and then
predicts the pathogenic genes. We make the following
contributions.

• We propose a pathogenic genes prediction algorithm
called Multipath2vec. In Multipath2vec, we propose a
special multi-path random walk to make better use of
the information of the heterogeneous network.

• We introduce network embedding algorithm in the
prediction of pathogenic genes. To our best
knowledge, this is the first attempt to exploit the
network embedding method in the prediction of
pathogenic genes.

• The research strategy of this work can inspire the
resolution of analysis task in bioinformatics.

The structure of our paper is organized as follows.
“Methods” section illustrates the Multipath2vec algorithm
in detail. Experiments are introduced in “Results” and
“Discussion” sections concludes the paper.

Methods
In this section, we introduce the detailed description of
the construction of the human gene-phenotype hetero-
geneous network and propose the Multipath2vec algo-
rithm. The flow chart of Multipath2vec is shown in
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Fig. 1. First, a human gene-phenotype heterogeneous
network is constructed based on the correlations between
genes and genes, phenotypes and phenotypes, genes and
phenotypes. Then we design multi-path to guide random
walk in the human gene-phenotype heterogeneous net-
work and represent the network into d dimension vectors.
And then we calculate the similarities between genes and
the target phenotypes. After that, we can get the ranking
list of candidate genes.

Heterogeneous network construction
The heterogeneous network consists of two types of
nodes and three types of links. In the heterogeneous
network, nodes include the gene nodes and the phe-
notype nodes. Edges are connected in three relation-
ships: the relationship between phenotype and gene,
the relationship between two genes, and the relation-
ship between two phenotypes. The edge between two
phenotypes is the link between two highly similar ver-
tices. The edge is connected between two correspond-
ing genes when there exists the experimentally detected
protein-protein interaction. Besides, the known disease
gene-phenotype associations are used to connect gene
and phenotype. For a better understanding, we give
the formal definition of the heterogeneous network as
follows.

A Heterogenous Network is defined as a graph G =
(V , E, T) in which each vertex v and each edge e are asso-
ciated with their mapping functions φ(v) : V → TV and
ϕ(e) : E → TE , respectively. TV and TE denote the vertex
types and relation types, where |TV | + |TE| > 2.

For predicting the pathogenic genes of the known dis-
ease, we first construct the human gene-phenotype het-
erogeneous network. In order to precisely describe the
relationships in the human gene-phenotype heteroge-
neous network, we use proteins/genes (i.e., g) and phe-
notypes (i.e., p) and several relationships between them
to represent heterogeneous networks. Proteins/genes and
phenotypes are represented as vertices and the edges are

denoted as phenotype similarity (i.e., p-p), protein-protein
interaction (i.e., g-g), and gene-phenotype association
(i.e., g-p/p-g), respectively. We give a clear definition of
the human gene-phenotype heterogeneous network that
we construct in this paper. We name this network as
GP−network.

A GP−network is defined as a graph G = (V , E, T),
wherein V = G∪P. G is gene set and P is phenotype
set. T is type set, which T = TV ∪TE . TV and TE rep-
resents the sets of object type and relation type, where
|TV | + |TE| > 2. In G, each vertex v is associated with
its mapping function φ(v) : V → TV and each edge e is
associated with its mapping functions ϕ(e) : E → TE .

Figure 2a is an example of GP−network. Between genes
and phenotypes, there are many associations. Our pur-
pose is to predict the unknown associations between cer-
tain genes and phenotypes according to the known links
in the GP−network.

Heterogeneous GP−network embedding
Dong et al. proposed Metapath2vec, which is a net-
work embedding method for network analysis [35]. In
this method, scholars designed meta-path (i.e., a path
including different kinds of vertices) to guide random
walk [36]. Metapath2vec generates paths through ran-
dom walks based on meta-path, which can capture rich
correlations between different types of vertices. In this
paper, we design a novel multi-path to capture richer
correlations between vertices. The formal definitions of
meta-path and multi-path are respectively introduced as
follows.

Definition 1 In the regular heterogeneous network, a
meta-path scheme H is defined as a path that is denoted
in the form of V1

R1−→ V2
R2−→ . . .

