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ABSTRACT
Intra-tumor heterogeneity (ITH) is a key challenge in cancer treatment, but previous studies have focused
mainly on the genomic alterations without exploring phenotypic (transcriptomic and immune)
heterogeneity. Using one of the largest prospective surgical cohorts for hepatocellular carcinoma (HCC)
with multi-region sampling, we sequenced whole genomes and paired transcriptomes from 67 HCC
patients (331 samples). We found that while genomic ITHwas rather constant across stages, phenotypic
ITH had a very different trajectory and quickly diversified in stage II patients. Most strikingly, 30% of
patients were found to contain more than one transcriptomic subtype within a single tumor. Such
phenotypic ITH was found to be much more informative in predicting patient survival than genomic ITH
and explains the poor efficacy of single-target systemic therapies in HCC. Taken together, we not only
revealed an unprecedentedly dynamic landscape of phenotypic heterogeneity in HCC, but also highlighted
the importance of studying phenotypic evolution across cancer types.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is the third lead-
ing cause of cancer mortality with more than 50%
of cases being from Asia [1]. While surgical re-
section may be curative in patients with early-
stage HCC [2], recurrences are common [3,4].

Several recent studies have characterized the ge-
nomic landscape [5–8] and identified molecular
subtypes as well as potential therapeutic targets
for HCC [9,10]. However, no predictive genomic
biomarker for systemic treatment has been clini-
cally validated [11]. Currently approved first-line
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therapies for advancedHCC, namely lenvatinib and
sorafenib, confer overall objective response rates
(ORRs) of 24% and 9.2% and median overall sur-
vival (OS) of 13.6 months and 12.3 months re-
spectively [12]. While combination therapy with
atezolizumab (PD-L1 antibody) plusbevacizumab
(vascular endothelial growth factor
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A/VEGF-A in-
hibitor) has shown increased efficacywith a reported
ORRof 27% in the recent IMBrave150 trial [13], the
best systemic therapies for HCC confer ORRs and
OS that compare poorly with treatments for other
solid organ cancers.

Intra-tumor heterogeneity (ITH) is central to tu-
mor evolution and can contribute significantly to the
poor treatment response in HCC [14]. Exploratory
studies on small retrospective cohorts have exam-
ined the landscape of genomic ITH [15–22] and
an intermediate level of DNA ITH was found when
comparingHCCwith other tumor types [14].How-
ever, most previous studies have focused mainly on
the genomic changes in theDNAwithout systematic
exploration of phenotypic evolution. Since pheno-
typic changes often accompany disease progression,
linking multilayer (i.e. phenotypic and genomic)
ITHto the clinical trajectory canpave theway for pa-
tient treatment and prognosis, but has not been ex-
plored in a prospective cohort for HCC.

The Precision Medicine in Liver Cancer across
an Asia-Pacific NETwork (PLANET) is a prospec-
tive cohort studying the impact of ITH on the
clinical trajectory of surgically resected HCC
(NCT03267641, Methods). We took advantage
of clinical guidelines for HCC in the Asia-Pacific,
which recommend surgical resection over a broad
pathological range [23,24], providing a unique
opportunity to investigate the impact of ITH on the
clinical trajectory of resected HCC across AJCC
(American Joint Committee on Cancer) pathologi-
cal stages [25]. Here we report our genomic analysis
of ITH in HCC for 67 patients from four countries
in the Asia-Pacific. Through multi-region sampling
of surgically resected HCC and whole genome
sequencing of 331 samples, we found that while
DNA ITH stays constant across pathological TNM
stages, transcriptome and immune ITH have a rapid
increase in ITH in stage II patients. Strikingly, 30%
of patients were found to contain more than one
RNA subtype within a single tumor (i.e. mixed
subtypes), and this occurred in tandem with the
transition from less aggressive phenotypes (e.g.
low cell cycle) in early-TNM-stage tumors to the
more aggressive phenotypes (e.g. upregulated cell
cycle) in later-TNM-stage HCC. This phenotypic
heterogeneity can significantly reduce the efficacy
of monotherapies targeting a small number of
lesions, but may confer synergy when combination
therapies targeting different dimensions of tumor

phenotypes are employed. Through integrative
analysis, multiple ITH features, in particular phe-
notypic ITH, were found to be more informative
than genomic ITH in predicting patient prognosis.
For the first time, we reveal an unprecedentedly
dynamic landscape of phenotypic heterogeneity
in HCC, highlighting the importance of studying
phenotypic evolution and novel therapies tackling a
vibrant landscape of tumor evolution in HCC.

