metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

{2,6-Bis[(2,6-diisopropylphosphanyl)oxy]-4-fluorophenyl- $\kappa^{3}P$, C^{1} ,P'}(1*H*-pyrazole- κN^{2})nickel(II) hexafluorophosphate

Man-Lung Kwan,^a Sara J. Conry,^a Charles S. Carfagna,^a Loren P. Press,^b Oleg V. Ozerov,^b Norris W. Hoffman^c and Richard E. Sykora^c*

^aDepartment of Chemistry, John Carroll University, University Heights, OH 44118, USA, ^bDepartment of Chemistry, Texas A&M University, College Station, TX 77843, USA, and ^cDepartment of Chemistry, University of South Alabama, Mobile, AL 36688, USA

Correspondence e-mail: rsykora@southalabama.edu

Received 10 September 2012; accepted 13 September 2012

Key indicators: single-crystal X-ray study; T = 290 K; mean σ (C–C) = 0.005 Å; R factor = 0.037; wR factor = 0.100; data-to-parameter ratio = 15.8.

The title compound, $[Ni(C_{18}H_{30}FO_2P_2)(C_3H_4N_2)]PF_6$, was prepared by halide abstraction with TlPF₆ in the presence of CH₃CN in CDCl₃ from the respective neutral pincer chlorido analogue followed by addition of pyrazole. The PO-C-OP pincer ligand acts in typical *trans*-P₂ tridentate fashion to generate a distorted square-planar nickel structure. The Ni-N(pyrazole) distance is 1.925 (2) Å and the plane of the pyrazole ligand is rotated 56.2 (1)° relative to the approximate square plane surrounding the Ni^{II} center in which the pyrazole is bound to the Ni^{II} atom through its *sp*²-hybridized N atom. This Ni-N distance is similar to bond lengths in the other reported Ni^{II} pincer-ligand square-planar pyrazole complex structures; however, its dihedral angle is significantly larger than any of those for the latter set of pyrazole complexes.

Related literature

For recent studies on the chemistry of *d*-block PO-C-OP pincer complexes, see Chen *et al.* (2012); Zhang *et al.* (2012); Salah & Zargarian (2011); Hoffman *et al.* (2009); Wicker *et al.* (2011). For structures of other Ni^{II} pincer-ligand square-planar pyrazole complexes, see Salem *et al.* (2007, 2008); Peng *et al.* (2010). For information regarding the ¹⁹F NMR reference, see: Ji *et al.* (2005).

Experimental

Crystal data

 $[\text{Ni}(\text{C}_{18}\text{H}_{30}\text{FO}_2\text{P}_2)(\text{C}_3\text{H}_4\text{N}_2)]\text{PF}_6$ $M_r = 631.12$ Monoclinic, $P2_1/n$ a = 9.0380 (9) Å b = 20.1878 (16) Å c = 16.1480 (16) Å $\beta = 98.659$ (8)°

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.265, T_{max} = 0.315$ 5464 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ 325 para

 $wR(F^2) = 0.100$ H-atom

 S = 1.00 $\Delta \rho_{max} =$

 5122 reflections
 $\Delta \rho_{min} =$

Z = 4 Mo K α radiation μ = 0.90 mm⁻¹ T = 290 K 0.58 × 0.52 × 0.34 mm

V = 2912.7 (5) Å³

5122 independent reflections 3432 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ 3 standard reflections every 120 min intensity decay: none

Data collection: *CAD-4-PC* (Enraf–Nonius, 1993); cell refinement: *CAD-4-PC*; data reduction: *XCAD4-PC* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The authors gratefully acknowledge the Department of Chemistry and the University Committee for Undergraduate Research at the University of South Alabama for their generous support and the Department of Energy and Oak Ridge National Laboratory for the X-ray diffractometer used in these studies. They also appreciate support from the National Science Foundation: grant #CHE-99–09502, REU Supplement with Alan Marshall of Florida State University/ National High Magnetic Field Laboratory, Tallahassee, FL, USA and grant CHE-0846680, NSF CAREER grant to RES.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5249).