Rl−1−→ Vl, wherein,
R = R1 � R2 � . . . � Rl−1 defines the composite relations
between vertex types V1 and Vl.

A meta-path "g − p − g" represents the common
pathogenic genes relationship of a phenotype(p) between

Fig. 1 The flow of Multipath2vec. First, we construct the human gene-phenotype heterogeneous network. Based on multi-path guided random
walk, we can achieve the vector representation of network according to network embedding. Finally, we calculate the similarities and then rank the
candidate genes
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Fig. 2 a is an example of GP−network. Each light orange node represents a phenotype and each blue node represents a protein. The links between
phenotypes represent the high similarities. The links between proteins represent the interactions proteins. The black dots represent the associations
between genes and phenotypes. b is the multi-path used in this work,which is “g-p-g&g-g-p” and “p-g-p&p-p-g”

two genes(g). But, the relationship captured by a meta-
path is not enough for the heterogeneous network we
constructed. For example, if a gene g1 is the uncovered
pathogenic gene of a phenotype p1, the reasons may be the
following two situations: (1) Gene g1 may interact with g2,
which g2 has been confirmed to be the pathogenic gene of
known phenotype p1. (2) Gene g1 may closely associate with
p2 which is highly similar to p1. Therefore, a meta-path is
not suitable for the heterogeneous network we constructed
because it can only capture one relationship. Considering
this particularity, we propose multi-path based random
walk to capture gene-phenotype relationships (g − p) and
gene-gene relationships (g − g). We define multi-path as
follows.

Definition 2 In GP−network, a multi-path scheme W
is defined as a path that is denoted in the form of
V1

R1−→ V2
R2−→ . . .

Rl−1−→ Vl. Wherein, R = R1 � R2 �
. . . � Rl−1 defines the composite relations between vertices.
Besides, Vi+2 /∈P when Vi∈P∧Vi+1∈P. Likewise, Vi+2 /∈G
when Vi∈G∧Vi+1∈G.

That is, there cannot be three successive vertexes that
are all of the same type in a multi-path. Multi-path is
more suitable for heterogeneous networks than meta-paths
because it can capture multiple relationships simultane-
ously. Take the situation in Fig. 2a as an example, g2 →
p2 → g1 is meta-path. Different from meta-path, multi-
path is allowed to contain two relationships simultane-
ously. For instance, g2 → p2 → g1 and g2 → g4 → p4
are multi-paths. Fig. 2b shows the multi-path used in this
work.

Here, we describe how multi-path guides random walk-
ers to walk in the heterogeneous network we build. To a

multi-path scheme W : V1
R1−→ V2

R2−→ . . .
Rl−1−→ Vl,

the transition probability at step i is defined as shown
in Eq. 1.

Pr(vi+1|vi
t , W ) =

⎧
⎪⎨

⎪⎩

1∣
∣Nt+1(vi

t)
∣
∣

(
vi+1, vi

t
) ∈ E, φ(vi+1) = t + 1

0
(
vi+1, vi

t
) ∈ E, φ(vi+1) �= t + 1

0
(
vi+1, vi

t
)

/∈ E
(1)

Wherein vi
t ∈ Vt and Nt+1(vi

t) denotes the neighbor-
hood of vi

t as well as being the (t + 1)th type of vertices,
φ(vi+1) represent the type of vertex vi+1. That is, the
walker will walk through the pre-defined multi-path W.
The strategy of the multi-path based random walk ensures
the four kinds of relationships can be the input of het-
erogeneous skip-gram model. One of the advantages of
multi-path random walk is that it can capture richer
structural correlations.

