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Abstract: The aim of this retrospective clinical study was to determine if there is a reduction in the
overall treatment duration in orthodontic patients using low-intensity pulsed ultrasound (LIPUS)
and Invisalign SmartTrack®clear aligners. Data were collected from the first thirty-four patients
(9 males, 25 females; average age 41.37 ± 15.02) who finished their orthodontic treatment using an
intraoral LIPUS device and Invisalign clear aligners in a private clinic. The LIPUS parameters used
by patients at home for 20 min/day were: ultrasonic frequency 1.5 MHz, pulse duration 200 µs,
pulse repetition rate 1 kHz, and spatial average-temporal average intensity 30mW/cm2. A control
group (11 males, 23 females; average age 31.36 ± 14.41) matching for the same malocclusions was
randomly selected from finished treatment cases of the same clinician. The date of first Invisalign
attachment placement and first use of LIPUS application was recorded as T0, and the date of retainer
delivery was recorded as T1. The treatment duration (T1–T0) and treatment reduction percentage
with LIPUS device were collected and analyzed using two-sample t-test in Microsoft Excel. Treatment
duration was significantly reduced in the LIPUS group (541.44 ± 192.23 days) compared to control
group (1061.05 ± 455.64 days) (p < 0.05). The LIPUS group showed on average 49% reduction in the
overall treatment time as compared to the control group. The average compliance of the patients
using LIPUS was 66.02%. Patients who used LIPUS showed a clinically significant reduction in the
overall orthodontic treatment duration compared to the control group who used Invisalign clear
aligners only.

Keywords: orthodontic tooth movement; non-invasive therapy; low intensity pulsed ultrasound;
LIPUS; clear aligners

1. Introduction

Malocclusion is defined as misalignment of teeth and/or jaws in any or all the three dimensions
of space. It can cause abnormal wear of tooth surfaces, difficulty in speaking and chewing, strain
on the supporting alveolar bone and gums, and possible temporomandibular joint dysfunction [1].
Tooth roots are covered by special mineralized tissue cementum that is connected to the alveolar bone
through the surrounding highly vascularized soft connective tissue, the periodontal ligament (PDL) [2].
Unlike the physiological tooth movement, orthodontic tooth movement (OTM) is a complex process of
bone remodeling that occurs in response to the externally applied mechanical forces through wires
and brackets or clear aligners [3]. Different types of bone cells are within the alveolar bone, including
osteoblasts, osteoclasts, osteocytes, and bone lining cells [4].
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OTM was first described as the “Pressure–Tension” theory by Oppenheim [5] and Schwarz [6].
During the OTM, the side towards which the tooth is moving is the pressure side, while the opposite
side is the tension side. The compression of blood vessels in PDL on the pressure side leads to
decreased nutrient flow, stenosis, and formation of necrotic tissue [7,8]. This inflammatory process
causes migration of phagocytic cells, like macrophages, giant cells, and osteoclasts, which further leads
to bone resorption on the pressure side of PDL. Bone resorption at the bone and PDL interface is the
rate-limiting factor for OTM [9]. An important factor in the orthodontic practice success is to precisely
or approximately estimate the treatment duration. With an increasing number of adult patients seeking
orthodontic treatment, where the OTM is known to be slower than in adolescents, the research and
innovation in the orthodontic field lead to modification in treatment protocols. For example, change in
orthodontic biomechanics by using low friction/frictionless orthodontic techniques, and development
of various techniques to accelerate OTM, including pharmacological agents (e.g., parathyroid hormone,
Vitamin D3, Prostaglandins) [10], magnetic fields [11], corticotomy [12], distraction osteogenesis [13],
low-level laser [14], and mechanical vibration [15].