RESULTS
Patient recruitment and clinical
phenotypes of the PLANET cohort
Through the Asia-Pacific Hepatocellular Carcinoma
(AHCC) trials group [26], we enrolled 67 HCC
patients from four Asia-Pacific countries (Singa-
pore, Thailand, Malaysia and Philippines, Supple-
mentary Table 1a, Supplementary Note 1) with dif-
ferent ethnic backgrounds:Chinese (n= 46),Malay
(n= 7),Thai (n= 4), Indonesian (n= 5), Burmese
(n= 3), Cambodian (n= 1) and subcontinental In-
dian (n = 1). As a prospective surgical cohort, pa-
tients were enriched for early stage (49.25% in stage
I) with intermediate grade (Edmondson grade II
and III, Supplementary Fig. 1). More than 60% pa-
tients were viral positive cases (59.7% Hepatitis B
virus positive, 4.5% Hepatitis C virus positive) with
varying degrees of cirrhosis and fibrosis (Metavir
score, 20.9% with no fibrosis and 35.8% with cirrho-
sis, Supplementary Fig. 1). A full description of the
patient cohort and clinical phenotypes can be found
in Supplementary Note 1 and Supplementary Fig. 1.

The genomic landscape of the PLANET
cohort
To survey the degree of tumor heterogeneity, multi-
ple regions (2–11 sectors per tumor depending on
the size of the tumor) were harvested using an es-
tablished grid sampling protocol (Fig. 1a, Methods)
[21]. In total, we sequenced 331 samples (264 tu-
mors and 67 adjacent normal tissues) of which 318
samples were subjected to whole genome sequenc-
ing (WGS; average depth of 46.7X) and 13 samples
were subjected to whole exome sequencing (WES;
average depth of 85X, Supplementary Table 1b).

By comparing tumor sectors against their ad-
jacent normal, we characterized Single Nucleotide
Variants (SNVs), driver mutations and mutational
signatures as well as copy number variations in the
PLANET cohort. Even though basic genomic fea-
tures of HCC have been investigated in several re-
cent studies [5–8],multi-regional samplingprovides
an important approach with regard to timing ge-
nomic changes. We summarize major findings here
and present the details in Supplementary Note 2.
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Figure 1.Genomic landscape of the cohort. (a) Schematic representation of the grid sampling. A central slice is taken out from the tumor and consecutive
sectors were sampled along a grid line. (b) Oncoprint plot of the common drivers (≥4%) across the cohort (see also Supplementary Fig. 3). Columns are
the samples and rows are the genes. Percentage of alterations are shown on the left. Multiple sectors belonging to one patient were annotated (patient,
top). Mutation burden is plotted as a bar plot on the top. Clinical features are shown in the bottom annotation panel. (c) The relationship between truncal
status and frequency of the somatic alterations (SNVs, amplifications and deletions at the cytoband level). (d) The distribution of signature contributions
for the truncal and non-truncal mutations. P-values were calculated with two-sided paired Wilcoxon tests.

Firstly, across the 67 patients, the tumor mutation
burden (TMB) ranged from 0.5 to 16.3 mut/Mb
(median 3.967 mut/Mb, Fig. 1b) with limited vari-
ations within each tumor (Supplementary Fig. 2),
but large differences between patients. Secondly, by
integrating 1349 publicly available HCC genomes,
we identified 62 driver genes in HCC using sev-
eral statistical approaches (Supplementary Note 3)
with 48 of the driver genes found in the current co-
hort (Fig. 1b, Supplementary Fig. 3). While com-
mon driver genes such as TP53 and CTNNB1 were
often shared across all sectors of the same patient
(defined as truncal events) acrossmanypatients, low
frequency drivers such asFRG1 andARID1B tended
tobenon-truncal (Fig. 1b, SupplementaryFigs 3 and
4). These observations suggest that common driver
mutations often arise early in HCC, and rare driver
mutations tend to be acquired late during tumorige-
nesis (Fig. 1c). Thirdly, we identified 13 mutational
signatures in the PLANET cohort (Supplemen-
tary Note 2, Supplementary Fig. 5, Supplementary
Table 1c). Signatures related to environmental stim-
uli such as aristolochic acid (AA, SBS22), smoking
(SBS4) and aflatoxin B1 (SBS24) aremore frequent

in the early (truncal) part of the evolution (Fig. 1d),
implying their higher activity in tumor initiation
(Supplementary Fig. 5). Lastly, arm-level copy num-
ber alterations (CNAs) were shared across multi-
ple sectors of the same patient (Fig. 1c, Supplemen-
tary Fig. 6a, Supplementary Table 1d) [6], suggest-
ing that large chromosomal events are early events in
the history of tumorigenesis [27].However, detailed
inspection of focal CNAs revealed that a significant
proportion of focal CNAs were subclonal in many
patients, driving further diversification in each tu-
mor (Methods, SupplementaryNote 2, Supplemen-
tary Fig. 6b, Supplementary Table 1e). In summary,
the PLANET cohort provided a unique resource for
timing genomic changes and revealedmany latemu-
tational events in the genetic diversification ofHCC.