Given W ={v1 . . . vl} with length l, a multi-path guided
random walk, the vertex embedding function is denoted
by �(·). �(·) is learned by maximizing the probability,
which is the occurrence that the neighborhood vertices
of vi are within k window size conditioned on �(vi). The
objective function is shown in Eq. 2.

min
�

− log Pr({vi−k , . . . , vi+k}\vi|�(vi)) (2)

To effectively maximize the objective function, we
approximate the conditional probability by using the inde-
pendence assumption. The expression is in Eq. 3.
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Pr({vi−k , . . . , vi+k}\vi|�(vi)) =
i+k∏

j=i−k,j �=i
Pr(vj|�(vi))

(3)

Heterogeneous skip-gram is used to learn effective vertex
representations for a heterogeneous network by max-
imizing the probability of Pr(vj|�(vi)), it assumes the
probability of Pr(vj|�(vi)) is related to the type of
vertex vj

Pr(vj|�(vi)) = e�(vj)·�(vi)

∑
u∈V e�(u)·�(vi)

, vj ∈ Nt(v) (4)

wherein, Nt(v) denotes the neighborhood of v as well as
being the tth type of vertices.

We also used negative sampling to approximate the
objective function for efficient optimization.

Oij = − log Pr(vj|�(vi)) = log σ(�(vj) · �(vi))+
M∑

m=1
log σ(−�(vjm) · �(vi))

(5)

wherein σ(·) is the sigmoid function, and vjm is the mth

negative node sampled for node vj and M is the number
of negative samples. Parameters � and � are updated as
follows:

� = � − α
∂Oij

∂�
, � = � − α

∂Oij

∂�
(6)

Score and rank
After getting the vector representation of each pheno-
type and protein in the human gene-phenotype hetero-
geneous network, we then calculate the similarity of
every gene with the given phenotype. Given a gene g =
(x1, x2, . . . , xd) and a phenotype p = (y1, y2, . . . , yd),
we measure the similarity between two vectors using
the cosine similarity between the normalized vec-
tors. The calculation formula of similarity is shown
in Eq. 7.

sim(g, p) =

d∑

n=1
xn ∗ yn

√
d∑

n=1
x2

n ∗
√

d∑

n=1
y2

n

(7)

After calculating the similarity of every protein in the
human gene-phenotype heterogeneous network with the
target phenotype, the similarity scores can be ranked in
order. Candidate genes are then prioritized. Algorithm 1
shows the whole process of Multipath2vec.

Algorithm 1 Multipath2vec
Require: GP−network G(V , E), walk per vertex t, walk

length l, embedding size d, g-p associations Sgp, a
multi-path scheme W, window size k;

Ensure: :candidate gene rank
1: Initialize vertex embeddings X ∈ R|V |×d

2: for each sgp ∈ Sgp do
3: G′ = G − sgp
4: for i = 0 → t do
5: for each vi ∈ V do
6: X=Heterogeneous-network-

embedding(G′, W , vi, l, X, R, k)
7: Sim = Cossim(X)

8: Rank(Sim)

9: end for
10: end for
11: end for
12:
13: Heterogeneous-network-

embedding(G′, W , vi, l, X, R, k)
14: R[ 0] = vi
15: for i = 0 → l − 1 do
16: draw u according to Eq.1
17: R[ i + 1] = u
18: end for
19: for i = 0 → l − 1 do
20: v =R[i]
21: for j = max(0, i − k) → min(i + k, l)&j �= i do
22: ct = R[ j]
23: update X according to Eq.6
24: end for
25: end for
26: return X
27:
28: Cossim(X)

29: for eachxg ∈ X do
30: Sim = sim(xg , xp) (according to Eq.7)
31: end for
32: return Sim

Results
In this section, we introduce the details about experimen-
tal data set, experiment settings, evaluation metrics, base-
line approaches and the analysis of experimental results.

Data sets
We access data sets from three different sources to gener-
ate the GP−network. The details of these three data sets
are described as below.

• PPI: We get Human PPI data from the Human
Protein Reference database (HPRD). HPRD is a
centralized platform which aims at presenting the
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integrate information about human proteome. The
information in HPRD has been extracted by
biologists manually. The data set we access from
HPRD includes 39,240 interactions among 9,590
human proteins/genes. We filter out the proteins
with self-interactions only. After filtering, a total of
8,756 human proteins were used in our experiments.

• Gene-phenotype associations: We achieve data of
gene-phenotype associations from Online Mendelian
Inheritance in Man (OMIM) database. OMIM is an
online catalog of human genes and genetic disorders,
which focuses on heritable genetic diseases. The data
in OMIM includes text information, related reference
information, sequence records, maps, and other
related databases. In the experiment, we extracted
925 gene-phenotype associations with 667
pathogenic genes and 775 disease phenotypes.

