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Highlights: Impact and implications:
� PMEPA1 is overexpressed in 18% of human HCCs and is
expressed by both tumoural and stromal cell populations.

� Overexpression of PMEPA1 combined with TGF-b activa-
tion is present in 12% of human HCCs.

� PMEPA1High/TGF-b-active status is associated with tumour
aggression and an immunosuppressive
tumour microenvironment.

� In vivo, overexpression of MYC+PMEPA1 led to HCC
development in �60% of cases (vs. 0% in MYC alone).
https://doi.org/10.1016/j.jhepr.2024.101212
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PMEPA1 can enhance the tumour-promoting effects of TGF-b
in cancer. In this study, we demonstrate that PMEPA1 is highly
expressed in �18% of patients with hepatocellular carcinoma
(HCC), a feature associated with poor prognosis, TGF-b acti-
vation and exhaustion of immune cells. Similarly, in mouse
models, PMEPA1 overexpression promotes HCC develop-
ment, which demonstrates its oncogenic role. The identification
of PMEPA1 as oncogenic driver in HCC and its role in immune
exhaustion and poor clinical outcomes enhances our under-
standing of HCC pathogenesis and opens new avenues for
targeted therapeutic interventions.
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JHEP Reports 2024. vol. 6 j 1–14
Background & Aims: Transforming growth factor b (TGF-b) plays an oncogenic role in advanced cancer by promoting cell
proliferation, metastasis and immunosuppression. PMEPA1 (prostate transmembrane protein androgen induced 1) has been
shown to promote TGF-b oncogenic effects in other tumour types. Thus, we aimed to explore the role of PMEPA1 in hepato-
cellular carcinoma (HCC).

Methods: We analysed 1,097 tumours from patients with HCC, including discovery (n = 228) and validation (n = 361) cohorts with
genomic and clinicopathological data. PMEPA1 levels were assessed by qPCR (n = 228), gene expression data (n = 869) and at
the single-cell level (n = 54). Genetically engineered mouse models overexpressing MYC+PMEPA1 compared to MYC were
generated and molecular analyses were performed on the HCCs obtained.

Results: PMEPA1 was overexpressed in 18% of HCC samples (fold-change >2; n = 201/1,097), a feature associated with TGF-b
signalling activation (p <0.05) and absence of gene body hypomethylation (p <0.01). HCCs showing both TGF-b signalling and
high PMEPA1 levels (12% of cases) were linked to immune exhaustion, late TGF-b activation, aggressiveness and higher
recurrence rates after resection, in contrast to HCCs with only TGF-b signalling (8%) or PMEPA1 overexpression (9%). Single-cell
RNA sequencing analysis identified PMEPA1 expression in HCC and stromal cells. PMEPA1-expressing tumoural cells were
predicted to interact with CD4+ regulatory T cells and CD4+ CXCL13+ and CD8+ exhausted T cells. In vivo, overexpression of
MYC+PMEPA1 led to HCC development in �60% of mice and a decreased survival compared to mice overexpressingMYC alone
(p = 0.014). MYC+PMEPA1 tumours were enriched in TGF-b signalling, paralleling our human data.

Conclusions: In human HCC, PMEPA1 upregulation is linked to TGF-b activation, immune exhaustion, and an aggressive
phenotype. Overexpression of PMEPA1+MYC led to tumoural development in vivo, demonstrating the oncogenic role of PMEPA1
in HCC for the first time.

© 2024 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Liver cancer represents the third leading cause of cancer-
related death worldwide, and the number of new cases and
deaths is projected to rise to >55% by 2040.1,2 Hepatocellular
carcinoma (HCC) accounts for approximately 90% of primary
liver cancer cases, with 50 to 60% of patients with HCC
currently being exposed to systemic therapies. Although our
understanding of the pathophysiology and drivers of the dis-
ease has improved over the past years, HCC tumours present
few actionable mutations (overall �20% tumours have an
actionable target), and the translation of molecular knowledge
into precision oncology remains a challenge.3,4 Consequently,
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the identification of actionable molecular determinants of HCC
remains an unmet need.

Previous studies examining genomic, transcriptomic and
epigenomic features have established two distinct molecular
classes of HCC, each accounting for approximately 50% of
cases.2,5 The proliferation class is characterized by poorly
differentiated tumours exhibiting high vascular invasion and
poor clinical outcomes, and can be subdivided into the S1 and
S2 subclasses.2 S1-class tumours are distinguished by trans-
forming growth factor b (TGF-b)-activated Wnt signalling, while
S2-class tumours display progenitor cell features.6,7 In
contrast, HCCs of the non-proliferation subclass (also known
article and had no access to information regarding its peer-review. Full
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as S3) present less aggressive features, with an enrichment of
CTNNB1 mutations and activation of interferon signalling.2

From an immunological standpoint, HCCs can be classifed
into inflamed (�35%) and non-inflamed (�65%).5,8 Inflamed
tumours exhibit high immune T cell infiltration, cytolytic activity
and interferon signalling, and can be further divided into
immune-active, immune-exhausted, and immune-like sub-
classes. Notably, the immune-exhausted subclass is enriched in
TGF-b signalling,9 a defining feature of the S1 proliferation
subclass of HCC and a crucial player in hepatocarcinogenesis.10