Low-intensity pulsed ultrasound (LIPUS) is one of the non-invasive, non-pharmacological
methods to accelerate OTM that has been used in the medical field for over six decades as in sports
medicine, myofunctional therapy, joint stiffness reduction, increase muscle mobility, and healing of
non-healing bone fractures [16]. It is a form of acoustic pressure wave which, when it passes through
the living tissues, causes micromechanical strain, resulting in cascades of molecular events [17]. In the
previous in-vitro, animals, and human studies, LIPUS has shown to minimize orthodontically induced
tooth root resorption (OITRR), accelerate orthodontic tooth movement, and increased expression
of collagen 1 (Col1), alkaline phosphatase (ALP), osteoprotegerin (OPG), and receptor activator of
nuclear factor-kappa β-ligand (RANK-L) [2,18–23]. The aim of this retrospective study was to analyze
the overall treatment duration and percentage treatment reduction if any in the patients using a
commercially available LIPUS system for intraoral use with Invisalign clear aligners and compare
these variables with patients who were treated by Invisalign clear aligners only.

2. Methods

2.1. Study Design

This retrospective clinical study has been approved by the Human Research Ethics Board at the
University of Alberta, Canada (Protocol number Pro00032422). The data of the first thirty-four patients
(9 males, 25 females; average age 41.37 ± 15.02) who completed their orthodontic treatment with LIPUS
intraoral device concurrent to using Invisalign clear aligners in a private clinic was collected and
analyzed. The same orthodontist performed all the orthodontic procedures. A control group (11 males,
23 females; average age 31.36 ± 14.41) matching for the same malocclusion to the LIPUS group was
randomly selected from the clinic’s finished treatment cases. The following inclusion criteria were
applied:

1. Good oral hygiene
2. Full permanent dentition
3. Patients with no medical history
4. Patients with no history of medication
5. Non-pregnant women
6. Patients undergoing orthodontic treatment with clear aligners only

No other additional criteria were applied while selecting the control group, other than the finished
cases with the type of malocclusion. All cases were treated by non-extraction treatment Informed
consent was signed by all the patients and/or guardians to use their data for research purposes. All the
patients were treated by Invisalign SmartTrack® (Align Technology, Santa Clara, CA, USA) clear
aligners programmed at the default aligner rate of tooth movement of 0.25 mm maximum per aligner.
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All the patients were given instructions on how to place and remove their aligners from the mouth.
They were instructed to wear their aligners for 20–22 h per day and to change the aligners as soon as
they become loose.

2.2. LIPUS Device

LIPUS was applied using the Aevo System (SmileSonica Inc., Edmonton, AB, Canada). The LIPUS
parameters were as follows: ultrasonic frequency 1.5 MHz, pulse duration 200µs, pulse repetition rate 1
kHz, and spatial average-temporal average intensity 30mW/cm2. It is a non-invasive, battery-powered,
portable, and intended to be used for 20 min/day at home. The device consists of three main components
(Figure 1).
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Figure 1. Low-intensity pulsed ultrasound (LIPUS) device (Aevo System). (A): Handheld electronics;
(B): mouthpieces; and (C): ultrasound coupling gel.

A: Handheld electronics: It controls LIPUS treatment delivery and provides information regarding
treatment procedure and status. It is powered by a rechargeable battery. The information displayed
on the screen includes the current status of the device, remaining treatment time, battery charge
level, and current date and time. It also maintains a complete record of treatment parameters.

B: Mouthpieces: The device has two mouthpieces, one for the mandible arch treatment and the
other for the maxilla arch treatment. Each mouthpiece is similar to a mouthguard and consists
of 10 ultrasound emitters set inside a flexible biocompatible encapsulation. All the internal
components are hermetically sealed to prevent contact with saliva. The mouthpiece is attached to
the handheld electronics with a cable.

C: Ultrasound coupling gel: A tasteless gel provided in single use pouches is applied to the inner
walls of the mouthpiece before the start of each treatment. Patients were instructed to apply a
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thin layer so that LIPUS can be properly transmitted from the mouthpiece through gums to the
alveolar bone surrounding the teeth roots.

2.3. Data Collection

General data, such as age, gender, type of malocclusion, and start and finish date of the orthodontic
treatment with Invisalign, were collected. The date of first Invisalign attachment placement and
first application of LIPUS was recorded as T0, and the date of Invisalign attachment removal was
recorded as T1. The treatment duration, i.e., T1–T0, average number of days per tray were collected
and analyzed, and overall treatment reduction percentage was calculated.