• Phenotype similarities: We get the phenotype
similarities data from pre-existing research results
published in 2006. Van et al.. studied OMIM data
base and calculated the similarities [37]. Their
research results are uploaded to the website
http://www.cmbi.ru.nl/MimMiner/. We use the
5080*5080 phenotype similarity matrix which is
calculated by cosine similarity between every two
phenotypes.

Experiment settings
Before generating the GP−network, we preprocess the
data and set some details in our experiment as follows.

1 Proteins with self-interactions only in the PPI data
set are filtered out.

2 In the gene network, we filtered those proteins that
are not in gene-phenotype network and also have no
links to proteins in the gene-phenotype network.
And in the phenotype network, we filtered those
phenotypes that are not in gene-phenotype network
and also have no links to phenotypes in the
gene-phenotype network. In the gene-phenotype
network, we filtered those gene-phenotype
associations which gene not in the gene network and
phenotype not in the phenotype network.

3 In the phenotype network, we connected two
phenotypes when their similarity scores are higher
than 0.6, which is considered to be reliable according
to previous studies [37].

Evaluation metrics
We used leave-one-out cross validation to verify results in
our experiments. Cross validation is also called loop esti-
mation sometimes and is usually used in statistics. It is
widely used in the verification of prediction issues. Cross
validation can be used to test whether a prediction model
is accurate in practical.

Leave-one-out cross validation
The first process of cross validation is to separate the
original data into two groups, i.e., training set and
testing set. Then we use the training set to train
the classifier. Finally, we use the testing set to eval-
uate the classifying quality of classifier. One of the
most common used method is leave-one-out cross
validation.

In leave-one-out cross validation, leave one sample as
testing set and the other samples as training set. We
use leave-one-out cross validation in this work since it is
suitable for small samples.

Precision
Precision is widely used to evaluate the accuracy of pre-
diction. There are four situations in the binary detection,
i.e., True Positive (TP), True Negative (TN), False Posi-
tive (FP), and False Negative (FN). Take Fig. 2 as example,
suppose there exist association between gene g10 and phe-
notype p8. If g10 − p8 is successfully predicted, then this
situation is counted as a TP. Since the failed prediction is
meaningless in this issue, we calculate precision to evalu-
ate the successful prediction rate. The calculation formula
is shown in Eq. 8.

Precision = TP
TP + FP

(8)

Baseline approaches
We use four methods as baseline approaches, i.e., CAT-
APULT, PRINCE, Deepwalk and Metapath2vec. We
describe the four baseline approaches in detail as below.

1 CATAPULT: CATAPULT [38] uses a biased SVM
framework and train a bagging support vector
machine classifier to classify the gene-phenotype
pairs. In CATAPULT, the similarities between
vertices can be evaluated by the length of different
paths. CATAPULT then uses supervised algorithms
to learn the coefficients of different paths.
Specifically, the features of gene-phenotype pairs are
represented by the number of paths with different
lengths in network shown as follows.

C =
(

NGG NGP
NPG NPP

)

(9)

wherein, NGG is the gene network, NGP is the
gene-phenotype network, NPG is the transposed
form of NGP , and NPP is the phenotype network. By
training a bagging classifier, CATAPULT learns the
weights of different paths. Then the unconnected
paths can be predicted. Considering the negative
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relationships between vertices do not exist indeed,
CATAPULT assumes that the unconnected links are
unlabeled and then randomly select some unlabeled
relationships as negative association. Therefore, the
sample of each SVM classifier are consist of all
positive relationships and randomly selected
unlabeled relationships. Then we can get a linear
classifier θt . The final results are calculated according
to the average value of multiple training models.

2 PRINCE: PRINCE is one of the classical algorithms
for dealing with this issue. The correlation between
the gene g and disease d is decided by two factors.
One is the correlation between neighbor genes of g
and the target disease d. The other one is the priori
knowledge of gene g. The optimal function of the
correlation between the g and disease F(g) is shown
as follows.