TGF-b signalling plays a complex and highly contextual role,
both in HCC and other tumour types.11 In premalignant cells,
TGF-b exhibits cytostatic effects,12 while in advanced stages, it
contributes to tumour progression and metastasis by inducing
epithelial-mesenchymal transition (EMT), thereby enhancing
cell migration and invasion.13,14 Also, TGF-b has been reported
to mediate immune evasion and immune suppression within
the tumour microenvironment (TME) and contributes to immu-
notherapy resistance across various tumour types.15,16

In HCC, several gene signatures recapitulate TGF-b signal-
ling. On one hand, the Wnt-TGF-b signature is associated with
TGF-b activation in HCC, along with features of poor
outcome.17 On the other hand, the Late TGF-b signature cap-
tures the TGF-b oncogenic effects and is associated with an
invasive phenotype and worse clinical outcomes, while the
Early TGF-b signature is associated with the tumour-
suppressive functions of TGF-b and a better clinical prog-
nosis.18 Both Wnt-TGF-b and Late TGF-b signatures are
enriched in immune-exhausted HCCs.8 These tumours also
overexpress prostate transmembrane protein androgen
induced 1 (PMEPA1),9 a direct target gene and regulator of the
TGF-b pathway.19

The oncogenic or tumour-suppressive functions of PMEPA1
are cancer-type specific. While PMEPA1 has been shown to
promote the TGF-b oncogenic effects through non-canonical
PI3K/AKT signalling in breast and colorectal cancer,20–22 it
has also been reported to regulate TGF-b to prevent bone
metastasis in prostate cancer.19 In HCC, high PMEPA1 levels
correlate with poor prognosis and targeting PMEPA1 inhibits
the migration of TGF-b1-activated murine HCC cells.23 None-
theless, the role of PMEPA1 and its interplay with TGF-b sig-
nalling in human and murine HCC remains poorly understood.

This study analysed PMEPA1 expression levels in 1,097
human HCC samples, revealing its overexpression in 18% of
tumours. Through a comprehensive -omics analysis we
demonstrated that the activation of TGF-b signalling in the
context of PMEPA1 overexpression is associated with poor
prognosis features and immune exhaustion. Single-cell RNA
sequencing (scRNAseq) data analysis uncovered a key contri-
bution of the surrounding stromal microenvironment to
PMEPA1 overexpression. Importantly, we demonstrated that
PMEPA1 is an oncogene using an in vivo model of HCC. The
results of the transcriptomic analysis of murine tumours par-
alleled our human HCC data.

Materials and methods

HCC human samples and transcriptomic/genomic data

Gene expression profiles from a total of 1,097 human HCC
samples were analysed (Table S1), including a training set of
228 fresh frozen HCCs from patients who underwent liver
JHEP Reports, --- 2
resection (Heptromic dataset; GSE63898)24 and six validation
cohorts comprising a total of 508 publicly available HCC cases
(GSE64041,25 GSE14520,26,27 GSE45267,28 GSE622323 and
GSE3979129) and 361 HCCs from The Cancer Genome Atlas
(TCGA) database (https://tcga-data.nci.nih.gov/). Single nucle-
otide polymorphism array data were available for the Heptromic
cohort.30 PMEPA1mRNA levels were measured by quantitative
reverse-transcription PCR in 228 tumours of the Heptromic
cohort. TCGA protein array (RPPA) data were downloaded from
the GDC Data Portal.

The GenePattern modules Nearest Template Prediction
(NTP) and single-sample gene set-enrichment analysis were
used to evaluate gene signatures representing TGF-b pathway
activation, as well as previously reported HCC subclasses. For
NTP analyses, significance was defined using Benjamini-
Hochberg false discovery rate <0.05, or <0.25 in the case of
the Wnt-TGF-b subclass.7

Gene signatures used in the analyses are listed in Table S2,
or were retrieved from the Molecular Signatures Database
(MSigDB) resource (www.broadinstitute.org/msigdb). Immune
deconvolution tools implemented in TIMER2.031 were used to
estimate the relative fraction of immune and stromal cells
infiltrating the tumour. To identify differentially expressed genes
(DEGs) between groups of samples, we performed moderated
t-tests using the eBayes function of the R package limma (v
‘3.54.2’). DEGs were selected based on p values <0.05 and log2
fold-change >2. The Enrichr tool32 was used to evaluate
enrichment in specific pathways and biological functions
among the DEGs.

Analysis of the methylation status of PMEPA1

Methylation array data were available for the Heptromic cohort
and human HCC cell lines and published elsewhere.24,30

Methylation array data from the TCGA cohort (n = 361 sam-
ples) were downloaded from the UCSC Xena Browser (https://
xenabrowser.net). To study the differential methylation status of
PMEPA1 between HCC and non-cancerous liver tissue, we
used array probes located at the promoter and gene body
(transcript variant 1; NM_020182; Table S3). Hypomethylation
and hypermethylation per sample were defined as the mean
fold-change compared to non-tumour tissue ± 2 SD.

For details on microRNA profiling and analysis, please refer
to the supplementary methods.