Subclonal drivers empower local
adaptation in HCC
Based on the proportion of shared mutations
(Fig. 2a), we calculated the degree of tumor het-
erogeneity for all patients. Across the cohort, we
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observed a wide range of ITH in DNA ranging
from homogeneous tumors (late diversification) to
extremely heterogeneous tumors (early diversifica-
tion) (Fig. 2a, Supplementary Fig. 7, Supplementary
Table 2a). High levels of ITH suggests that sam-
pling additional sectors will significantly increase
the detected variability (Fig. 2b) and a single biopsy
sample will often under-represent the genomic
landscape of a patient’s tumor.

The unique grid sampling strategy employed in
this work allowed us to study the spatial orga-
nization of tumor heterogeneity (Fig. 1a). Previ-
ous studies in colorectal cancers (CRC) found that
subclones within a tumor often distributed in a
spatially variegated manner and spatial mixing is a
hallmarkof cancerprogression fromadenoma tocar-
cinoma [28,29]. In order to test the presence of spa-
tialmixing,we comparedphysical locationsof the tu-
mor sectors against their phylogenetic relationship
(Fig. 2c, Methods) [30]. Surprisingly, only a minor
proportion of HCCs showed some levels of spatial
mixing (SM, n = 10 or 20.4% among 49 patients
with at least three sectors, SupplementaryFig.7, Sup-
plementary Table 2b), while for the majority of the
tumors, the branching pattern closely matched the
physical locations of tumor sectors (e.g. ITH 52 as
an example, Fig. 2d). In order to further dissect the
spatial organizationof ITH inHCC,we applied pop-
ulation genetic [31] as well as clonal deconvolution
methods [32,33] across the patients with no spatial
mixing (n = 39). We found: (i) when we measured
the genetic divergence between sectors with varying
levels of physical separation, that physically proximal
sectors were also genetically more similar (Fig. 2e,
P-value = 1.2 × 10–120), a pattern often known as
isolation-by-distance (IBD) in evolutionary genetics
[31], and (ii) a clear linear relationship between the
physical distance of the sectors and their clonal com-
positional distance (e.g. for patient 52 in Fig. 2f and
g, Supplementary Fig. 7) [32,33]. Taken together,
spatial heterogeneity in HCC segregated in an IBD
manner and spatial mixing is uncommon in HCC
(Supplementary Note 4, Supplementary Fig. 7).

Since spatial mixing is not associated with tumor
progression in HCC, we investigated if other evo-
lutionary forces may be driving tumor progression.
A few recent studies have described non-neutral
evolution across a number of cancer types includ-
ing lung and colon cancers [34,35], but the situa-
tion in HCC remained unknown [35]. Since many
driver mutations were specific to subsets of tumor
sectors (Fig. 1b) and may drive tumor progression
in these tumors via natural selection (i.e. adaptive
evolution), we thus explicitly tested the evidence of
non-neutral evolution, comparing samples with sub-
clonal driver mutations against their sister samples

without private driver mutations (Fig. 2h, Supple-
mentary Table 2c). Using the neutrality test, com-
paring the variant allele frequency distribution (i.e.
site frequency spectrum or SFS) against the predic-
tion from an exponentially growing population [34],
we found that samples with private driver muta-
tions tend to have poor fit to the neutral expectation
(Fig. 2i and P-value = 0.0114), indicating that sub-
clonal drivers are driving adaptive evolution inmany
tumors. Taken together, we revealed the unique spa-
tial organization of heterogeneity (i.e. IBD) with a
significantly underappreciated amount of adaptive
evolution in HCC.

Mixed transcriptomic subtypes in HCC
and their evolutionary trajectory
Thegenomic analysis revealed a unique evolutionary
trajectory at theDNA level, however it remained un-
knownhowgenomic ITHcan affect phenotypic evo-
lution [15–22]. Earlier studies have described sev-
eral transcriptomic subtypes with distinctive clinical
and molecular features in HCC [9,36,37]. To dis-
sect the landscape of transcriptomic ITH in HCC,
we obtained transcriptomic data from the same sec-
tors of the tumor with WGS (n = 55 patients or
198 samples). Using the non-negative matrix factor-
ization (NMF) algorithm, we identified three RNA
subtypes (C1-3; Fig. 3a, Methods, Supplementary
Table 3a).Gene set enrichment analysis showed that
samples belonging to the C1 subtype (n= 84) were
enriched for metabolic pathways typical of normal
liver function and showedup-regulation of pathways
associated with better overall survival (Fig. 3b). In
contrast, samples belonging to the C2 (n = 66)
and C3 subtypes (n = 48) showed up-regulation of
cell-cycle-related pathways and down-regulation of
several metabolic pathways (Fig. 3b). Driver genes
such asCTNNB1mutations are enriched inC2 sub-
type, while TERT mutations are deficient in the C3
subtype. In general, the C1 subtype is enriched for
early-TNM-stage patients, while C2/C3 subtypes
were more common in later-stage patients (Fig. 3c,
P-value = 0.029). When we compared RNA sub-
types from PLANET with public cohorts including
The Cancer Genome Atlas (TCGA), we found very
good concordance with two Asian cohorts (Fig. 3d,
Supplementary Fig. 8).