References

- Chen, T., Yang, L., Li, L. & Huang, K.-W. (2012). *Tetrahedron*, 68, 6152–6157.
 Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* 42, 339–341.
- Enraf-Nonius (1993). CAD-4-PC Software. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Hoffman, N. W., Stenson, A. C., Sykora, R. E., Traylor, R. K., Wicker, B. F., Riley, S., Dixon, D. A., Marshall, A. G., Kwan, M.-L. & Schroder, P. (2009). Abstracts, Central Regional Meeting, American Chemical Society, Cleveland, OH, United States, May 20–23, CRM-213.
- Ji, S., Hoye, T. R. & Macasko, C. W. (2005). Macromolecules, 38, 4679-4686.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

- Peng, Q.-L., Zhao, G.-Q., Chen, L.-H. & Xue, L.-W. (2010). Acta Cryst. E66, m1127-m1128.
- Salah, A. B. & Zargarian, D. (2011). Dalton Trans. 40, 8977-8985.
- Salem, N. M. H., El-Sayed, L., Foro, S., Haase, W. & Iskander, M. F. (2007). Polyhedron, 26, 4161–4172.
- Salem, N. M. H., El-Sayed, L. & Iskander, M. F. (2008). Polyhedron, 27, 3215-3226.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wicker, B. F., Seaman, R., Hoffman, N. W., Davis, J. H. & Sykora, R. E. (2011). *Acta Cryst.* E67, m286–m287.
- Zhang, J., Adhikary, A., King, K. M., Krause, J. A. & Guan, H. (2012). Dalton Trans. 41, 7959–7968.

supplementary materials

Acta Cryst. (2012). E68, m1282-m1283 [doi:10.1107/S1600536812039207]

{2,6-Bis[(2,6-diisopropylphosphanyl)oxy]-4-fluorophenyl- $\kappa^{3}P$, C^{1} ,P'}(1*H*-pyrazole- κN^{2})nickel(II) hexafluorophosphate

Man-Lung Kwan, Sara J. Conry, Charles S. Carfagna, Loren P. Press, Oleg V. Ozerov, Norris W. Hoffman and Richard E. Sykora

Comment

Considerable attention has recently been devoted to nickel PO—C—OP pincer complexes (e.g., Salah & Zargarian, 2011; Chen et al., 2012; Zhang et al., 2012). Our interest in studying relative binding affinities of metal centers for ligands of moderate donor power using ¹⁹F and ³¹P NMR spectroscopy (Hoffman et al., 2009) to monitor ligand-substitution equilibria led us to prepare the title complex (I). The fluoro-pincer ligand precursor was generated by heating 5-fluororesorcinol and diisopropylchlorophosphine in THF in the presence of triethylamine, and then anhydrous NiCl₂ was added to form the (PO—C—OP)NiCl complex. Chloride abstraction with $TlPF_6$ in the presence of CH₃CN from this species followed by addition of pyrazole afforded an excellent yield of the cationic complex whose structure is shown below in Fig 1. Suitable single crystals were grown via vapor diffusion of methyl tert-butyl ether into a CDCl₃ solution of the highly soluble reaction product at room temperature. Its Ni-N distance, 1.925 (2) Å, fell within the range of such values for the five square-planar Ni^{II}-pincer unsubstituted-pyrazole complexes found in the Cambridge Structural Database (Salem et al. (2008), Peng et al. (2010), and Salem et al. (2007)). However, its pyrazole-ring/Ni-coordination-plane dihedral angle, $56.2(1)^\circ$, falls significantly outside the range $(3-28^\circ)$ of those for the latter set of pyrazole complexes, in which none of the pendant-ligand arms exert meaningful steric force upon the pyrazole position. The C-F bond length for this complex, 1.355 (4) Å, is identical within experimental error to that, 1.357 (3) Å, of $Pd\{(3-2,6-[(C_6H_3)_2PO]_2-(C_6H_3)_2PO\}$ $C_6H_2-4-F_1(C_4H_4NO_4S)$, a Pd(II) acesultamato complex containing a similar fluoro-pincer ligand (Wicker *et al.*, 2011). Detailed lists of dimensions are available in the archived CIF.

Experimental

The first step entailed generating a neutral nickel(II) halido pincer complex, abbreviated as $Pr\{Ni_F\}Cl$. An anhydrous solution of 5-fluororesorcinol (330 mg, 2.58 mmol) in THF was prepared in a 100-ml Kontes Teflon screw-cap flask inside a glovebox. To this solution was added *via* syringe 1.50 ml NEt₃ (10.77 mmol) followed by 850 μ L of ClPPrⁱ₂ (5.34 mmol); immediately a large volume of white precipitate formed. The flask was brought out of the glovebox and heated for 20 minutes at 80 °C; thereafter the flask was returned to the glovebox, where 0.57 grams of anhydrous NiCl₂ (4.40 mmol) was added to afford an orange mixture. After 24 h under heavy stirring at 80 °C, the resulting green-yellow mixture was filtered through a plug of Celite and concentrated under vacuum. This solution was layered with pentane and left overnight in a -30 °C freezer to give dark yellow-brown crystals of Pr{Ni_F}Cl (608 mg, 52% yield).