Single-cell analysis of human HCC samples

Single-cell RNAseq data from a cohort of 38 human HCCs were
available from previous work.33 Additionally, single-cell RNA-
seq data from 32 human HCCs were downloaded from Gene
Expression Omnibus (GSE151530). Both single-cell RNAseq
datasets were analysed in the same way using the Seurat
package (version 4.1.0) from R (version 4.2.0). First, we quality-
filtered cells with more than 100 and less than 6,000 detected
genes, less than 50% of mitochondrial RNA and with unique
molecular identifier counts greater than 400. We also excluded
those samples with less than 200 cells in total, and those ob-
tained after treatment, retaining a total of 38 and 16 HCC
samples for the final analyses. The total number of transcripts
in each single cell was normalized to 10,000 and log-
transformed. Subsequently, the top 2,000 highly variable
genes were detected according to average expression (0.05 to
024. vol. 6 j 101212 2
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3) and dispersion (>0.5), and data was scaled using a linear
model and regressing out the total RNA count, the percentage
of mitochondrial genes and the cell cycle state (S and G2M
scores). The detected variable genes were then considered as
the main drivers of cell-to-cell differences and were used for
principal component analysis. Then, data integration across
samples was performed using Harmony (version 0.1.0),34 and
the first 30 Harmony embeddings were used to cluster the cells
by calculating K-nearest neighbours and applying the Louvain
modularity optimization algorithm. Annotation of malignant vs.
non-malignant cells was based on differentially expressed
marker genes exposed in Table S4. More detailed annotation of
NK cells, CD8 T cells and CD4 T cells was performed by sub-
setting these populations from the quality-filtered Seurat object
before normalizing the expression data, clustering and anno-
tating using the differentially expressed marker genes from
Table S4 (same parameters as above). Finally, annotation of
PMEPA1-positive (PMEPA1+) cells was based on an expres-
sion level of PMEPA1 higher than 0. The ligand-receptor in-
teractions between PMEPA1+ tumour/stromal cells and CD8+

exhausted T cells, CD4+ regulatory T cells and CD4+ CXCL13+

T cells were obtained with CellChat (v1.1.3) algorithm35 as
previously reported.33

Reverse-transcription PCR and quantitative reverse-
transcription PCR

Total RNA was extracted from HCC tissue using the RNeasy
Mini Kit (Qiagen). 1 lg of RNA was retrotranscribed to cDNA
using the High-Capacity cDNA Reverse Transcription Kit
(Applied Biosystems, Waltham, MA). For relative mRNA quan-
tification, TaqMan® Gene Expression Assays were used
following the manufacturer’s instructions (Applied Biosystems).
Relative quantification was calculated using the DDCq method
and normalized based on 18S. The TaqMan® probes used in
the assay were Hs00375306_m1 (human PMEPA1) and
Hs99999901_s1 (18S).

To quantify PMEPA1 in cells, total RNA was extracted from
cells collected at 80% confluence using the RNeasy Mini Kit
(Qiagen) and retrotranscribed and quantified as described.

Cell lines and cell viability assay

Hep3B, PLC5, SNU182, SNU387, SNU398, SNU423 and
SNU449 HCC cell lines were obtained from the ATCC, while the
Huh7 cell line was purchased from the Japanese Collection of
Research Bioresources. Cell lines were regularly confirmed to
be mycoplasma free using EZ-PCR kit (Biological Industries,
Kibbutz Beit Haemek, Israel). HCC cell lines were cultured
in DMEM or RPMI (ThermoFisher, Waltham, MA) supplemented
with 10% heat-inactivated FBS.

For the cell viability assay, cells were seeded in 96-well
plates and incubated with 5 ng/ml of recombinant
human TGF-b1 ligand (Prepotech, Rocky Hill, NJ) for 3 days
in humidified atmosphere at 37 �C and 5% CO2. Cell
viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) dye uptake using the Cell-
Titer 96® Cell Proliferation Kit (Promega, Madison, WI) following
the manufacturer’s instructions.
JHEP Reports, --- 2
For details on HCC cell line transcriptomic analyses, please
refer to the supplementary methods.

Animal studies, hydrodynamic tail vein injection, and
vector design

All the in vivo experiments were performed in 6- to 8-week-old
C57BL/6 mice purchased from Envigo (Charlotte, NC). All the
animals were healthy and acclimated to the animal facility
before experimental use, and all the procedures were approved
by the Icahn School of Medicine at Mount Sinai Animal Care
and Use Committee (IACUC- 2014-0229). Animals were
monitored daily and if moribund were euthanized according to
the Guidelines for Human End Points for Animals used in
biomedical research.

Transposon-based vectors overexpressingMYC (pT3-EF1a-
MYC) or PMEPA1 (pT3-EF1a-PMEPA1) were prepared as fol-
lows. The CMV-SB13-Luc and pT3-EF1a-NRAS-IRES-GFP
vectors were used as backbone for cloning and were kindly
provided by Dr Scott Lowe (Memorial Sloan Kettering Cancer
Center, New York, NY). The pT3-EF1a-MYC vector (Addgene
plasmid #92046; Addgene Watertown, MA) was a kind gift from
Dr Xin Chen (University of California, San Francisco, San
Francisco, CA). The pT3-EF1A-PMEPA1 vector was prepared
using the pT3-EF1a-NRAS-IRES-GFP plasmid. It was digested
with XhoI and EcoRV restriction enzymes (New England Bio-
Labs, Ipswich, MA) and ligated with human PMEPA1 amplified
from pT3-EF1a-PMEPA1. All constructs were verified by
nucleotide sequencing, and vector integrity was confirmed by
restriction enzyme digestion.