F(g) = α[
∑

q∈N(p)

wF(p, q)] +(1 − α)Y (p) (10)

Wherein, w is normalized form of the weight matrix
of the network and α is the parameter using to adjust
the weight of the two factors.

3 Deepwalk: Deepwalk is a network embedding
method which is usually used in homogeneous
network. Deepwalk learns low-dimensional feature
representations by using uniform random walks. It
generate random walks by treating nodes of different
types equally.

4 Metapath2vec: Metapath2vec is proposed for
heterogeneous networks. Metapath2vec presented
meta-path to guide random walk. Metapath2vec
generates paths through random walks based on
meta-path, which can capture rich correlations
between different types of vertices.

Experimental results analysis
We use leave-one-out cross validation to evaluate the
performance of our method Multipath2vec and four base-
line methods in the experiment. We set the experimental
parameters as follows.

1 The number of walks per vertex t : 500;
2 The walk length l : 100;
3 The vector dimension d : 128;
4 The neighborhood size k : 7;
5 The size of negative samples M: 5.

For CATAPULT, PRINCE, Deepwalk and Metap-
ath2vec, we follow the original settings in their previous
experiments. In Metapath2vec, we used meta-path "g −
p − g". The similarities are calculated through these five
approaches and then ranked in the descending order.
To better compare these five methods, we calculate the
accuracy of Top 1 as well as the lists of Top 5, Top 10, Top
30, Top 50, and Top 100.

Table 1 shows the overall performance of Multi-
path2vec, CATAPULT, PRINCE, Deepwalk and Metap-
ath2vec approaches on whole gene-phenotype data. We
can see that Multipath2vec successfully predicted 317
pathogenic genes at the Top 1 list, whereas CATAPULT,
PRINCE, Deepwalk and Metapath2vec successfully pre-
dicted 46, 203, 285 and 96 pathogenic genes respectively.
As for the Top 5 list, Multipath2vec achieved higher
performance with successfully predicting 693 pathogenic
genes. Deepwalk predicted 565. Metapath2vec predicted
121. PRINCE predicted 403 and CATAPULT only pre-
dicted 57.

As for the single-gene gene-phenotype data, the experi-
mental results are shown in Table 2. We can see that Mul-
tipath2vec outperforms the other two algorithms. CAT-
APULT performed worst on single-gene gene-phenotype
data. The reason may be that CATAPULT trains a bag-
ging classifier by learning the weights of different paths
,but there is only one connected path between target
gene and phenotype in single gene data. So we focus
on the comparison of Multipath2vec, PRINCE, Deepwalk
and Metapath2vec. Multipath2vec successfully predicted
266 pathogenic genes at the Top 1 list, while PRINCE,
Deepwalk and Metapath2vec predicted 179, 242 and 48
respectively.

Moreover, we list the overall performance of these five
methods on many-genes gene-phenotype data in Table 3.
As shown in the Table 3, Multipath2vec still outperforms.

Table 1 The overall performance of Multipath2vec, CATAPULT, PRINCE, Deepwalk and Metapath2vec methods on whole
gene-phenotype data

Algorithm Multipath2vec CATAPULT PRINCE Deepwalk Metapath2vec

Top1 317/925 46/925 203/925 285/925 96/925

Top5 693/925 57/925 403/925 565/925 121/925

Top10 793/925 63/925 464/925 669/925 121/925

Top30 860/925 70/925 529/925 790/925 254/925

Top50 878/925 83/925 540/925 824/925 278/925

Top100 897/925 90/925 551/925 859/925 322/925
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Table 2 The overall performance of Multipath2vec, CATAPULT, PRINCE, Deepwalk and Metapath2vec methods on single-gene
gene-phenotype data

Algorithm Multipath2vec CATAPULT PRINCE Deepwalk Metapath2vec

Top1 266/702 0/702 179/702 242/702 48/702

Top5 532/702 0/702 307/702 491/702 48/702

Top10 606/702 1/702 353/702 538/702 48/702

Top30 651/702 5/702 405/702 596/702 102/702

Top50 662/702 16/702 411/702 618/702 110/702

Top100 678/702 23/702 417/702 644/702 137/702

We also calculate the precision values of these five
methods, which are shown in Figs. 3 and 4, respectively.
Figure 3 shows the precision values of the five methods
under the 6 different groups on single-genes, many-genes
and whole-genes gene-phenotype data, respectively. We
choose 6 groups of different sizes as mentioned above, i.e.,
Top 1, Top 5, Top 10, Top 30, Top 50, and Top 100. It
can be obviously seen from Fig. 3 that the precision val-
ues of Multipath2vec outperform CATAPULT, PRINCE,
Deepwalk and Metapath2vec.