Overall treatment reduction percentage =
{

Average treatment daysControl −Average treatment daysLIPUS
Average treatment days Control

}
× 100

2.4. Statistical Analysis

Descriptive statistics (Mean and Standard Deviation) were calculated for all the collected variables
in both the groups. Statistical comparison with Student’s t-test for independent samples were performed
on T1–T0 treatment duration and on the average number of days per tray. All the statistical analyses
were performed using Microsoft Excel 2016, with p-value less than 0.05 being considered significant.

3. Results

3.1. Subjects

Subjects: From the thirty-four patients group treated with LIPUS device, there were 9 males and
25 females. The average age of the LIPUS treated group was 41.37 ± 15.02 (minimum 16 years 4 months
and maximum of 72 years). In the control group, there were 11 males and 23 females. The average age
of the control group was 31.36 ± 14.41 (minimum 15 years and maximum 64 years and 6 months).

The number of patients in each class of malocclusion is presented in Table 1.

Table 1. The number of patients in each class of malocclusion.

Control LIPUS

Class I 7 7

Class II 13 13

Class III 14 14

3.2. Number of Days per Tray

Patients treated with LIPUS device (6.02 ± 1.49) showed a significant difference in the number of
days per tray worn as compared to the control group (10.81 ± 3.31) (p < 0.05) (Figure 2). Figure 3 depicts
the number of days per tray for each malocclusion, and the difference was statistically significant in
each type of malocclusion.
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3.3. Treatment Duration

The treatment duration was significantly reduced in the LIPUS treated patients (541.44 ± 192.23
days) as compared to the control group (1061.05 ± 455.64 days) (p < 0.05) (Figure 4), and the difference
was statistically significant in each malocclusion (p < 0.05) (Figure 5).
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Figure 5. Average treatment duration in Class I, Class II and Class III malocclusion (*p < 0.05).

All in all, the patients treated with LIPUS during their orthodontic treatment with Invisalign
showed a 49% reduction in the overall treatment time as compared to the patients undergoing
orthodontic treatment with Invisalign alone. The patient average compliance using the Aevo System
was 66.02% according to the internal microchip built into the Aevo System that records every time the
patient uses Aevo System. [23].
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4. Discussion

With an increase in the number of adult patients for orthodontic treatment and interest in
accelerating tooth movement to shorten the treatment duration, many technologies have been
developed and many are still in the research and development phase.

LIPUS is one such form of non-invasive technology that has been used in the medical field for
over six decades. In the dental field, it has demonstrated significant acceleration of orthodontic tooth
movement and reduction of orthodontically induced tooth root resorption in both animal and human
studies [21,22,24]. In a prospective multi-center randomized controlled clinical trial [23], the rate of
tooth movement increased on average by 29%. The current retrospective clinical study analyzed the
effect of LIPUS on the orthodontic treatment time reduction using Invisalign clear aligners. The results
showed that patients using LIPUS system during orthodontic treatment were able to shorten the
overall treatment duration on average by 49% as compared with the control group, while the average
compliance using the LIPUS system was 66.02%. The difference between the two studies could be
explained by that in the multicenter clinical trial [23], orthodontic treatment was performed using
fixed orthodontic appliances by 5 different clinicians; however, in the current study, treatment was
performed by one orthodontist only using clear aligners.

