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ABSTRACT: Batch processes are generally characterized by
complex dynamics and remarkable data collinearity, thereby
rendering the monitoring of such processes necessary but
challenging. This paper proposes a data-driven time-slice latent
variable correlation analysis-based model predictive fault detection
framework to ensure accurate fault detection in dynamic batch
processes. The three-way batch process data are first unfolded into
the two-way time slice. For each single time slice, process data are
mapped to both major latent variables and residual subspaces to
deal with the variable-wise data collinearity and extract dominant
data information. A measurement status is then determined with a
canonical correlation analysis of the major latent variables and
correlated variables, using both the time and batch perspectives.
Prediction-based residuals are generated, which provide the basis for identifying the property of faults detected, namely, static or
dynamic. Based on experiments using a simulated penicillin production and an industrial inject molding process, the proposed
monitoring scheme has been proven feasible and effective.

1. INTRODUCTION
Batch processes take a significant part in producing high value-
added products, and batch process monitoring is important in
keeping favorable operation conditions.1−3 For one thing, the
complex reaction or process characteristic makes the establish-
ment of a mathematical model difficult, and this problem limits
the usage of the model-based monitoring approach.4 For
another, with the further development of data acquisition
technology, mass of process data can be obtained. Data-driven
process monitoring, especially the multivariate statistical
process monitoring (MSPM) methods, becomes popular.5−9

Principal component analysis (PCA), partial least squares
(PLS), and canonical correlation analysis (CCA) are three
MSPM approaches that have been widely used recently.10−14

Batch processes can be analyzed using multiway PCA (MPCA)
and multiway PLS (MPLS), and time-slice CCA methods had
been developed. The MPCA method unfolds three-way batch
process data into two-way, on which PCA is then performed.15

The variable-wise correlation is considered by projecting the
process data into both dominant and residual subspaces. MPLS
also requires the conversion of three-way data to two-way and
then carries out the PLS between the latter and the quality
variables.16 Process data are then projected into a quality
relevant subspace for process monitoring. Time-slice CCA
characterizes the relationship between different operation units
and is used for monitoring the key operation unit.17 The
effectiveness of these methods had been demonstrated.

However, the complex dynamics in batch processes is not
thoroughly explored and characterized by these methods.

To deal with process dynamics, various dynamic process
monitoring methods were proposed.18−20 For dynamic batch
processes, multiway dynamic monitoring methods were
proposed,21,22 among which dynamic MPCA, dynamic
MPLS, and dynamic CCA methods are the most extensively
used.23,24 In order to mine dynamic characteristic of the batch
process, a two-dimensional localized dynamic support vector
data description method is proposed, and this method also
mines the local behavior of process data well.25 In dynamic
monitoring methods, the correlation in the time series is
explored. To characterize the correlation in both the time and
batch directions, two-dimensional monitoring models such as
two-dimensional dynamic PCA and PLS were developed.26,27

A two-dimensional deep correlated representation learning
method was also proposed to solve the problem of dynamics
and nonlinearity; on the basis of data slicing, a stacked
autoencoder-based deep neural network is constructed to
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characterize the correlation among the process variables,
effectively improving the monitoring performance.28 Recently,
a multiobjective two-dimensional CCA monitoring method
was proposed.24 By comparing the correlation information
from the previous samples and previous batches, the status of a
measurement can be examined. In addition, the related
methods of neural networks have also been applied to deal
with data with nonlinear and dynamic properties; in a deep
autoencoder thermography method, the layer-by-layer feature
visualization reveals how the model extracts defect features.29

However, the following deflects require further discussion.
First, high collinearity may exist in the variable-wise data,
which may cause inefficiency of conventional CCA methods.30

Second, the stochastic optimization method is used to select
the most correlated variables and is considerably computa-
tionally expensive, which makes establishing the time-slice
monitoring model inappropriate. Third, the property of a
detected fault is not identified (a dynamic-related fault or a
static fault).