Vectors overexpressing MYC (pT3-EF1a-MYC), PMEPA1
(pT3-EF1a-PMEPA1) and the SB13 transposase (CMV-SB13)
were delivered into the liver of wild-type mice through hydro-
dynamic tail vein injection. Vectors were injected in a sterile
saline solution (Intermountain Life Sciences, West Jordan, UT)
containing 10 lg of transposon vectors (pT3-based vector) and
2.5 lg of transposase-encoding vector (SB13). A volume
equivalent to 10% of mouse body weight was injected through
the tail vein using a 3 ml syringe (Becton Dickinson, San Jose,
Calif) with a 26-gauge × 0.625 (Becton Dickinson) needle. The
mice were monitored for tumour formation and humanely killed
at the end point. The end point was defined either by tumour
burden or after a period of 100 days. Liver tissue was collected,
fixed in formalin and freshly frozen for histological and molec-
ular characterization.

Transcriptomic analysis of murine HCC samples

Total RNA was extracted from murine HCC tissues using the
RNeasy Mini Kit (Qiagen). RNA was poly-A selected and mul-
tiplexed RNAseq libraries were prepared using the TruSeq RNA
Sample Preparation kit (Illumina, San Diego, CA), according to
the manufacturer’s instructions, at the Icahn School of Medi-
cine at Mount Sinai Genomics Core. The libraries were quan-
tified using the Qubit Broad Range kit (Thermo Fisher Scientific,
Waltham, MA) and sequenced using the Illumina HiSeq 4000
system (SR100). Processing of murine transcriptome data (i.e.,
normalization, background correction, and filtering) was con-
ducted as previously reported.36 For comparison purposes, we
024. vol. 6 j 101212 3
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also analysed transcriptomic data from healthy liver tissue
samples and the previously reported MYC-luc;CTNNB1 and
MYC-lucOS;p53 models.36

Histological and immunohistochemical analyses of human
and murine HCC samples

Please refer to the supplementary methods.

Statistical analysis

Statistical analyses were performed using R (version 4.2.2).
Comparison of continuous variables was conducted using the
Student’s t test for parametric distributions and the Wilcoxon
rank-sum test for non-parametric distributions. Association
among categorical variables was analysed using Fisher’s exact
test. In the event of a multiple comparison testing, Benjamini-
Hochberg correction was applied. For the assessment of cor-
relations between two normally distributed continuous vari-
ables, we used Pearson correlation coefficient. Impact of
PMEPA1 and TGF-b activation on recurrence and survival of
the Heptromic and Montironi et al., Gut 2023 cohorts were
assessed with Kaplan-Meier estimates and compared using the
log-rank test. Univariate and multivariate Cox regressions were
used to analyse the association between molecular and
clinical-pathological variables with recurrence. Specifically,
variables with a p value <0.05 in the univariate analysis were
included in the multivariate model.

Results

Identification of PMEPA1 as a potential driver of TGF-b
pathway activation in HCC cell lines

To investigate the oncogenic effects of TGF-b in HCC, we
stimulated eight human HCC cell lines with TGF-b1. Based on
the changes in cell viability induced by TGF-b1, we classified
each cell line as either responsive (n = 3) or resistant (n = 5) to
the cytostatic effects of TGF-b1 (Fig. 1A). Differential gene
expression analysis between the responsive and resistant
conditions revealed that TGF-b-resistant HCC cells exhibit a
significant upregulation of genes associated with EMT, cell
migration and angiogenesis regulation (Fig. 1B, Table S5).
Notably, PMEPA1 emerged as one of the most highly upre-
gulated genes related to the TGF-b pathway in TGF-b-resistant
HCC cells (Fig. 1B). These findings suggest that this subset of
cells may exhibit a more oncogenic TGF-b phenotype. Upre-
gulation of PMEPA1 in these cell lines was confirmed both by
reverse-transcription PCR and immunohistochemistry
(Fig. S1A,B). These observations prompted us to further
explore the role of PMEPA1 in human HCC.

In human HCC tumours, PMEPA1 is upregulated and its
overexpression is associated with TGF-b signalling,
proliferation and immune exhaustion

In human HCC samples, PMEPA1 was found to be overex-
pressed (>−2-fold compared to healthy or non-tumoural adjacent
tissue, referred to as PMEPA1High) in 18% of cases (n = 201/
1,097; Fig. 1D, Table S1). Overexpression was confirmed at the
protein level in 15 out of 23 human HCC tumours, from which
11 were PMEPA1High (Fig. S1C,D). In two independent cohorts,
PMEPA1High tumours consistently upregulated a set of genes
JHEP Reports, --- 2
linked to TGF-b signalling, EMT, angiogenesis, cell migration
and extracellular matrix organization (Fig 1D and Fig. S2A). At
the protein level, PMEPA1High tumours expressed high levels of
CD31 and vimentin (angiogenesis and EMT), but moderate Ki67
and PD1 (proliferation and exhaustion) (Fig. S2).