Inspecting RNA subtype distributions across pa-
tients, 38 of our patients had tumor sectors consist-
ing of a single RNA subtype (i.e. 18 C1, 11 C2 and
9 C3). Surprisingly, the other 17 patients had a co-
existence of multiple RNA subtypes across differ-
ent sectors (i.e. mixed subtypes) (Fig. 3e, Supple-
mentary Table 3a) and these sectors were located
very far away in the transcriptomic space (Fig. 3f).
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(C1, C2 and C3) in all the samples (columns). (b) Enrichment of important functional pathways and major driver mutations across the three subtypes. CGP
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Specifically, we observed seven patients with co-
existing C1 and C2 subtypes, seven patients with
coexisting C1 and C3 subtypes, two patients with
coexisting C2 and C3 subtypes and one patient
who had all three subtypes within the same tumor
(Fig. 3e). The presence of multiple subtypes poses
a fundamental question of what evolutionary forces
might have led to the coexisting subtypes. One pos-

sible reason might be the higher tumor heterogene-
ity at the DNA level. When we correlated the degree
of RNA ITH with DNA ITH, we observed a signifi-
cant correlation (P-value= 0.0019, Fig. 3g, Supple-
mentary Table 3b) controlling for covariates such
as tumor purity (Supplementary Fig. 9). However,
DNA ITH only contributed a fraction of the tran-
scriptomic heterogeneity (Spearman’s rho = 0.42),
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suggesting other forces could be co-driving the phe-
notypic evolution in HCC (see Discussion).

In a rapidly expanding population, different
clones can drive diversification at the later stage
of tumorigenesis, leading to multiple lineages at
the time of diagnosis (aka the branched evo-
lution model) [38]. Under this model, the de-
gree of tumor heterogeneity will be higher in
advanced-stage tumors. Strikingly, when we strat-
ified our patients by their TNM stages, we ob-
served higher RNA ITH in TNM stage II tumors
(Fig. 3h, P-value = 0.036). This pattern is consis-
tent when we calculated RNA ITH using differ-
ent subsets of the transcriptome (e.g. genes posi-
tively correlated with tumor purity, Supplementary
Fig. 10). Since patients with mixed subtypes of-
ten have much higher RNA heterogeneity (Fig. 3i,
P-value = 0.0024), mixed subtype patients were
also slightly enriched in stage II patients (Fig. 3j,
P-value = 0.07). Given that C2 and C3 tend to
be more dominant in later stage tumors (Fig. 3c),
mixed subtype tumors may reflect the transitional
phase where multiple RNA subtypes coexist in the
same tumor as the more aggressive phenotypes
(i.e. C2 and C3) become dominant in the tumor
during disease progression. Interestingly, we found
no differences in the degree of DNA ITH across
stages (Fig. 3h) and only a slight increase in DNA
ITH in tumors with mixed subtypes (Fig. 3i, P-
value= 0.053), suggesting that DNA ITHmay only

contribute partially to the phenotypic evolution in
HCC.

Mixed immune subtypes and the
correlation between RNA and immune
ITH
In order to understand the evolution of the im-
munemicroenvironment, we estimated the immune
cell composition within a sample and clustered tu-
mor samples into ‘immunologically hot’ and ‘im-
munologically cold’ tumors (Fig. 4a, Supplemen-
tary Table 4a) [39,40]. Interestingly, while the ma-
jority of the tumors were either immunologically
hot (n = 19) or cold (n = 18), a significant pro-
portion (n = 18, proportion = 33%) of the pa-
tients were also immunologically mixed (Fig. 4a).
Using estimated immune compositions, we calcu-
lated the degree of immune heterogeneity and cor-
related immune ITH with the heterogeneity at the
DNA and RNA levels (Supplementary Table 4b).
Interestingly, a significant correlation was observed
between immune ITH and genomic ITH, and the
correlation is stronger between RNA and immune
ITH (Fig. 4b and c) even when we calculate RNA
ITH using genes unrelated to immune genes (Sup-
plementary Fig. 11). With immunohistochemistry
(IHC) staining, we were able to confirm that tran-
scriptomically hot tumors indeed showed higher
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immune infiltration (Supplementary Fig. 12) and
that genomic ITH correlates with immune ITH
with a varying degree of significance (Supplemen-
tary Fig. 13).