Figure 4 shows the precision values of Multipath2vec,
CATAPULT, PRINCE, Deepwalk and Metapath2vec,
grouping by single-genes, many-genes and whole-genes
gene-phenotype data, respectively. In general, Multi-
path2vec outperforms the other four approaches. The
performance of Multipath2vec and Deepwalk are ahead of
the other baseline approaches. Deepwalk performs closely
with Multipath2vec but still cannot catch up with Multi-
path2vec. Wherein, CATAPULT performs worst so that it
cannot compare with Multipath2vec, PRINCE, Deepwalk
and Metapath2vec.

In summary, Multipath2vec can successfully predict
pathogenic genes with high accuracy. The experimental
results shows that Multipath2vec outperformed baseline
approaches in all perspectives. Therefore, Multipath2vec
is able to be used in predicting pathogenic genes.

Discussion
Robustness of false negative
In our experiment, we used precision to evaluate the accu-
racy of prediction. In each round of leave-one-out cross
validation, if the cut link between the target gene and

phenotype is successfully predicted, then this situation is
counted as a TP. And we can also regard this situation as
a TN because the negative is successfully predicted as a
negative. So the number of TP is equal to the number of
TN and the number of FP is equal to the number of FN.
Our method perform well in the accuracy of prediction,
so it is also robust to false negative.

Conclusion
The study of pathogenic genes plays an important role in
revealing the pathogenesis of diseases as well as devel-
oping corresponding disease prevention and diagnosis
methods. The key to deciphering the molecular and
genetic basis of human disease is to analyze the cor-
relation between diseases and genes. In this paper, we
propose the Multipath2vec algorithm which is based
on network embedding to predict pathogenic genes.
The multi-path in Multipath2vec are designed to guide
random walk in the human gene-phenotype heteroge-
neous network. The multi-path based random walk can
better represent the network. The experimental results
show that Multipath2vec outperforms four baseline meth-
ods from several perspectives. By implementing these
three approaches on single-gene gene-phenotype data,
many-genes gene-phenotype data and whole-genes gene-
phenotype data, Multipath2vec showed the outstanding
performance in prediction of pathogenic genes. By calcu-
lating the precision values of these five methods, Multi-
path2vec still outperforms under all circumstances. This
fact illustrates the possibility of applying heterogeneous
network embedding approach in prediction of pathogenic
genes.

Table 3 The overall performance of Multipath2vec, CATAPULT, PRINCE, Deepwalk and Metapath2vec methods on many-genes
gene-phenotype data

Algorithm Multipath2vec CATAPULT PRINCE Deepwalk Metapath2vec

Top1 51/223 46/223 24/223 43/223 48/223

Top5 161/223 57/223 96/223 74/223 73/223

Top10 187/223 62/223 111/223 131/223 73/223

Top30 209/223 65/223 124/223 194/223 152/223

Top50 216/223 67/223 129/223 206/223 168/223

Top100 219/223 67/223 134/223 215/223 185/223
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Fig. 3 The precision values of Multipath2vec, CATAPULT, PRINCE, Deepwalk and Metapath2vec, grouping by Top 1, 10, 30, 50, 100 on whole-genes
gene-phenotype data,one-gene gene-phenotype data and many-genes gene-phenotype data,respectively
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Fig. 4 The precision values of Multipath2vec, CATAPULT, PRINCE, Deepwalk and Metapath2vec on Top 1,Top 5,Top 10,Top 30,Top 50 and Top 100
evaluation, grouping by whole-genes, single-genes, and many-genes gene-phenotype data, respectively
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