Both in our discovery cohort as well as in our validation
cohorts, PMEPA1High tumours were also significantly enriched
in both the Wnt-TGF-b HCC subclass – reported to be asso-
ciated with a higher risk of recurrence after resection17 – and
the Late TGF-b signature (Fig 1C and Fig. S3) – associated with
shorter survival, increased recurrence rates, and a more inva-
sive HCC phenotype.18 Consistently, PMEPA1High tumours
belonged to the S1/Proliferation HCC molecular subclass.6,37

Additionally, PMEPA1 expression levels were positively corre-
lated with the expression of TGF-b ligands (TGFb1, TGFb2 and
TGFb3; r = 0.14 to 0.86; p <0.05), and SMAD family members
(SMAD2 and SMAD5; r = 0.2 to 0.3; p <0.05) (Fig. S4). Inter-
estingly, PMEPA1High HCCs presented an absence of the early
TGF-b signature – associated with the tumour suppressor ef-
fects of TGF-b and better prognosis18 (p <0.05; Fig. 1C).

From the immunological standpoint, PMEPA1High tumours
mainly belonged to the Inflamed/Exhausted HCC immune
subclasses,8,9 and exhibited a significant enrichment in active
stroma signalling38 (p <0.05; Fig. 1C), results that were vali-
dated in TCGA and a further three cohorts (Fig. S3). PME-
PA1High tumours were also enriched in TGF-b-response
signatures of TME cell populations (fibroblasts, macrophages,
endothelial cells and T cells)39 (Fig. S5A), and PMEPA1 levels
positively correlated with a larger tumour stromal compartment
as determined by deconvolution tools (see methods for de-
tails; Fig. S5B).

In addition, the CTNNB1 molecular subclass was absent in
PMEPA1High tumours (Fig 1C and Fig. S3), supported by the
fact that CTNNB1 mutations were significantly less prevalent in
samples that overexpress PMEPA1 (5% in PMEPA1High tu-
mours vs. 32% in PMEPA1Low tumours; p <0.0001; Fig. S6),
and consistent with a previously reported role for PMEPA1
overexpression in interfering with b-catenin stability and nu-
clear translocation in breast cancer models.40

We next assessed whether PMEPA1 overexpression in HCC
could be related to epigenetic deregulation, as described in
other tumour types.41 We assessed the methylation status of
the PMEPA1 promoter and gene body in human HCCs with
high or low PMEPA1 levels and in healthy liver samples. While
no differences were observed in terms of promoter methylation
between PMEPA1High and PMEPA1Low tumours, methylation
levels in the gene body were reduced in PMEPA1Low samples,
both in the Heptromic (Fig. 1E) and TCGA (Fig. S7A) datasets.
Indeed, the PMEPA1Low group displayed a higher proportion of
samples with hypomethylation of the gene body (Fig. S7B). This
association was confirmed in human HCC cell lines, where we
also observed that the methylation levels of CpGs located
within the PMEPA1 gene body were reduced in cells with low
PMEPA1 levels (Hep3B) compared to cell lines overexpressing
PMEPA1 (SNU182, SNU387, SNU398, SNU423 and SNU449)
(Fig. S8). This is consistent with the fact that gene body
hypomethylation in cancer has been associated with reduced
transcription compared to normal cells.42,43

Since several microRNAs (miRNAs) have been shown to
control PMEPA1 expression in other tumour types,44 we went
on to analyse whether there was any miRNA associated with
024. vol. 6 j 101212 4
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Fig. 1. PMEPA1 overexpression in human HCC. (A) Cell viability after 3 days of incubation with recombinant human TGF-b1. (B) Volcano plot of genes differentially
expressed (FDR <0.05) in HCC cell lines responsive to TGF-b1 stimulation (green) when compared to cells that are resistant to TGF-b1 stimulation (red). Top signalling
pathways enriched based on differentially upregulated genes in the TGF-b-resistant condition (n = 194) are depicted in red. (C) Molecular characteristics of PMEPA1High

human HCCs in the Heptromic cohort (n = 228 patients). Statistical test: Student’s t test, Wilcoxon rank-sum test or Fisher’s exact test, as appropriate. (D) Pathways
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Oncogenic PMEPA1 and TGF-b activation in HCC
PMEPA1 expression in HCC. Interestingly, differential miRNA
expression analysis between cell lines with high and low
PMEPA1 levels revealed hsa-miR-192 and hsa-miR-194 to be
the most highly upregulated miRNAs in those samples with low
PMEPA1 expression (Fig. S9A,B). Consistently, both hsa-miR-
192 and hsa-miR-194 were significantly upregulated in human
PMEPA1Low samples from both the Heptromic and TCGA
datasets when compared to PMEPA1High samples
(Fig. S10A,B). Of note, PMEPA1 is a predicted target of both
hsa-miR-192-3p and hsa-miR-194-5p according to the Tar-
getScanHuman 7.2 database.45

Altogether, PMEPA1 is overexpressed in 18% of HCCs, and
correlates with enhanced TGF-b signalling, increased cellular
proliferation, and immune exhaustion. We propose epigenetic
deregulation as a potential mechanism of regulation of
PMEPA1 expression.

Exhaustion and poor prognosis features of PMEPA1High

HCC are driven by TGF-b

We next addressed the role of TGF-b within PMEPA1High hu-
man tumours. To define TGF-b activation, we used the HCC
Wnt-TGF-b gene signature,17 which presented a strong corre-
lation with both the Hallmark of TGF-b signalling (Fig. S11A)
and TGF-b1 expression (Fig. S11B). Overall, this signature
classified �20% of HCCs as TGF-b-active (n = 123/589). A
total of 12% of tumours in the Heptromic cohort (n = 28/228)
presented PMEPA1 overexpression along with TGF-b activa-
tion (Fig. 2A). When compared with tumours with PMEPA1
overexpression but no TGF-b activation, PMEPA1High/TGF-b-
activated tumours retained an enrichment in the TGF-b late
signature – capturing the TGF-b oncogenic traits18 – the S1/
proliferation HCC molecular subclasses,6,37 and gene sets
capturing cell proliferation, angiogenesis, cell invasion and
migration (p <0.05, Fig. 2A). In addition, they were characterized
by an active stroma46 and were primarily classified as immune
exhausted9 (p <0.05, Fig. 2A).