When we compared the degree of immune ITH
across patients of different tumor stages, we found
that stage II tumors also showed the highest levels
of immune ITH (Fig. 4d, P-value= 0.05).When we
calculated the GEP score, a pan-cancer predictor for
the response to immune checkpoint blockade (ICB)
[41], stage II patients also had a higher variance in
the GEP score (Fig. 4e, P-value = 0.033). In sum-
mary, immune ITHhad a strong correlationwith ge-
nomic ITH and attained the highest level in stage II
patients.

Other layers of ITH and their correlation
with genomic ITH
One important somatic event for HCC is viral in-
tegration. Using BATVI [42], a powerful tool for
HBV viral integration, we found that 26 patients
from 37 viral positive patients had viral integrations.
Two of the patients had integrations only in the ad-
jacent normal tissue. Among the 24 patients with
integration in the tumor, we found that a signifi-
cant proportion of the integrations, especially those
in the hotspot regions around TERT and KMT2B
(MLL4), were often truncal events that happened
in the early history of tumorigenesis (Supplemen-
tary Fig. 14). When we calculated integration ITH
across patients, we found that heterogeneity in vi-
ral integration significantly correlated with DNA
ITH (P-value = 0.03), but not so significantly with
RNA and immune ITH (Supplementary Fig. 14),
suggesting that viral integration is an active pro-
cess along the history of genomic (DNA) changes
for HCC with minimum changes to the phenotypic
heterogeneity.

Similar to viral integration, when we inferred
telomere length as well as fusion gene ITH, we
also found significant correlations between genomic
ITH and telomere length variation (Supplementary
Fig. 15) as well as fusion gene ITH and RNA ITH
(Supplementary Fig. 16). In addition to molecu-
lar events, when we scored histological heterogene-
ity using an H&E-stained section of patient tumor
slides,we found apositive correlationbetweenhisto-
logical heterogeneity and genomic ITHeven though
it did not reach statistical significance due to a lim-
ited sample size (n= 12, Supplementary Fig. 17). In
summary, we revealed a multilayer phenotypic and
genomic heterogeneity with high correlation among
multiple ITH features.

Treatment strategies tackling a dynamic
landscape of ITH
Our genomic and transcriptomic analyses revealed
extensive tumor heterogeneity which may greatly
affect current systemic therapies in HCC. To fully
dissect possible impacts of ITH, we first explored
the heterogeneity of drivermutationswith therapeu-
tic potentials [19,43,44]. Using two well-annotated
databases, CGI [45] and OncoKB [46], we first cu-
rated potential targetablemutations in the PLANET
cohort that showed different levels of supporting ev-
idence for their therapeutic potentials. For example,
level 1 are mutations in the current clinical guide-
lines for other indications, while level 2 and 3 are
mutations with clinical or pre-clinical evidence re-
spectively, and level 4 are other unconfirmed muta-
tions that occur in the targetable genes (Methods).
It is worth pointing out that most of these targetable
genes were not derived from HCC, but were from
therapeutical implications in other cancer types.

Across the PLANET cohort, the degree of ITH
for these potentially targetable mutations varied
dramatically across patients from being all trun-
cal (ITH 41) to all non-truncal (ITH 59, Fig. 5a,
Supplementary Table 4c). Surprisingly, 81.8% of
the level 1 mutations were subclonal (Fig. 5b),
which seems to be much higher than common
HCC drivers (Fig. 1c, Supplementary Fig. 4). Even
though targetable mutations for drugs outside the
clinical guideline had higher truncal proportions, a
substantial proportion of these mutations remained
subclonal (Fig. 5b, Supplementary Fig. 18). High
subclonality also seems to be true for copy-number-
based biomarkers. For example, FGF19 amplifica-
tion, a biomarker for FGFR inhibitors in clinical tri-
als [47,48], had a high level of heterogeneity with
more than 60% of the amplification being subclonal
(Supplementary Fig. 6). In view of such high ge-
nomic ITH, increasing the number of samples from
a tumor would increase the chance of therapeutic
targets (Fig. 5c), which might significantly improve
the poor performance in the biomarker-based treat-
ments in HCC.