OTM is a bone remodeling process in which there is an interplay of different cell types, such
as osteoblasts, osteoclasts, and osteocytes. Bone resorption, caused by activation of osteoclast, is
regulated by tumor necrosis factor (TNF) receptor-ligand family which includes OPG, receptor
activator of nuclear factor kappa-β (RANK), and RANK-ligand (RANK-L). During mechanical stress
application in the form of orthodontic force, the osteocytes release RANK-L, which binds with
RANK, stimulating pre-osteoblast fusion, osteoclast differentiation, proliferation, and survival [25–27].
OPG is a soluble decoy receptor that prevents the binding of RANK-L to RANK, hence inhibiting
osteoclast formation [28]. RANK-L and OPG are important in regulating bone remodeling during tooth
movement [29]. Furthermore, vascular endothelial growth factor (VEGF) is increased during OTM,
which prevents apoptosis of osteoblasts, stimulates osteoprogenitor cell recruitment, and promotes
mineralized nodule formation and release of ALP [30,31]. Several factors affect the OTM, including
magnitude of orthodontic force, type of tooth movement, and general and periodontal health of the
patient [32,33]. With an increasing number of patients from all age groups, orthodontists need to look
at different treatment modalities for more efficient and safer treatment, in addition to applying lower
forces for OTM [34]. The accelerated rate of tooth movement in this study could be due to the fact that
LIPUS induces strain affecting mechanosensitive receptors, such as integrins, stretch-activated channels
on the cell membrane [35]. These receptors further initiate the cascade of cellular and molecular events
in the cell known as mechanotransduction. Several cellular signaling pathways, like focal adhesion
kinase (FAK) [36], mitogen-activated protein kinase (MAPK) [37], and Rho pathways [38], have shown
to be activated in the in-vitro studies with LIPUS application. Through these mechanisms, LIPUS has
shown to enhance bone formation and osteoblast differentiation in fracture healing cases. It has also
shown to promote angiogenesis by upregulating VEGF expression in human osteoblasts [39], in wound
healing [40], early osteogenesis by upregulating insulin-like growth factor which mediates osterix
expression [41,42], and increased expression of osteogenic markers, i.e., collagen I [43], osteocalcin [44],
osteopontin, and bone sialoprotein [45,46]. LIPUS increases the proliferation of osteoprogenitor
cells with increased expression of bone morphogenetic protein 2 (BMP-2), BMP-7, and runt-related
transcription factor (Runx2) [39,47,48]. Runx2 is a transcription factor for osteoblast differentiation
from mesenchymal stem cells. A study by Xue et al. [24] showed increased alveolar bone remodeling
by increasing expression of Runx2 and BMP-2 in rat orthodontic model, hence increasing OTM velocity.

It seems that the mechanism of acceleration of OTM by LIPUS has similarities to other
accelerating techniques, such as laser, high frequency vibration, and corticotomy, that work through
the RANK-RANKL pathway. This may warrant further investigation to compare all techniques in
this regard.
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Although LIPUS has proved to increase osteogenic markers expression in many studies, it has
also shown to regulate osteoclast differentiation through OPG/RANK-L expression. LIPUS at the
intensity of 100 and 150 mW/cm2 showed a decrease in osteoclast number and activity, and an increase
in OPG/RANK-L expression in rats treated with LIPUS [49]. In another study [50], RANK-L gene
expression was most profound during the third week of LIPUS application; on the other hand, OPG
expression remained constant throughout three weeks in murine osteoblast cell culture. This implies
that LIPUS enhances osteoclastogenesis during bone regeneration. In a study by Feres et al. [51], LIPUS
showed increase osteoclasts activity in the absence of osteoblasts. These findings support the result of
our current retrospective study that on the compression side of orthodontic force application, LIPUS
enhances osteoclastic activity while on the tension side, LIPUS accelerates the osteoblastic activity and
enhanced bone regeneration, hence accelerating tooth movement and it is safe [52,53]

Another advantage of using LIPUS during orthodontic treatment is the preventive effect on root
resorption. Although in the current study we did not analyze the effect of LIPUS on root resorption,
previous clinical studies [21–23], however, showed a decrease of orthodontically induced tooth root
resorption using the same LIPUS treatment parameters.

The current retrospective study is overcoming few of the limitations that were encountered in a
previous clinical trial [23], specifically the small patient number included in the split mouth design
(21 data pairs from 21 split-mouth patients) and the fact that the effect of LIPUS was only studied
during gap closure in Class II malocclusion patients requiring first premolar extraction. The current
study extends the knowledge to all classes of malocclusions, uses a larger number of subjects (34 active
and 34 control patients), and looks at the overall treatment duration.

5. Conclusions

In the current study, patients treated with LIPUS treatment showed faster tooth movement and
reduction in the overall treatment time on average by 49%, while the average compliance using the
LIPUS device was 66.02%. This study demonstrated the use of LIPUS through the Aevo System during
orthodontic treatment using clear aligners significantly reduced the overall treatment duration.
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