This study proposes a data-driven time-slice latent variable
correlation analysis-based model predictive fault detection
approach for efficient dynamic batch process monitoring.
Compared to the existing methods, this study solved the
problem of time-slice data collinearity. Variable selection using
the least absolute shrinkage and selection operator (LASSO)
method reduces the computational cost, and the property of
detecting faults is distinguished. The novelty and contributions
are summarized as follows:

(1) The three-way data are unfolded into the two-way time
slice, and the measurements are mapped to both major
latent variables and residual subspaces, addressing
variable-wise collinearity. Then, the correlation between
a measurement and previous samples is analyzed in the
dominant subspace, through which the process dynamics
is characterized. The correlation between the current
and prior time slices is used to evaluate the status of a
sample.

(2) LASSO is employed to efficiently select variables that are
suitable for prediction from the time perspective and
batch perspective. The computational cost of this
method is significantly lower than the existing selection
methods based on random optimization.

(3) Prediction-based fault detection residual is generated. It
is further divided into two categories: dynamic and
static. Following that, the properties of a detected fault
are determined.

(4) Theoretical analysis and experiments demonstrate the
feasibility and superiority of the proposed monitoring
scheme.

The rest of this article is presented in the following structure.
Section 2 reviews the basic CCA process monitoring for batch
processes. Section 3 details the proposed model predictive
batch process monitoring method. Then, Section 4 conducts
the two experimental studies. Finally, Section 5 presents the
conclusions and discussions.

2. PRELIMINARIES AND PROBLEM FORMULATION
2.1. CCA-Based Batch Process Monitoring. CCA is a

classical multivariate statistical analysis method for exploring
and characterizing the correlation between two parts of
random variables. Given random variables x p and
y q, p and q determine the numbers of variables, CCA

attempts to calculate the canonical correlation vectors
Ji

p 1× and Li
q 1× such that the correlation between

J xi
T and L yi

T is maximized. The optimization problem is
formulated as31,32

( )
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J L
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where x, y, and xy are covariance matrices. Solution to eq 1
can be acquired through singular value decomposition (SVD)
on a matrix K as
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matrix and l rank( )xy= . Then, we derive canonical
correlation matrices as31,32
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= [ ··· ] =

= [ ··· ] =
(3)

Batch process data can be thought of having three
dimensions, that is, variable, time, and batch. To deal with
batch process data, first, is to unfold the three-way data into
two-way data. After data normalization, a current sample data
matrix X k( ) containing the current samples and a previous
sample data matrix Y k( ) containing previous samples are
constructed. Then, CCA is performed between X k( ) and Y k( ),
and canonical correlation matrices J k( ) and L k( ) and
correlation matrix k( ) are obtained. For a measurement at
the k-th instant, x(k) ∈ p 1× and y(k) = [x(k − 1)T···x(k −
a)T]T q 1× , where a is the number of lagged variables, and a
fault detection residual vector is generated as24

r J x L yk k k k k k( ) ( ) ( ) ( ) ( ) ( )T T= (4)

Then, the T2 statistic for the residual is established as24

r rT k k k k( ) ( ) ( ) ( )T
r

2 1= (5)

where k( )r is the covariance matrix of the residual r k( ).
Notably, when the time series correlation does not exist or the
correlation is not considered, the second term in eq 4,

L yk k k( ) ( ) ( )T , becomes zero; then, eq 5 becomes the classical
T2 monitoring.

2.2. Problem Formulation. The following problems exist
in the abovementioned CCA-based batch process monitoring.

First, eq 2 involves the inverse operation of the covariance
matrix. When the variable-wise correlation and data collinearity
exist, the inverse operation is numerically unstable. A similar
problem also exists in the T2 test. The variable-wise correlation
requires consideration and characterization.

Second, determining the involved variables in the extended
sample y k( ) is important. In ref 24, a multiobjective
optimization method is introduced to select the most
correlated variables. Nevertheless, the abovementioned sto-
chastic numerical optimization-based method is computation
expensive, and establishing the time-slice model is difficult. A
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computationally efficient correlated variable selection method
is desired.

Third, a fault may affect either the dynamic or static
property of a process. However, the existing batch process
monitoring methods do not discriminate the dynamic or static
property of a fault. After a fault is detected, the properties of
the fault need to be further determined.