Complex I, $[Ni(C_3H_2N_2)(C_{12}H_{16}FO_2P_2)]PF_6$, abbreviated as $Pr\{Ni_F\}(Pz)]PF_6$, was prepared as follows. $Pr\{Ni_F\}Cl$ (32.4 mg, 0.0799 mmol) was stirred at ambient temperature for 24 h with TlPF₆ (Strem Chemicals; 1.15 mol equiv.) in CDCl₃ (Cambridge Isotopes Lab; 1.25 ml) to which 25 μL CH₃CN (Fisher reagent) had been added. The resulting mixture was

filtered to remove insoluble TICl and excess TIPF₆. To the resulting yellow-orange solution of $Pr{Ni_F}(CH_3CN)]PF_6$ was added a slight excess of solid pyrazole (Aldrich; 5.7 mg), and the reaction solution was stirred one hour. Then it was subjected to vapor diffusion with 30 ml me thyl *tert*-butyl ether (MTBE; Fisher reagent) at 22 °C for 3 days. The very pale yellow liquid of the resulting mixture was removed from the vial by a small-diameter syringe needle, and the rodlike orange crystals were washed twice with 1.5 ml of MTBE, removed from the vial, and then air-dried overnight in the dark (91% yield). The complex was characterized by NMR at 24 °C in CDCl₃. Unusual features of the spectra are discussed below the data tabulation.

¹H: (relative to internal TMS) δ 11.66 (broad singlet, 0.74 H); δ 8.07 (overlapping doublet of doublets, 1H); δ 7.64 (overlapping doublet of doublets, 1H); δ 6.58 (2*H*, doublet, ³J_{F-H}=9.6 Hz) δ 2.34 (4*H*, septuplet, ³J_{H-H}=7.1 Hz); δ 1.35 (overlapping inequivalent triplets, 12H); δ 1.08 (overlapping inequivalent triplets, 12H)

¹⁹F: (relative to internal C₆H₅CF₃ at δ -63.00; (Ji *et al.*, 2005)) aryl-F at δ -109.41 (triplet of triplets, ³J_{H-F}=9.6 Hz, ⁵J_{P-F}=1.0 Hz) and counterion PF₆⁻ at δ -72.28 (doublet, ²J_{P-F}=713 Hz)

³¹P: (relative to external 85% aq. phosphoric acid) pincer-P at δ 190.31 (doublet, ⁵J_{P-F}=1.0 Hz) and counterion PF₆⁻ at δ -143.79 (septuplet, ²J_{P-F}=713 Hz)

¹³C: (relative to internal TMS)

Pyrazole: δ 108.59(*s*), δ 135.21(*s*), δ 141.43(*s*).

Pincer Aryl: *ipso* δ 115.49(t of d; ⁴J_{F-C}=2.9 Hz, ²J_{P-C}=21 Hz) *ortho* δ 168.55 (d of t; ³J_{F-C}=15 Hz, ²J_{P-C}~7.4 Hz) *meta* δ 94.89(d of t; ²J_{F-C}=33 Hz, ⁴J_{P-C}~6.6 Hz) *para* δ 165.16 (d; ¹J_{F-C}=246 Hz Prⁱ₂P: methyne, δ 27.66(t; ¹J_{P-C}=11 Hz) methyls δ 16.58(t; ²J_{P-C}=11 Hz), δ 16.41(*s*)

Integrals recorded for ¹H signals of $Pr{Ni_F}(Pz)]PF_6$ match expected values except for the low-field pyrazole N—H resonance in which strong hydrogen-bonding to the hexafluorophosphate counterion is likely. Overlap of ¹H triplets for the inequivalent isopropyl methyl groups created by different rotation rates around the Ni—Pz, P—C, and C—C bonds affords pseudo-quartets centered at δ 1.35 and δ 1.08 (Fig. 2). The same rotational phenomena generate a more unusual ¹³C-NMR methyls pattern (Fig. 3), in which a triplet at δ 16.58 (²J_P_{-C}=11 Hz) and singlet at δ 16.41 (no measurable P—C coupling observed) of equal intensity appear. Recording the ¹³C-NMR spectrum with longer relaxation delay (4 s *versus* 1 s) or at 44 °C affords no change in this pattern.