These distinctive features of PMEPA1High/TGF-b-activated
tumours were neither retained in HCCs with TGF-b activation
without PMEPA1 upregulation, nor in tumours with PMEPA1
overexpression without TGF-b activation. All these results were
validated in the TCGA dataset, as well as in three additional
human HCC cohorts (Fig. S12).

Additionally, since PMEPA1 has been reported to inhibit the
androgen receptor (AR) via a negative feedback loop,47 and AR
has been shown to hinder HCC progression,48 we went on to
assess AR protein expression levels in the context of PMEPA1
overexpression and TGF-b signalling using the TCGA protein
array (RPPA) data. We observed a significant decrease in AR
protein levels in PMEPA1High tumours compared to PMEPA1Low

HCCs regardless of TGF-b activation status (Fig. 2B), pointing
towards a TGF-b-independent role of PMEPA1 in suppressing
and biological processes enriched based on n = 562 differentially upregulated genes
TCGA cohorts (n = 228 and n = 361 patients, respectively), using Comparative M
PMEPA1 promoter or gene body in PMEPA1High (purple) and PMEPA1Low (grey) sam
bars represent the SD between samples. FC is normalized to 1 (mean expression v
FDR, false discovery rate; GO, gene ontology; HCC, hepatocellular carcinoma; TCG
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androgen response signalling. These resultswere paralleledwhen
assessing PMEPA1 and AR abundance at the transcriptomic
level, both in the Heptromic and TCGA cohorts (Fig. S13).

Finally, since PMEPA1 has been proposed as a potential
prognostic biomarker in other tumour types, we evaluated its
association with recurrence in HCC. Importantly, patients
belonging to the PMEPA1High/TGF-b-activated subgroup dis-
played significantly higher recurrence rates compared to the
rest of the cohort (p = 0.02, Fig. 2C), while this was not the case
for the PMEPA1High subgroup, including TGF-b-inactivated
patients. Importantly, the PMEPA1High/TGF-b-activated status
retained a significant correlation with higher recurrence rates in
the multivariate analysis (Table 1). These results were validated
in an independent cohort (Fig. S14, Table S7).

Overall, our analyses revealed the existence of a well-
defined subgroup of HCC patients (�12%) characterized by
PMEPA1 overexpression in the presence of TGF-b signalling
activation that specifically display transcriptomic features of
immune exhaustion and a more aggressive tumour phenotype,
resulting in a significantly worse clinical prognosis. These fea-
tures were not observed in HCCs characterized by PMEPA1
overexpression or TGF-b activation alone.

Single-cell RNA sequencing analysis reveals that PMEPA1
is expressed by both tumoural and TME cells that interact
with immune-exhausted T cells

To further explore the immune exhaustion phenotype observed
in the human HCC context, we used two scRNAseq datasets
comprising 16 and 38 HCCs, respectively.33,49 Our analyses
revealed that PMEPA1 is not only expressed by tumour cells but
also by cells in the stromal compartment (endothelial cells, per-
icytes and fibroblasts) and immune cells (plasmacytoid dendritic
cells) in both scRNAseq cohorts (Fig. 3A,B and Fig. S15A,B).
Ingenuity Pathway Analysis of genes upregulated in PMEPA1+

tumour cells vs. PMEPA1- tumour cells revealed a significant
association with liver proliferation and regeneration (Fig. S16).

To further explore the relationship between PMEPA1 over-
expression and immune exhaustion observed in the human bulk
transcriptome, we used CellChat to look for relevant cell-cell
communication interactions between immunosuppressive or
exhausted T cells and tumour/stromal cell types, which were
categorized intoPMEPA1+ andPMEPA1- groups. Specifically, in
the scRNAseq cohort comprising n = 16 cases, we observed that
PMEPA1+ tumour cells interact with CD8+ exhausted T cells,
CD4+ regulatory T cells and CD4+ CXCL13+ T cells through the
PVR-TIGIT ligand-receptor pair, while this was not observed in
PMEPA1- tumour cells (p <0.01) (Fig. 3C). In the scRNAseq
dataset of 38HCCs, another ligand-receptor pair involvingTIGIT,
namely NECTIN2-TIGIT, was significantly enriched in PMEPA1+

tumour cells (Fig. S17A). Additionally, in both scRNAseq data-
sets, PMEPA1+ endothelial cells were shown to interact with
in PMEPA1High tumours compared to PMEPA1Low tumours in both Heptromic and
arker Selection analysis. (E) Methylation array levels in CpGs located within the
ples in the Heptromic cohort. Values represent the mean b-value in each CpG and
alue in non-tumour liver). DEGs, differentially expressed genes; FC, fold-change;
A, The Cancer Genome Atlas; TSS, transcription start site.
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Fig. 2. PMEPA1 overexpression in the context of Wnt-TGF-b signalling in human HCC. (A) Molecular features of Wnt-TGF-bPresent/PMEPA1High tumours in the
Heptromic cohort when compared to tumours classified as Wnt-TGF-bPresent/PMEPA1High or Wnt-TGF-bAbsent/PMEPA1High. Statistical test: Student’s t test, Wilcoxon
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Table 1. Univariate and multivariate recurrence rate analyses of patients with HCC (n = 217).