3. PREDICTIVE PROCESS MONITORING FOR
DYNAMIC BATCH PROCESSES

3.1. Predictive Batch Process Monitoring. A batch
process is generally characterized by a complex variable

correlation and remarkable dynamics. To establish an efficient
batch process monitoring scheme, all these complex character-
istics should be addressed. Here, we individually detail the
proposed predictive monitoring approach for batch processes,
which is composed of the following two parts.
3.1.1. Offline Modeling. Step 1: the three-way batch process

data X(I × J × K) are converted to two-way time-slice data
X k( ){ } using the batch-wise unfolding and normalized along

the batch perspective, where X denotes three-way data with I
batches, J(=p) denotes variable numbers, and K denotes time
instants. Figure 1 presents data unfolding and normalization.

Step 2: at each time slice, a CCA monitoring model is
established. Let the data at the k-th time slice be X k( ). To deal
with the inefficiency of conventional CCA methods caused by
the variable-wise high collinearity, the core characteristics of

the time-slice data are better reflected and the data are
projected into both dominant latent variable and residual
subspaces. First, SVD is performed on the covariance matrix of
X k( ) as

X X

P P P P
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k k
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k k
k

k
k k

( )
( ) ( )

1

( ) ( )
( ) 0

0 ( )
( ) ( )

x

T

pc
pc

pc
T T

res
res

res

=

= [ ] [ ]
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
(6)

then, for a sample x k( ) in X k( ), the sample is mapped to the
major latent variables by P k( )pc as

t P xk k k k( ) ( ) ( ) ( )pc pc
T k k1/2 ( ) 1pc= ×

(7)

where k k( )pc denotes the number of retained latent variables
that occupy 85 to 95% of the original data variance at time
instant k. The historical data of the k-th time slice in the latent
variable subspace are denoted as T k( ). A residual vector that
represents the data reconstruction error is constructed as

e x P P xk k k k k( ) ( ) ( ) ( ) ( )pc pc
T= (8)

Step 3: an extended sample y k( ) is constructed to include
samples from the previous time slices as y(k) = [x(k − 1)Tx(k
− 2)T···x(k − a)T]T. Let the corresponding data matrix be
Y k( ) to include data from previous time slices. To characterize
the process dynamics, CCA is carried out between T k( ) and
previous time-slice data Y k( ). SVD is performed on a matrix
G k( )T as

G

R V

k k k k

k k k

( ) ( ) ( ) ( )

( ) ( ) ( )

T t ty y

T T T

1/2 1/2
=

= (9)

w h e r e k( ) T T
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( ) ( )

1

T

= , k( ) Y Y
y

k k
I
( ) ( )

1

T

= , a n d

k( ) T Y
ty

k k
I
( ) ( )

1

T

= . k( )T represents the correlation matrix
at the k-th time instant. Canonical correlation vectors are
obtained as

J J J Rk k k k k( ) ( ) ( ) ( ) ( )T T Tk t T1
1/2

pc
= [ ··· ] = (10)

Figure 1. Time-slice data unfolding and normalization.

Figure 2. Illustration of the latent variable analysis and variable
selection at the k-th time slice.
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L L L Vk k k k k( ) ( ) ( ) ( ) ( )T T Tq y T1
1/2= [ ··· ] =

(11)

To apply CCA to monitoring processes, the residuals are
constructed as

r J t L yk k k k k k( ) ( ) ( ) ( ) ( ) ( )T T
T

T T
T= (12)

Remarkably, the extended data matrix Y k( ) can have high
dimension and complex correlation. Then, determining
appropriate variables in Y k( ) is important. Looking at the
residual in eq 12, we can obtain that

r R t yk k k k k k k( ) ( ) ( ) ( ) ( ) ( ) ( )T T
T

T ty y
1/2 1

=
Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑ
(13)

where t yk k k k( ) ( ) ( ) ( )ty y
1= is the LS estimation of t k( )

using y k( ). The residual depends on the LS regression between
t k( ) and y k( ). First, not all variables in y k( ) contribute to the
regression of t k( ). Including nonbeneficial variables may
induce disturbance. Second, the LS regression involves the
calculation of the inverse of y k( ). However, when the
collinearity exists in y k( ), LS also performs poorly.