Refinement

Hydrogen atoms were placed in calculated positions and allowed to ride during subsequent refinement, with $U_{iso}(H) = 1.2U_{eq}(C)$ and C—H distances of 0.93 Å for the H atoms on the pyrazole carbons, $U_{iso}(H) = 1.2U_{eq}(N)$ and an N—H distance of 0.86 Å for the H atom on the pyrazole N, $U_{iso}(H) = 1.2U_{eq}(C)$ and C—H distances of 0.98 Å for the H atoms on the tertiary carbons, and $U_{iso}(H) = 1.5U_{eq}(C)$ and C—H distances of 0.96 Å for the methyl H atoms.

Computing details

Data collection: *CAD-4-PC* (Enraf–Nonius, 1993); cell refinement: *CAD-4-PC* (Enraf–Nonius, 1993); data reduction: *XCAD4-PC* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *publCIF* (Westrip, 2010).

A thermal ellipsoid plot (50%) of the title compound showing the labeling scheme.

Figure 2

 $^1\mathrm{H}$ NMR spectrum of the title compound at 23 °C.

Figure 3

¹³C NMR spectrum of the title compound at 23 °C.

{2,6-Bis[(2,6-diisopropylphosphanyl)oxy]-4-fluorophenyl- $\kappa^3 P, C^1, P'$ }(1*H*-pyrazole- κN^2)nickel(II)

hexafluorophosphate

Crystal data

$[N_1(C_1,H_2,FO_2P_2)(C_2H_4N_2)]PF_{\epsilon}$	F(000) = 1304
$M_r = 631.12$	$D_{\rm x} = 1.439 {\rm Mg m^{-3}}$
Monoclinic, $P2_1/n$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 25 reflections
a = 9.0380 (9) Å	$\theta = 9.5 - 13.0^{\circ}$
b = 20.1878 (16) Å	$\mu = 0.90 \text{ mm}^{-1}$
c = 16.1480 (16) Å	T = 290 K
$\beta = 98.659 \ (8)^{\circ}$	Prism, yellow
V = 2912.7 (5) Å ³	$0.58 \times 0.52 \times 0.34$ mm
Z = 4	

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\theta/2\theta$ scans Absorption correction: ψ scan (North <i>et al.</i> , 1968) $T_{\min} = 0.265, T_{\max} = 0.315$ 5464 measured reflections	5122 independent reflections 3432 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = 0 \rightarrow 10$ $k = 0 \rightarrow 23$ $I = -19 \rightarrow 18$ 3 standard reflections every 120 min intensity decay: none
Refinement	
Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.037$ wR(F ²) = 0.100	Hydrogen site location: inferred from neighbouring sites
S = 1.00	H-atom parameters constrained
5122 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0436P)^2 + 0.9656P]$
325 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.22 \ { m e} \ { m \AA}^{-3}$

Special details

direct methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ni1	0.32898 (5)	0.127947 (18)	0.28825 (2)	0.04161 (12)	
P1	0.23694 (10)	0.18930 (4)	0.37905 (6)	0.0479 (2)	
P2	0.39378 (11)	0.04384 (4)	0.21782 (5)	0.0479 (2)	
P3	0.20240 (11)	0.13469 (5)	0.89133 (6)	0.0559 (2)	
01	0.1773 (3)	0.13751 (11)	0.44521 (15)	0.0617 (7)	
O2	0.3652 (3)	-0.02228 (10)	0.27213 (14)	0.0609 (7)	
N1	0.3831 (3)	0.19614 (12)	0.21502 (16)	0.0446 (6)	
N2	0.4812 (3)	0.24504 (14)	0.23638 (18)	0.0568 (7)	
H2A	0.5305	0.2502	0.2858	0.068*	
F1	0.1762 (3)	-0.08905 (11)	0.51487 (15)	0.0953 (8)	
F2	0.1974 (3)	0.21394 (10)	0.87960 (15)	0.0789 (7)	
F3	0.1327 (3)	0.14307 (11)	0.97561 (13)	0.0792 (7)	
F4	0.0382 (2)	0.13121 (10)	0.84026 (14)	0.0761 (6)	
F5	0.2707 (3)	0.12876 (13)	0.80763 (16)	0.0966 (8)	
F6	0.2071 (3)	0.05746 (10)	0.90361 (15)	0.0837 (7)	
F7	0.3643 (3)	0.14096 (13)	0.94371 (17)	0.0969 (8)	