Variable

Univariate analysis Multivariate analysis (Cox regression)

HR 95% CI p values HR 95% CI p values

Wnt-TGF-bPresent + PMEPA1High 1.645 1.061–2.551 0.02 1.902 1.2131–2.984 0.0051
Vascular invasion 1.576 1.128–2.201 0.007
BCLC stage B or C 1.731 1.068–2.807 0.02
Multinodularity 2.05 1.445–2.921 0.00004 1.916 1.2957–2.833 0.0011
AFP levels (>100 mg/dl) 1.66 1.149–2.406 0.007
Satellites 1.603 1.12–2.296 0.009 1.647 1.1388–2.383 0.0081

AFP, alpha-fetoprotein; BCLC, Barcelona Clinic Liver Cancer; HCC, hepatocellular carcinoma; HR, hazard ratio.

=

Oncogenic PMEPA1 and TGF-b activation in HCC
CD8+ exhausted T cells through the LGALS9-HAVCR2 ligand-
receptor pair, an observation that was not made for PMEPA1-

endothelial cells (Fig. S17B). Given the role of TIGIT andHAVCR2
(TIM-3) as T cell exhaustion-associated checkpoint molecules,
these findings underscore the association between PMEPA1
expression and immune exhaustion.

PMEPA1 and MYC overexpression promote HCC
development in a genetically engineered mouse model

Since PMEPA1 has been reported to act as an oncogene in
other tumour types, we assessed its function in HCC using
in vitro and in vivo models. Firstly, we engineered HCC cells
with low baseline PMEPA1 mRNA levels and responsiveness
to the cytostatic effects of TGF-b1 (Fig. S1A and Fig. 1A)
(Hep3B, PLC5 and Huh7) to stably overexpress PMEPA1
(Fig. S18A), with and without TGF-b1 stimulation. Prolifera-
tion and viability assays revealed that PMEPA1 did not show
a significant oncogenic effect (Fig. S18B-D). Thus, we hy-
pothesized that the TME might influence the ability of
PMEPA1 to exert its oncogenic function. To test this hy-
pothesis, we generated a genetically engineered mosaic
mouse model (GEMM) overexpressing both PMEPA1 and
MYC in the liver, in the context of an intact TME. As a control
arm, we used a GEMM that overexpressed MYC alone
(Fig. 4A), which is known to be insufficient to trigger HCC
development.50 Strikingly, 60% of mice injected with
MYC;PMEPA1 developed tumours (n = 9/15, Fig. 4B,C)
resulting in a significantly higher liver to body weight ratio
compared to MYC controls (p <0.001; Fig. S19). Conse-
quently, we observed a significant reduction in survival
compared to MYC controls (p = 0.014, Fig. 4C). HCC and
PMEPA1 protein expression levels were confirmed at the
pathological level (Fig. 4D).

Consistent with our results using the human HCC cohorts,
transcriptomic analyses of the MYC;PMEPA1 tumours (n = 4)
revealed that they were significantly enriched in gene signa-
tures recapitulating TGF-b signalling when compared to MYC-
luc;CTNNB1 tumours (n = 7) and healthy liver tissue (n = 6)
(Fig. 5A). On the other hand, MYC;PMEPA1 tumours were
transcriptionally resemblant to MYC-lucOS;p53 tumours, which
include the highly immunogenic version of luciferase (MYC-
lucOS), associated with high oncogenicity, aggressiveness and
poor prognosis (Fig. S20).36,50 In addition, a decrease in Wnt/b-
catenin signalling, as well as negative glutamine synthetase
immunohistochemical staining (Fig. S21), was observed in
according to their Wnt-TGF-b/PMEPA1 status. Statistical test: Wilcoxon rank-sum
depicted. (C) Kaplan-Meier estimates of recurrence in patients with HCC from the
PA1High status (right). Statistical test: log-rank test. EMT, epithelial-mesenchymal tr
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tumours from MYC;PMEPA1 mice when compared with the
MYC-luc;CTNNB1 model. Further analyses also unveiled that
MYC;PMEPA1 tumours were enriched in the proliferation sub-
class (S1/S2,6 Proliferation class37) and other proliferation-
related signatures (e.g. KRAS and MYC) (Fig. 5A), as well as
hypoxia and invasiveness gene sets. These results suggest that
the MYC;PMEPA1 model recapitulates the human PMEPA1-
High/TGF-b-activated scenario.

Additionally, in line with our results in PMEPA1High human
HCC samples (Fig. 2B), MYC;PMEPA1 tumours presented a
reduced expression of androgen response signatures
compared to both MYC-luc;CTNNB1 tumours and healthy liver
tissue (Fig. 5A). This was supported by a significantly reduced
expression of AR compared to healthy liver tissue (Fig. 5B).

At the pathological level, MYC;PMEPA1 tumours were
“moderately” and “well” differentiated, while all the MYC-
luc;CTNNB1 tumours were “well” differentiated (Fig. 5C),
compared to other previously reported GEMMs of HCC (MYC-
luc;CTNNB1 and MYC-lucOS;p53). No significant differences
were identified between models in terms of immune infiltrate or
necrosis percentage (Fig. S22).