In addition to genomic heterogeneity, transcrip-
tomic heterogeneity may also pose a serious chal-
lenge to current treatment strategy. For example,
first-line systemic tyrosine-kinase inhibitors (TKI)
for HCCs target important pathways such as the an-
giogenesis pathway [49], which was unevenly ex-
pressed across the tumor sector. Concordant with
the transcriptomic subtype analysis, patients with
C2 subtype showed a low activation level of the
angiogenesis, and a much higher ITH in the an-
giogenesis pathway was observed in patients with
mixed RNA subtype (P-value= 0.0039). Assuming
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Figure 5. The impact of ITH on possible patient treatment response. (a) Representative patients with varying levels of ITH for potentially targetable
mutations are shown. Mutations were classified based on the level of evidence for their therapeutic potential (1, clinically approved for other cancer
types; 2, supported by clinical data; 3, supported by pre-clinical data; 4, other mutations in targetable genes, Methods). (b) Proportion of truncal and
non-truncal mutations for potentially targetable genes. (c) Proportion of patients found to contain potentially targetable mutations when increasing the
number of sectors examined from a tumor (Methods). (d) Activation level shown as the Gene Set Variation Analysis (GSVA) score for the angiogenesis
pathway (one of the target pathways for sorafenib and lenvatinib). The upper 15% (response rate) quantile was set as the cutoff value delineating
treatment response. (e) The predicted response across patients based on different RNA subtypes. (f) Predicted response rates based on varying levels
of cut-off values (Methods). (g) The correlation between the two agents targeted by combination therapy. Based on GSVA and GEP scores, the predicted
response to combination therapy for all samples is shown. Samples can be divided into different response quadrants (left) and the corresponding patient-
level responses are shown for anti-angiogenesis, ICB and combination therapies (right). (h) Predicted response across sectors for selected patients with
high (left) and low (right) phenotypic ITH. (i) Comparison of patient-level predicted response between monotherapies and combination therapy among
patients with high and low phenotypic ITH.

tumors with low activation levels would not respond
to TKIs, a cut-off for treatment response was set to
match the reported response rate of 15% (Meth-
ods) [13]. With the high transcriptomic ITH, only
5.5% of the patients were predicted to be respon-
sive for all sectors while 25.5% of the patients would
show mixed responsiveness (Fig. 5d and e). Such
mixed responsiveness was found to be rather in-
variant to the cut-off values used (Fig. 5f), indicat-
ing mixed treatment response as a general property
of the high phenotypic ITH. A qualitatively similar
trend was found when we applied the same analysis
to other targets of first-line systemic TKIs, as well as
immunotherapies (Supplementary Fig. 19). In sum-
mary, we found that high phenotypic heterogeneity

in HCC could lead to a mixed response for a wide
range of therapeutic targets.

Recently, combination therapies targeting both
the angiogenesis pathway and ICB have shown great
potential to improve patient response [13], yet the
impact of phenotypic ITH on combination ther-
apy remains unknown. Notably, we observed only
a weak correlation between the targets of these two
agents (Fig. 5g), suggesting that the response of
this combination therapy may be rather indepen-
dent. Interestingly, such orthogonality did increase
the predicted response rates for combination ther-
apy compared to monotherapy (Fig. 5g). For exam-
ple, patients with C2 subtype would be expected to
show a low response rate for first-line TKIs, yet a
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substantial proportion of them contained sectors
likely responsive to ICB, especially patients with
mixed subtypes (Supplementary Fig. 19). Interest-
ingly, patients with mixed subtypes seem to have a
higher chance of containing responsive sectors for
combination therapies due to high dispersion in the
transcriptomic landscape (Fig. 5h and i). Thus, het-
erogeneity may not always play an adverse role in
affecting the response rate in the case of combi-
nation therapies. Taken together, combining treat-
ments targeting orthogonal pathways can increase
the overall response rate across a wide range of pa-
tients, providing aunique strategy for tackling the ex-
tremely high ITH in HCC.

Tumor heterogeneity contributes
significantly to patient prognosis
From multilayer heterogeneity, we found that both
RNA and immune ITH strongly correlate with dis-
ease progression, suggesting important potentials
usingmultiple ITH features for patient prognosis. In
order to combine multiple sets of information in pa-
tient prognosis, we first exploredwhether the degree
of multilayer ITH correlates with other features of
tumor biology, including clinical and molecular fea-
tures (e.g. drivermutation status). Using four funda-
mental clinical features (e.g. stage), eight molecular
features (e.g. RNA subtype) and three ITH features
(degree of DNA, RNA and immune ITH) (Fig. 6a,
Supplementary Table 5a), we computed pairwise
correlations among all these features (e.g. Supple-
mentary Fig. 20) and found significant correlations
between ITH features as well as between ITH fea-
tures and other types of features.These observations
suggest that the degrees of ITH are not fully inde-
pendent of other layers of information and ITH fea-
tures canbe integratedwithother clinical andmolec-
ular phenotypes for integrative survival analysis.