C1	0.2761 (4)	0.05995 (15)	0.3580 (2)	0.0487 (8)
C2	0.2103 (4)	0.07201 (16)	0.4286 (2)	0.0519 (8)
C3	0.1765 (4)	0.02385 (18)	0.4828 (2)	0.0658 (10)
H3A	0.1341	0.0340	0.5303	0.079*
C4	0.2087 (5)	-0.04016 (19)	0.4630 (2)	0.0680 (11)
C5	0.2699 (5)	-0.05769 (17)	0.3935 (2)	0.0650 (10)
H5A	0.2883	-0.1017	0.3813	0.078*
C6	0.3028 (4)	-0.00660 (16)	0.3426 (2)	0.0527 (8)
C7	0.3621 (4)	0.24172 (17)	0.4498 (2)	0.0573 (9)
H7A	0.4045	0.2751	0.4161	0.069*
C8	0.4897 (5)	0.1988 (2)	0.4920 (3)	0.0838 (13)
H8A	0.5581	0.2255	0.5291	0.126*
H8B	0.5413	0.1794	0.4501	0.126*
H8C	0.4503	0.1643	0.5233	0.126*
С9	0.2836 (5)	0.2780 (2)	0.5141 (3)	0.0912 (15)
H9A	0.3545	0.3054	0.5487	0.137*
H9B	0.2422	0.2463	0.5485	0.137*
H9C	0.2047	0.3051	0.4855	0.137*
C10	0.0709 (4)	0.23715 (19)	0.3406 (3)	0.0684 (10)
H10A	0.0314	0.2559	0.3888	0.082*
C11	0.1109 (5)	0.2940 (2)	0.2859 (3)	0.0895 (14)
H11A	0.0225	0.3190	0.2659	0.134*
H11B	0.1525	0.2765	0.2392	0.134*
H11C	0.1831	0.3223	0.3183	0.134*
C12	-0.0481(5)	0.1917 (2)	0.2934(3)	0.1067 (18)
H12A	-0.1359	0.2171	0.2730	0.160*
H12R	-0.0734	0.1577	0.3304	0.160*
H12C	-0.0099	0.1717	0.2470	0.160*
C13	0.2776(4)	0.02806 (16)	0.1181(2)	0.0573(9)
H13A	0.3016	0.0619	0.0786	0.069*
C14	0.1133(5)	0.0365(2)	0.0700 0.1272(3)	0.009
H14A	0.0522	0.0287	0.0742	0.132*
H14R	0.0968	0.0207	0.1456	0.132*
H14C	0.0908	0.0054	0.1677	0.132*
C15	0.0075 0.3067 (7)	-0.0307(2)	0.1077	0.132 0.1052 (18)
H15A	0.3007 (7)	-0.0397(2)	0.0809 (3)	0.1032 (18)
HIJA HIJA	0.2431	-0.0740	0.0281	0.158*
	0.2850	-0.0/40	0.0727	0.158*
	0.4093	-0.0423	0.0727	0.138°
	0.3878 (4)	0.05545 (18)	0.2048 (2)	0.0021 (10)
C17	0.5979	-0.0099	0.1769	0.074°
	0.0577(5)	0.0837 (2)	0.1470 (5)	0.0824 (15)
П1/А 1117D	0.7403	0.0785	0.1417	0.124*
	0.0274	0.1288	0.1/15	0.124*
П1/С С19	0.5/0/	0.0002	0.0930	0.124°
	0.0839 (3)	0.0334 (3)	0.2900 (3)	0.1030 (16)
HIðA HIðD	0.7880	0.02/5	0.2828	0.155*
нібы	0.0302	-0.0023	0.3233	0.155*
HINC	0.6/48	0.0/4/	0.31//	0.155*
C19	0.4934 (5)	0.28489 (18)	0.1717 (2)	0.0706 (11)