To solve the problems mentioned above, this paper
introduced the LASSO method. In the field of statistics, the
LASSO becomes popular in solving the penalized regression
problem, which imposes a bound on the L1-norm of the
regression coefficients, resulting in coefficient shrinkage. Many
coefficients may become zero. As a result, the LASSO achieves
variable selection and regression modeling simultaneously.
When the LASSO is used for regression analysis, L1-
regularization is introduced to eliminate independent variables
with little effect on dependent variables so that variables
favorable for prediction could be selected from numerous
independent variables.33 It also automatically handles the high
data collinearity by removing redundant variables. Thus, the
LASSO increases model interpretability compared to least
squares regression. Here, the LASSO is used to identify
correlated variables in y k( ).

Given the time-slice sample t k t k t k( ) ( ), , ( )i i i
I T1= [ ··· ] of the

i-th latent variable at the time instant k and the variables Y k( )

Figure 3. Schematic of the proposed predictive monitoring scheme.

Table 1. Measured Variables in the FBPCP

no. description no. description

1 aeration rate 7 carbon dioxide concentration
2 agitator power 8 pH
3 substrate feed rate 9 bioreactor temperature
4 substrate feed temperature 10 generated heat
5 dissolved oxygen

concentration.
11 cooling/heating water flow rate

6 culture volume
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from the previous time slices, the LASSO-based maximum
relevant independent variable selection is expressed as the
following optimization problem

t Y
I

k k k

k

min
1

( ) ( ) ( )

s. t. ( )

k
i

( ) 2
2

1

{ }
(14)

where k( ) is the correlation coefficient between Y k( ) and
t k( )i and 0 is a L1-penalty term used to control the
number of independent variables which are selected. By the
Lagrange multiplier method, the problem shown in eq 14 can
be transformed into the following form

t Yk
I

k k k k( ) argmin
1

( ) ( ) ( ) ( )
k

i
( ) 2

2
1{ }= +

(15)

where λ is associated with and is used to adjust penalty
weights. Generally, the value of λ is a sequence and the optimal
value of λ is selected by cross-validation in the LASSO function
to prevent the model from overfitting. After λ is set, the partial
independent variables, which are most important for predicting

t k( )i , are selected from the extended sample Y k( ). The details
of the LASSO-based communication variable selection
algorithm are shown in Algorithm I.
3.1.1.1. Algorithm I LASSO-Based Lagged Variable

Selection. Step (1): for the k-th time slice, obtain the PCs
t k( ).

Step (2): for the i-th PC t k( )i , establish the LS regression
model between t k( )i and extended sample y k( ). Select the
most important lagged variables through the LASSO denoted
as yk i,{ }.

Step (3): repeat step 2 for all the k k( )pc PCs; obtain the
selected lagged variables as y y yk( ) k k k k,1 , ( )pc

= { } ··· { }.

Step (4): repeat steps 1 to 3 for all the K time slices.
Figure 2 presents an illustration of the latent variable

correlation analysis and variable selection for batch processes.
Step 4: using the data of selected variables, the CCA-based

residual is generated. The residual is further decomposed as
the dynamic and static parts, namely,

r r rk k k( ) ( ) ( )T
T T T
dynamic static= [ ] (16)

Figure 4. Simplified flowchart of the FBPCP.

Figure 5. Variable selection results for the FBPCP (the yellow grid represents the selected variable, and the blue grid represents the unselected
variable).
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where r k( ) k k
dynamic

( )dynamic and r k( ) k k k k
static

( ) ( )pc dynamic .
Through the accumulated correlation method, the number of
dynamic features k k( )dynamic can be expressed as,17

k k
k

k
Cum( ( ))

( )

( )
i
k k

i

i
l k

i
dynamic

1
( )

1
( )

dynamic

= =

= (17)

in order to preserve the most correlation information, η is
generally determined as 80−95%. Correspondingly, the
covariance matrix k( )rT is divided as

k
k

k

0

0
( )

( )

( )
rT

dynamic

static

=

Ä
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ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
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where

Ik k k

k k

( ) ( ) ( )

diag((1 ( )), , (1 ( )))

k k
T

k

dynamic ( ) dynamic dynamic

1
2 2

dynamic

dynamic

=

= ···
(19)