In order to combine information across layers,
we constructed a multivariate Cox model to inte-
grate all the features, and stratified patients into
three subgroups based on recurrence-free survival
(RFS) (Fig. 6b–d, Supplementary Fig. 21, Supple-
mentary Table 5b). Multiple molecular and clini-
cal features (e.g. stage or RNA subtype) tend to
be distributed unevenly across the three subgroups
(Fig. 6c), suggesting distinctive phenotypes across
survival subgroups. Interestingly, while TNM stage
remains an important predictor of RFS, multiple
ITH and molecular features also contribute signif-
icantly to the survival model (Fig. 6b). In order to
explicitly test the importance of the ITH features,
we compared a baselinemodelwithout ITH features
with a full model with ITH features (Fig. 6b, Sup-

plementary Note 5). The multivariate Cox model
with ITH features performed much better than the
baseline model (paired t-test P-value = 7 × 10–4,
based on Harrell’s concordance index (c-index)
or P-value = 0.015 based on the likelihood ratio
test, Supplementary Fig. 22). In summary, with the
largest prospective cohort studying intra-tumor het-
erogeneity for HCC, we found that multiple ITH
features form an important layer of information,
which contributes significantly to patient prognosis
and survival.

DISCUSSION
Using one of the largest prospective surgical cohorts
with multi-region sampling for HCC, we have dis-
sected the degree of ITH across multiple layers and
provided several novel insights into the evolution
and treatment ofHCC.First of all, this studydemon-
strated the importance of studying phenotypic evo-
lution, a pivotal layer under-studied in many previ-
ous studies. In contrast with an intermediate level
of DNA ITH found for HCC [14], the phenotypic
heterogeneity seems to be rather high. Even inHCC
treated with surgical resection, a significant propor-
tion of the tumors (∼50%) already carry biologi-
cally aggressive RNA subtypes (∼25% asmixed sub-
types,∼25% as advanced C2/C3 subtypes, Fig. 6e).
Using a classical approach from evolutionary genet-
ics, when we model gene expression patterns across
multiple sectors using an Ornstein-Uhlenbeck pro-
cess, we indeed found stronger statistical evidence
for a model with multiple expressional levels for
many patients withmixed subtypes (Supplementary
Fig. 23, Supplementary Note 6, Supplementary Ta-
ble 6). Since genomic ITH only explains 42% of
the total variability in transcriptomic heterogeneity
(Fig. 3g), this lowcorrelationmighthave allowed the
genotypic (DNA) and phenotypic (RNA) ITH to
decouple from one another and evolve in different
trajectories (Fig. 6e). When we tested the correla-
tion betweenmultilayer ITHandpatient clinical fea-
tures (e.g. viral status), no significant correlationwas
found, suggesting that HCC etiology might not be
a strong determinant of tumor heterogeneity. Thus,
the study of phenotypic evolution opens new direc-
tions for future studies identifying important factors
(e.g. epigenetic changes in cellular plasticity or tu-
mor microenvironment changes) and mechanisms
that might drive rapid phenotypic evolution within
HCC(SupplementaryNote 6).This posits the inter-
esting question of how phenotypic evolution could
have occurred in other cancer types and whether
HCC is a phenotypically more heterogeneous can-
cer type. In summary, our study not only revealed an
unprecedentedly dynamic landscape of phenotypic
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Figure 6. Integrative survival analysis and natural history of HCC evolution. (a) Correlation network of the selected clinical, molecular and ITH features.
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heterogeneity in HCC, but also highlighted the im-
portance of studying phenotypic evolution across
cancer types.

Secondly, the spatial sampling of tumor sectors
revealed an IBD pattern where different parts of the
tumor and the immune microenvironment evolve
and subsequently attain different phenotypic sub-
types within a single tumor (Fig. 6e). Such spatial
segregation could allow subclonal driver mutations
to reside in different locations of the tumor, fur-
ther driving local adaptation. To our knowledge, this
dynamic phenotypic evolution and coexistence of
multiple phenotypic subtypes (RNA and immune
subtypes) has not been previously reported in any
cancer type. Previous population genetic modeling
suggested that the IBD pattern can be compati-
ble with many evolutionary scenarios (e.g. different
growth models, Supplementary Note 7) [21].Thus,
the study of spatial heterogeneity in HCC provided
a uniquemodel for tumor evolution, worth testing in
other cancer types.