H19A	0.5543	0.3221	0.1725	0.085*
C20	0.4012 (5)	0.26112 (18)	0.1053 (2)	0.0665 (10)
H20A	0.3859	0.2782	0.0512	0.080*
C21	0.3346 (4)	0.20647 (16)	0.1337 (2)	0.0535 (9)
H21A	0.2648	0.1800	0.1008	0.064*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0490 (2)	0.0336 (2)	0.0428 (2)	-0.00062 (18)	0.00846 (17)	-0.00333 (17)
P1	0.0493 (5)	0.0408 (4)	0.0564 (5)	-0.0048(4)	0.0168 (4)	-0.0095 (4)
P2	0.0663 (6)	0.0357 (4)	0.0420 (5)	0.0042 (4)	0.0095 (4)	-0.0027 (3)
P3	0.0559 (6)	0.0504 (5)	0.0615 (6)	0.0087 (4)	0.0092 (4)	0.0069 (4)
01	0.0703 (16)	0.0510 (14)	0.0714 (16)	-0.0127 (12)	0.0351 (13)	-0.0105 (12)
O2	0.0977 (19)	0.0355 (12)	0.0512 (14)	0.0088 (12)	0.0169 (13)	0.0017 (10)
N1	0.0494 (16)	0.0355 (14)	0.0489 (16)	-0.0027 (12)	0.0070 (13)	-0.0046 (11)
N2	0.0654 (19)	0.0532 (16)	0.0511 (17)	-0.0163 (15)	0.0069 (14)	-0.0071 (14)
F1	0.145 (2)	0.0653 (15)	0.0830 (16)	-0.0156 (15)	0.0418 (16)	0.0215 (13)
F2	0.0833 (16)	0.0520 (12)	0.0982 (17)	0.0014 (11)	0.0041 (13)	0.0099 (12)
F3	0.0881 (16)	0.0868 (16)	0.0655 (14)	0.0200 (13)	0.0205 (12)	0.0081 (12)
F4	0.0689 (14)	0.0729 (14)	0.0799 (15)	-0.0058 (11)	-0.0105 (11)	0.0113 (12)
F5	0.119 (2)	0.0951 (18)	0.0864 (17)	0.0124 (15)	0.0492 (15)	0.0068 (14)
F6	0.1030 (19)	0.0539 (13)	0.0971 (18)	0.0157 (12)	0.0244 (14)	0.0103 (12)
F7	0.0593 (14)	0.109 (2)	0.116 (2)	0.0090 (14)	-0.0080 (13)	0.0128 (16)
C1	0.055 (2)	0.0428 (17)	0.0487 (19)	-0.0047 (15)	0.0081 (16)	-0.0002 (14)
C2	0.056 (2)	0.0430 (18)	0.058 (2)	-0.0083 (16)	0.0145 (17)	-0.0068 (16)
C3	0.081 (3)	0.063 (2)	0.057 (2)	-0.016 (2)	0.024 (2)	0.0002 (19)
C4	0.086 (3)	0.057 (2)	0.062 (2)	-0.016 (2)	0.014 (2)	0.0118 (19)
C5	0.092 (3)	0.0413 (19)	0.063 (2)	-0.0023 (18)	0.014 (2)	0.0042 (17)
C6	0.070 (2)	0.0414 (17)	0.0461 (19)	-0.0010 (16)	0.0062 (17)	0.0003 (15)
C7	0.064 (2)	0.053 (2)	0.057 (2)	-0.0149 (17)	0.0145 (17)	-0.0149 (17)
C8	0.075 (3)	0.086 (3)	0.085 (3)	-0.015 (2)	-0.006(2)	-0.004 (2)
C9	0.117 (4)	0.084 (3)	0.079 (3)	-0.018 (3)	0.034 (3)	-0.037 (3)
C10	0.056 (2)	0.067 (2)	0.085 (3)	0.0098 (19)	0.019 (2)	-0.015 (2)
C11	0.092 (3)	0.072 (3)	0.104 (4)	0.032 (3)	0.014 (3)	0.007 (3)
C12	0.058 (3)	0.104 (4)	0.149 (5)	0.007 (3)	-0.013 (3)	-0.032 (3)
C13	0.085 (3)	0.0400 (18)	0.0441 (19)	-0.0001 (18)	0.0004 (18)	-0.0052 (15)
C14	0.082 (3)	0.093 (3)	0.083 (3)	-0.020 (3)	-0.008(2)	-0.007 (3)
C15	0.187 (5)	0.054 (2)	0.064 (3)	0.021 (3)	-0.013 (3)	-0.025 (2)
C16	0.067 (2)	0.056 (2)	0.064 (2)	0.0121 (19)	0.0124 (19)	-0.0068 (18)
C17	0.073 (3)	0.083 (3)	0.098 (3)	0.009 (2)	0.035 (2)	0.004 (3)
C18	0.080 (3)	0.130 (4)	0.094 (4)	0.011 (3)	-0.003 (3)	0.013 (3)
C19	0.087 (3)	0.056 (2)	0.072 (3)	-0.022 (2)	0.023 (2)	0.004 (2)
C20	0.093 (3)	0.055 (2)	0.051 (2)	0.004 (2)	0.012 (2)	0.0097 (18)
C21	0.066 (2)	0.0458 (19)	0.046 (2)	0.0012 (17)	-0.0004(17)	-0.0013 (15)