Ik k k

k

( ) ( ) ( )

diag((1 ( ), , 1)

k k k k
T

k

static ( ) ( ) static static

,dynamic 1
2

pc dynamic
=

= ···+ (20)

Step 5: establish the monitoring statistics and confirm the
thresholds. On the basis of the residuals r k( )dynamic and r k( )static ,
the status of the process can easily be identified by the
following three statistics

r rT k k k k

k k

( ) ( ) ( ) ( )

( ( ))

T
dynamic
2

dynamic dynamic

1
dynamic

2
dynamic

=

(21)

r rT k k k k k k( ) ( ) ( ) ( ) ( ( ))T
static
2

static
static

1

static
2

static=
(22)

e e

x I P P x

Q k k k

k k k k g h

( ) ( ) ( )

( )( ( ) ( )) ( ) ( )

T

T
p p pc pc

T 2

=

= ×

(23)

where g and h can be calculated from the normal operating
data. Notably, the Q statistic is the same with the MPCA Q
statistic, and other details on the threshold determination can
be found in ref 34.
3.1.2. Online Monitoring. Step 1: normalize the current

sample using the statistics of the normal historical sample at
time slice k.

Step 2: project the normalized online sample into the latent
variables and residual subspaces.

Step 3: calculate the dynamic and static residuals; calculate
the corresponding monitoring statistics.

Step 4: determine whether the process status is faulty and
identify whether the fault is dynamic or static.

Figure 3 illustrates the proposed time-slice latent variable
correlation analysis-based predictive monitoring scheme.

3.2. Characteristic Analysis. The proposed predictive
monitoring method provides the optimal fault detection results
when the relationship between the samples of the k-th instant
and previous instants can be described as

A t B yk k k k k( )( ( ) ( )) ( ) ( )+ = (24)

where A k( ) and B k( ) denote parameter matrices and k( )
denotes noise.
3.2.1. Comparison with the Classical MPCA Method.

MPCA establishes the T2 on the extracted latent variables t and
established the Q statistic on the residual e. The key difference
between MPCA and the proposed predictive monitoring
method is that the predictive monitoring method considers the
correlation between the current and previous samples, which is
efficient for fault detection when process dynamics exists. The
superiority of the proposed predictive monitoring method over
MPCA is theoretically analyzed in Remark 1.

Remark 1: the nondetection rate (NDR) of T2 statistic can
be expressed as T f F k kNDR( , ) ( ( ); , )pc pc

2 2
2= , where

F T k( ; , )cl pc
2

2 is the cumulative distribution function of the

noncentral 2 distribution with noncentral parameter
v f f( ) ( )x

T 1= and the degree of freedom kpc.
32 The

degree of freedoms kpc in the MPCA T2 and the predictive

monitoring method Tr
2 are the same. Let the fault sample be

described as x xk k f( ) ( )f N= + , where x k( )N denotes the
normal data and f denotes the data with a possible fault.
v f f( ) ( )x

T
kPCA ( )

1= and v f f( ) ( )T
r kMPM ( )

1= . Then,
by proving that v vMPM PCA , we can obtain that the

T f T fNDR ( , ) NDR ( , )MPM
2

PCA
2 . Here, we no longer

proceed to the proof details.
3.2.2. Comparison with the Existing CCA Monitoring

Methods. The proposed predictive monitoring method
projects data into a latent variable subspace and deals with
the variable-wise correlation. The property of a detected fault is
identified, either a dynamic- or static-related fault.
3.2.3. Comparison with the Existing Multiobjective CCA

Monitoring Method.24 Compared with the stochastic
optimization-based variable selection method, the computation
of LASSO-based variable selection is more efficient. The
possible collinearity in the candidate variables is also addressed
by the LASSO.