In sum, these in vivo data demonstrate the oncogenic role of
PMEPA1 in the context of TGF-b signalling in HCC.

Discussion
The role of the TGF-b pathway in HCC has been thoroughly
studied over the years, but there is still no clear consensus on
what causes the pathway to exert its pro-tumoural vs. tumour-
suppressive effects.51,52 Herein, we investigated the role of
PMEPA1 in the context of TGF-b signalling using bulk tran-
scriptomic data of >500 human HCC samples, and found that
the combined overexpression of PMEPA1 and TGF-b pathway
activation (12% of HCCs) is associated with an immune-
exhausted TME, aggressive tumours and poor clinical out-
comes. Importantly, scRNAseq analysis revealed that PMEPA1
is expressed not only by tumour cells but also by stromal types
present in the HCC TME. In vivo, we demonstrated that liver-
specific PMEPA1 overexpression promotes hepatocarcino-
genesis, highlighting the oncogenic capacity of PMEPA1 in
HCC for the first time.

PMEPA1 overexpression has been reported in a wide variety
of cancers, including ovarian, breast, renal and colorectal tu-
mours.53–56 Herein, we evaluated PMEPA1 levels in seven in-
dependent HCC cohorts and found it to be overexpressed in
18% of cases. PMEPA1 expression has been previously
test. Adjusted p values, computed using the Benjamini-Hochberg method, are
Heptromic cohort based on PMEPA1High status (left) or Wnt-TGF-bPresent/PME-
ansition; HCC, hepatocellular carcinoma; TCGA, The Cancer Genome Atlas.
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Oncogenic PMEPA1 and TGF-b activation in HCC
reported to be controlled by epigenetic mechanisms.19,41,44

Moreover, hypomethylation of the gene body has been previ-
ously shown to correlate with a low transcription rate of
commonly upregulated genes in cancer.42 Accordingly, our
data suggest that a reduction in PMEPA1 expression is asso-
ciated with hypomethylation within the PMEPA1 gene body.

Our transcriptomic integrative analysis revealed that HCCs
with both overexpression of PMEPA1 and activation of the
TGF-b pathway display a more aggressive phenotype than
tumours with only PMEPA1 overexpression or TGF-b
JHEP Reports, --- 20
activation, as evidenced by an enrichment of proliferation,
invasiveness, and migration features. Tumours with PMEPA1
overexpression and absence of Wnt-TGF-b signalling activa-
tion also retained features related to HCC aggressiveness.
Importantly, the immune-exhausted features of PMEPA1High/
TGF-b-active tumours were exclusive to this condition.
PMEPA1 levels and features of immune exhaustion have pre-
viously been linked not only in HCC but in other tumour types;
however, no further insights into this association have been
reported.57 Our scRNAseq analysis further shed light on the
24. vol. 6 j 101212 10
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association between PMEPA1 overexpression – in tumour and
stromal cells – and immune exhaustion in HCC. Specifically, we
observed that PMEPA1-expressing tumour and endothelial
JHEP Reports, --- 2
cells, but not their PMEPA1- counterparts, interact with
exhausted T cells through ligand-receptor pairs involving key
checkpoint molecules such as TIGIT and TIM-3.
024. vol. 6 j 101212 11
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Given the relevance of the stromal compartment towards
PMEPA1 function in HCC, we used a well-established murine
model of HCC to evaluate the role of PMEPA1 in the context of
an intact TME. Specifically, we used a model where over-
expression of MYC alone, an oncogene that is amplified in
HCC,58 needs a second hit for tumour development. A major
finding of the present study was that PMEPA1 and MYC
overexpression in the liver leads to tumour development,
describing for the first time the oncogenic capacity of PMEPA1
in HCC. Of note, this gene has previously been shown to
promote tumour growth in ovarian cancer xenograft models,56

and has been drugged and identified as a potential therapeutic
target in triple negative breast cancer.59

Transcriptomic analyses revealed an underlying activation of
TGF-b signalling in the MYC;PMEPA1 model when compared
to control tumours generated by overexpression of MYC and
CTNNB1 and to murine liver samples, which confirms that our
model recapitulates many of the traits that were observed in
human HCC samples. In this line, data from both human and
murine HCCs overexpressing PMEPA1 suggest that in addition
JHEP Reports, --- 20
to promoting TGF-b oncogenic signalling in HCC, PMEPA1
might also play a role in suppressing AR levels and androgen
response signalling, as previously described in prostate cancer
cells.41 In the HCC context, AR signalling has been shown to
suppress metastasis in advanced stages,60 thus suggesting
that PMEPA1-mediated repression of AR could also contribute
to its oncogenic effects.

In conclusion, our study elucidated the role of PMEPA1 in
human HCC, showing that PMEPA1 overexpression is
associated with tumour aggressiveness and immune
exhaustion when TGF-b activation is also present. Addition-
ally, scRNAseq revealed that PMEPA1 plays a role in the
TME and impacts the interaction between tumour cells and
exhausted T cells in HCC. Finally, we demonstrated the
oncogenic capacity of PMEPA1 in HCC by using a GEMM,
which was linked to TGF-b signalling and a reduced
androgen response. This study identifies PMEPA1 as a novel
oncogene whose activity is linked to the tumour-promoting
effects of TGF-b in HCC.
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