Geometric parameters (Å, °)

Nil—Cl	1.883 (3)	C8—H8C	0.9600
Nil—N1	1.925 (2)	С9—Н9А	0.9600

Ni1—P2	2.1727 (9)	С9—Н9В	0.9600
Ni1—P1	2.1779 (9)	С9—Н9С	0.9600
P1—O1	1.643 (2)	C10—C11	1.525 (5)
P1—C10	1.814 (4)	C10—C12	1.528 (5)
P1—C7	1.821 (3)	C10—H10A	0.9800
P2—O2	1.639 (2)	C11—H11A	0.9600
P2—C16	1.810 (4)	C11—H11B	0.9600
P2—C13	1.814 (3)	C11—H11C	0.9600
P3—F6	1.571 (2)	C12—H12A	0.9600
P3—F5	1.573 (2)	C12—H12B	0.9600
P3—F7	1.581 (2)	C12—H12C	0.9600
P3—F4	1.587 (2)	C13—C14	1.523 (5)
P3—F3	1.592 (2)	C13—C15	1.532 (5)
P3—F2	1.611 (2)	С13—Н13А	0.9800
O1—C2	1.391 (4)	C14—H14A	0.9600
O2—C6	1.380 (4)	C14—H14B	0.9600
N1—C21	1.337 (4)	C14—H14C	0.9600
N1—N2	1.337 (3)	C15—H15A	0.9600
N2—C19	1.336 (4)	С15—Н15В	0.9600
N2—H2A	0.8600	C15—H15C	0.9600
F1—C4	1.355 (4)	C16—C17	1.515 (5)
C1—C2	1.384 (4)	C16—C18	1.521 (5)
C1—C6	1.394 (4)	C16—H16A	0.9800
C2—C3	1.373 (5)	C17—H17A	0.9600
C3—C4	1.373 (5)	C17—H17B	0.9600
С3—НЗА	0.9300	C17—H17C	0.9600
C4—C5	1.370 (5)	C18—H18A	0.9600
C5—C6	1.379 (5)	C18—H18B	0.9600
C5—H5A	0.9300	C18—H18C	0.9600
C7—C8	1.519 (5)	C19—C20	1.344 (5)
C7—C9	1.530 (5)	C19—H19A	0.9300
C7—H7A	0.9800	C20—C21	1.369 (5)
C8—H8A	0.9600	C20—H20A	0.9300
C8—H8B	0.9600	C21—H21A	0.9300
	0.9000		0.9500
C1—Ni1—N1	178.79 (12)	H8B—C8—H8C	109.5
C1—Ni1—P2	81.73 (10)	С7—С9—Н9А	109.5
N1—Ni1—P2	97.11 (8)	С7—С9—Н9В	109.5
C1—Ni1—P1	81.64 (10)	H9A—C9—H9B	109.5
N1—Ni1—P1	99.49 (8)	С7—С9—Н9С	109.5
P2—Ni1—P1	163.19 (4)	H9A—C9—H9C	109.5
O1—P1—C10	103.04 (16)	H9B—C9—H9C	109.5
O1—P1—C7	101.28 (15)	C11—C10—C12	111.9 (4)
C10—P1—C7	108.00 (18)	C11—C10—P1	110.0 (3)
O1—P1—Ni1	105.77 (9)	C12—C10—P1	109.6 (3)
C10—P1—Ni1	116.93 (14)	C11—C10—H10A	108.4
C7—P1—Ni1	119.25 (12)	C12-C10-H10A	108.4
O2—P2—C16	101.63 (16)	P1	108.4
O2—P2—C13	102.43 (15)	C10-C11-H11A	109.5