3.3. Extension to the Two-Dimensional Dynamic
Version. The abovementioned model is a one-dimensional
dynamic monitoring model in which the correlation only
needed to be considered in the time series. However, the
dynamics may exist in both the time and batch directions when
dealing with batch processes, that is, the status of a current
sample is affected by both the previous samples and batches.
Under this condition, the extended sample is appropriately
expressed as follows,24 where a and b represent the number of
lagged variables in time and batch dimension,

y x x x

x x

k k j k j k a j

k j k a j b

( ) ( 1, ) ( 2, ) ( , )

( , 1) ( , )

T T T

T T

= [ ··· ···

··· ] (25)

Two existing problems must be addressed in extending the
proposed predictive monitoring method to the two-dimen-
sional model: first, the number of included variables in eq 25
can be considerably large, while not all variables are beneficial
for the modeling. Second, considerable nonlinearity may exist
in the large number of variables. However, the LASSO-based
variable selection automatically selects the beneficial variables
and simultaneously deals with the considerable data
collinearity in y k( ).
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4. EXPERIMENTAL STUDIES
The functionality and superiority of the proposed predictive
monitoring method are demonstrated through two examples.

4.1. Case Study on a Fed-Batch Penicillin Cultivation
Process. The fed-batch penicillin cultivation process
(FBPCP), which has been extensively studied during recent
years, is characterized by complex correlation and remarkable
dynamics.35,36 Most of the important cell masses are produced
at the beginning of the culture, and penicillin is produced
during the exponential growth phase. After a period, the
process reaches the stationary phase. A simulator was
developed by the monitoring and control group of the Illinois
Institute of Technology and is used to verify the validity of the
proposed monitoring scheme.35 Eleven variables are consid-
ered here, which is the same as the ref 36 and listed in Table 1.
Figure 4 presents a simplified flowchart of the process. We no
longer go into the detail of the simulation process, given its
popularity.

Under normal operating conditions, 150 batches are
generated through simulation to establish the monitoring
model. Each batch running is simulated to be with 200 h, and
samples are taken every hour. First, the process measurements
are unfolded into the two-way time slice and normalized along
the batch perspective in each time slice. Then, the measure-
ments are mapped into major latent variables which preserve
90% variance information and a residual subspace. The
previous two samples of each time instant are used to
construct the y k( ). Then, the LASSO-based variable selection
is performed. Figure 5 presents the variable selection results at
each time instant. Then, fault detection prediction residual is
generated, which is further divided into the static (unpredict-

able) and dynamic-related (predictable) subspaces. On the
basis of the residuals, monitoring statistics are established. The
computation time for the proposed predictive monitoring
method is 583 s, which is much faster than that of the
stochastic optimization-based monitoring model which takes
more than 10,000 s.24

As a test to verify whether the proposed predictive
monitoring method can detect faults better, three different
types of fault data are simulated as follows:

Case 1: a ramp change is introduced to variable 1 from the
100th to the 150th points; case 2: a step change is introduced
to variable 2 from the 100th to the 150th points; and case 3: a
ramp change is introduced to variable 3 from the 100th to the
150th points.

Figure 6 presents the monitoring results using MPCA and
the predictive monitoring method for case 1. At the beginning
of the fault, the process dynamics is changed by the fault, and
the Tdynamic

2 first detects the fault. After the fault magnitude

enlarges, the MPCA also detects the fault in the T2 statistic.
The predictive monitoring method has an earlier alarm time of
4 h than the conventional MPCA method, which is important
in practical applications.

Figure 7 presents the monitoring results for case 2 using the
predictive monitoring and the conventional MPCA. Appa-
rently, the fault is only detected by the Tdynamic

2 of the predictive
monitoring. Conventional MPCA cannot alarm the fault.
Given that the fault magnitude is small, the fault is detected
only at the beginning and the end of the fault. Figure 8 shows
the monitoring results for case 3 using the predictive
monitoring and the MPCA. Evidently, the Tdynamic

2 first detects

Figure 6. Monitoring results using predictive monitoring and MPCA for the FBPCP fault 1.
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the fault. The abovementioned results indicate that considering
the process dynamic is important in batch process monitoring
because a fault can affect the process dynamics at the early fault
stage. The effectiveness and superiority of the scheme are
verified.

4.2. Application on an Industrial Injection Molding
Process. The injection molding process (IMP) is a typical
batch process that plays an important role in injection
production industry. Figure 9 shows a simplified flowchart of
a reciprocating-screw IMP. We no longer go into the detail, but
further knowledge can be found in refs 24 and 37. Here, 17
measured variables are included, which are presented in Table
2.