Finally, the heterogeneous genomic and tran-
scriptomic landscape of HCC might explain why
monotherapies targeting alterations suggested by a
single biopsy have been so poor in HCC [50]. As
monotherapies might not be able to target hetero-
geneous parts of HCC, combination therapies tar-
getingmultiple vulnerabilities of the tumor can yield
better outcomes. Using anti-angiogenesis and ICB
therapies as anexample,we illustratedhowcombina-
tion therapy on weakly correlated targets could have
improved the treatment response in a heterogenous
landscape like HCC (Fig. 5g–i). Moreover, treat-
ment responses would be affected by both the mean
expression level of drug targets and the level of ITH
across sectors. A homogenous tumor with low ex-
pression of the target may not respond to treatment
at all, while patients with highly heterogeneous tu-
mors may benefit more from combination therapies
due to higher dispersion on the transcriptomic land-
scape (Fig. 5h). In sum, the PLANET cohort pro-
vided a unique resource for the community to ex-
plore possible new combination therapies tackling
an unprecedentedly heterogeneous landscape, fur-
ther improving personalized treatment in HCC.

MATERIALS AND METHODS
Patient recruitment and spatial sampling
Sixty-seven patients were recruited from six regional
hospitals from theAHCC trial group. A full set of pa-
tient recruitment criteria is described in Supplemen-
tary Note 1. The PLANET study was approved by
Singhealth Centralized Institutional Review Board

(2016/2626 and 2018/2112) and informed consent
was taken from each patient before enrollment.

Tissue sampling and genomic
sequencing
A single slice was harvested in the tumor through
the capsule, andmultiple sectors (regions) alongone
axis of the tumor were then harvested. Non-tumor
liver tissues (≥2 cm away) from the tumor were
also harvested. Genomic DNA and mRNA were ex-
tracted from the patient samples and subsequently
sequenced at Novogene-AIT Inc. and the Genome
Institute of Singapore.

Genomic analysis
Raw genomic data followed readmapping, mark du-
plicates, realignment, recalibration and variant call-
ing (Supplementary Methods). Signature analysis
was conducted using the NMF method. Viral inte-
gration was identified using BATVI [42] and telom-
ere length was estimated using the TelSeq method.
Potentially targetable mutations were annotated us-
ing CGI [45] and OncoKB [46].

We measured the level of tumor heterogeneity
in DNA (DNA ITH) as the number of private
mutations divided by the total number of mutations
(Fig. 2a). Using the list of somatic mutations called
from each sample, we calculated the hamming
distance between all sample pairs and inferred the
phylogenetic relationship between tumor samples
using theNeighbor-joining algorithm [30].We used
the unbiased estimator from Weir and Cockerham
1984 to estimate F statistic (FST) [31]. PyClone
[33] and PhyloWGS [32] were used for the clonal
decomposition. We computed cancer cell fraction
(CCF) for all mutations, adjusting tumor purity
and copy number using the method provided in
R package EstimateClonality, available at https://
bitbucket.org/nmcgranahan/pancancerclonality/
src/master/. A neutrality test was conducted as
the linear regression (i.e. goodness of fit) between
1/VAF (variant allele frequency) and the number
of cumulative mutations.

RNA analysis
RNA sequence data followed an in-house pipeline
(https://github.com/gis-rpd/pipelines). We se-
lected the top 3000 most variable coding genes
based on their median absolute deviation (MAD)
across the cohort for RNA clustering. NMF clus-
tering and bootstrapping were used to assign
subtypes to samples for each patient. SubMap
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(http://software.broadinstitute.org/cancer/soft
ware/genepattern/) was used to measure the simi-
larity between different clustering results. Gene set
enrichment analysis was carried out using theGSVA
package in R. For each patient, Spearman distances
(1-Spearman correlation) between the coding
gene expression of all pairwise tumor samples were
computed.Themean of all pairwise sector distances
was taken as the RNA ITH value of the patient.
FusionCatcher was used to identify fusion genes.
Immune cell populations of tumor samples with
available RNA-seq data were estimated using the
method of Danaher et al. [39].

Feature correlation and integrative
survival analysis
For testing correlation among variables, Fisher’s
exact test, linear regression or Kruskal–Wallis test
were used. The multivariate survival model was im-
plemented in the coxph function in R. Harrell’s
concordance index (c-index) was calculated using
the concordance.index function from the survcomp
R package. A full description of all the methods is
given in Supplementary Methods.

DATA AVAILABILITY
The raw data for this study have been deposited
in the European Genome-Phenome Archive (EGA,
http://www.ebi.ac.uk/ega/) under accession code
EGAS00001003813. All clinical records, somatic
mutations, copy number variations and raw expres-
sion counts from our study are hosted in OncoSG
(https://src.gisapps.org/OncoSG/) under dataset
‘Hepatocellular Carcinoma (GIS, 2020)’, which is
publicly available.
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