C16—P2—C13	108.56 (18)	C10-C11-H11B	109.5
O2—P2—Ni1	106.24 (9)	H11A—C11—H11B	109.5
C16—P2—Ni1	119.58 (13)	C10—C11—H11C	109.5
C13—P2—Ni1	115.87 (12)	H11A—C11—H11C	109.5
F6—P3—F5	91.51 (14)	H11B—C11—H11C	109.5
F6—P3—F7	90.39 (14)	C10—C12—H12A	109.5
F5—P3—F7	90.82 (16)	C10—C12—H12B	109.5
F6—P3—F4	91.55 (13)	H12A—C12—H12B	109.5
F5—P3—F4	90.44 (14)	C10—C12—H12C	109.5
F7—P3—F4	177.66 (15)	H12A—C12—H12C	109.5
F6—P3—F3	90.24 (13)	H12B—C12—H12C	109.5
F5—P3—F3	178.25 (14)	C14—C13—C15	111.4 (4)
F7—P3—F3	89.28 (14)	C14—C13—P2	109.7 (3)
F4—P3—F3	89.40 (13)	C15—C13—P2	113.2 (3)
F6—P3—F2	179.49 (15)	C14—C13—H13A	107.4
F5—P3—F2	88.98 (14)	C15—C13—H13A	107.4
F7—P3—F2	89.46 (13)	P2—C13—H13A	107.4
F4—P3—F2	88.59 (12)	C13—C14—H14A	109.5
F3—P3—F2	89.27 (13)	C13—C14—H14B	109.5
C2—O1—P1	112.2 (2)	H14A—C14—H14B	109.5
C6—O2—P2	111.79 (19)	C13—C14—H14C	109.5
C21—N1—N2	104.2 (3)	H14A—C14—H14C	109.5
C21—N1—Ni1	129.7 (2)	H14B—C14—H14C	109.5
N2—N1—Ni1	126.1 (2)	C13—C15—H15A	109.5
C19—N2—N1	111.9 (3)	C13—C15—H15B	109.5
C19—N2—H2A	124.1	H15A—C15—H15B	109.5
N1—N2—H2A	124.1	C13—C15—H15C	109.5
C2—C1—C6	115.1 (3)	H15A—C15—H15C	109.5
C2—C1—Ni1	122.9 (2)	H15B—C15—H15C	109.5
C6—C1—Ni1	121.9 (3)	C17—C16—C18	111.5 (4)
C3—C2—C1	124.4 (3)	C17—C16—P2	111.9 (3)
C3—C2—O1	118.4 (3)	C18—C16—P2	109.8 (3)
C1—C2—O1	117.2 (3)	C17—C16—H16A	107.9
C4—C3—C2	116.3 (3)	C18—C16—H16A	107.9
С4—С3—НЗА	121.9	P2-C16-H16A	107.9
С2—С3—НЗА	121.9	C16—C17—H17A	109.5
F1—C4—C5	118.0 (3)	C16—C17—H17B	109.5
F1—C4—C3	117.9 (4)	H17A—C17—H17B	109.5
C5—C4—C3	124.0 (3)	C16—C17—H17C	109.5
C4—C5—C6	116.4 (3)	H17A—C17—H17C	109.5
C4—C5—H5A	121.8	H17B—C17—H17C	109.5
С6—С5—Н5А	121.8	C16—C18—H18A	109.5
C5—C6—O2	118.1 (3)	C16—C18—H18B	109.5
C5—C6—C1	123.7 (3)	H18A—C18—H18B	109.5
O2—C6—C1	118.1 (3)	C16—C18—H18C	109.5
C8—C7—C9	111.6 (3)	H18A—C18—H18C	109.5
C8—C7—P1	107.9 (2)	H18B—C18—H18C	109.5
C9—C7—P1	113.3 (3)	N2-C19-C20	107.1 (3)
С8—С7—Н7А	107.9	N2-C19-H19A	126.4

supplementary materials

С9—С7—Н7А	107.9	С20—С19—Н19А	126.4
Р1—С7—Н7А	107.9	C19—C20—C21	105.7 (3)
С7—С8—Н8А	109.5	C19—C20—H20A	127.1
С7—С8—Н8В	109.5	C21—C20—H20A	127.1
H8A—C8—H8B	109.5	N1—C21—C20	111.1 (3)
С7—С8—Н8С	109.5	N1—C21—H21A	124.5
H8A—C8—H8C	109.5	C20—C21—H21A	124.5