Under normal operating conditions, a batch is composed of
100 samples, while a data set is mainly composed of 150
batches which are used as the training data. The batch process
data are unfolded into time-slice data, and then, in each time
slice, the process data are projected into a dominant subspace
which contains 90% of data variance. Two previous samples
are included to construct the y k( ). Figure 10 presents the
variable selection results. Then, prediction-based residual is
generated, and the residual is further divided as the predictable
and unpredictable subspaces. In order to distinguish the
property and the status of a detected fault, the monitoring
statistics are established. The entire modeling procedures take
approximately 610 s, a rate much faster than the stochastic
optimization model which takes more than 10,000 s. As a test
to verify the monitoring performance, three cases with different
faults are considered:

Fault 1: a ramp drift is introduced into the injection position
sensor from the 31st to the 70th points.

Fault 2: a step change is introduced into the 10th variable
sensor.

Fault 3: an unknown insufficient injection fault.
Monitoring results for case 1 use the proposed predictive

monitoring. Figure 11 presents the conventional MPCA.
Apparently, the Q statistic, shared by both, first detects the
fault. Therefore, the fault affects the variable-wise correlation at
the beginning of the fault. The process dynamics is not
destroyed, and the fault is a dynamic-unrelated fault. Figure 12
presents the monitoring results for case 2 using the proposed
predictive monitoring and conventional MPCA. Most of the
faulty points are detected by the Tstatic

2 of the predictive
monitoring method, while the NDRs in the other statistics are
considerably high. Thus, the fault is a static fault that does not
cause significant effects on the process dynamic. The PCA T2

can also detect the fault, but the NDR is much higher than the
Tstatic

2 because the conventional PCA does not discriminate the
property of a fault, which introduces monitoring redundancy.
Figure 13 presents the monitoring results for case 3 using the
proposed predictive monitoring and conventional MPCA. The
Tdynamic

2 first detects the fault, indicating that the process
dynamics is affected at the onset of the fault.

The abovementioned experimental results and analysis
verified that the proposed predictive monitoring method
involves the process dynamic information and is more
computationally efficient than the multiobjective CCA

Figure 7. Monitoring results using predictive monitoring and MPCA for the FBPCP fault 2.
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method. Moreover, the predictive monitoring method
effectively divides the monitoring subspace into the dynamic-
and static-related parts, which identified whether the process is
faulty and whether the fault is dynamic or static.

5. CONCLUSIONS
This study proposes a data-driven predictive fault detection
scheme for dynamic batch process monitoring. By first
projecting the batch process data into both major latent
variables and residual subspaces, the variable-wise correlation is
addressed. Then, the prediction-based monitoring method is
established by performing CCA between the latent variable
subspace and previous samples. LASSO-based variable
selection is performed to select the most correlated variables
in the model. According to the generated prediction-based
residuals, dynamic residuals and static residuals are further
discriminated. Then, dynamic and static monitoring statistics
are established to identify the process status and fault property.
The functionality and effectiveness of the suggested monitor-
ing method are verified through experiments on a simulated
FBPCP and an industrial IMP. Since the fault property is
identified, the problem of fault location and classification can

Figure 8. Monitoring results using predictive monitoring and MPCA for the FBPCP fault 3.

Figure 9. Industrial IMP28 (reprinted with permission from [Data-
Driven Two-Dimensional Deep Correlated Representation Learning
for Nonlinear Batch Process Monitoring]. Copyright [2020] [IEEE]).

Table 2. Measured Variables in the IMP

no. name no. name

1 mold position 10 mold velocity
2 ejector pin position 11 ejector pin velocity
3 injection position 12 screw velocity
4 system pressure 13 nozzle temperature
5 mold adjustment 14 zone 1 temperature
6 plasticization 15 zone 2 temperature
7 nozzle pressure 16 zone 3 temperature
8 injection speed 17 zone 4 temperature
9 back pressure
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be further studied in the future work. Besides, the current work
uses only process data to establish the monitoring model for
dynamic processes. Given that a part of process knowledge is
usually available and the wide application of data-knowledge-
based hybrid modeling,38 how to incorporate process knowl-
edge to improve the modeling and monitoring performance for
dynamic processes also needs further exploration.
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Figure 12. Monitoring results for the IMP fault 2.

Figure 13. Monitoring results for the IMP fault 3.
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