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network model for robust mouse pose estimation

Songyan Lv,1 Jincheng Wang,1 Xiaowei Chen,1 and Xiang Liao2,3,*
SUMMARY

Animal behavior analysis plays a crucial role in contemporary neuroscience research. However, the perfor-
mance of the frame-by-frame approach may degrade in scenarios with occlusions or motion blur. In this
study, we propose a spatiotemporal network model based on YOLOv8 to enhance the accuracy of key-
point detection in mouse behavioral experimental videos. This model integrates a time-domain tracking
strategy comprising two components: the first part utilizes key-point detection results from the previous
frame to detect potential target locations in the subsequent frame; the second part employs Kalman
filtering to analyze key-point changes prior to detection, allowing for the estimation ofmissing key-points.
In the comparison of pose estimation results between our approach, YOLOv8, DeepLabCut and SLEAP on
videos of three mouse behavioral experiments, our approach demonstrated significantly superior perfor-
mance. This suggests that our method offers a new and effective means of accurately tracking and esti-
mating pose in mice through spatiotemporal processing.

INTRODUCTION

The study of animal behavior has a long history dating back to ancient times, with early pioneers such as Aristotle (384–322 BC) and Erahis-

tratus (304–250 BC) conducting experiments on animals in captivity.1 Animal behavior analysis is a scientific and objective approach to study-

ing the behavior of animals in different conditions. It encompasses various aspects of animal behavior, such as communication, emotional

expression, social interactions, learning, and reproductive behavior. One particular area of focus in animal behavior analysis is the study of

mouse behavior, which is conducted in multiple fields including neuroscience, behavioral science, andmedicine.2–4 In the context of studying

mouse behavior, traditional methods involve researchers watching video replays and manually noting the timing and location of specific

events to identify behavioral postures. However, these manual analyses are time-consuming and prone to inconsistencies due to variations

in labeling standards and reliability among different annotators. As a result, the reproducibility of research findings is often limited.5 Recently,

the field of animal behavior research has witnessed significant advancements in information technology, leading to a substantial increase in

the volume of animal behavior data. Furthermore, experiments now involve more complex and diverse situations. However, the manual la-

beling of behavior data becomes challenging in low-light or dim scenes, making it difficult to ensure labeling standards and accuracy.6

The estimation of behavioral poses plays a crucial role in a wide range of recent scientific studies. For example, Ottenheimer et al. inves-

tigated fluid consumption to gain insights into neural coding for reward prediction errors.7 Okubo et al. explored the effects of wind on fruit fly

behavior.8 Schorscher-Petcu et al. studied the role of tactile events and nociceptors in tactile perception of freely movingmice.9 Warren et al.

examined the interaction between tactile processing in the palpebral system and its impact on movement direction in rodents.10 Keshavarzi

et al. found the relationship between eyemovement and neural activity in freely behaving rodents.11 As a result, there is an increasing focus on

developing automated, reliable, and accurate methods for analyzing experimental videos of mice, particularly in the identification of mouse

behavioral postures and the implementation of real-time interactive closed-loop experimental designs.12,13

Pose estimation methods emerged in computer vision research in the late 1970s, enabling the analysis of image frames from videos to

estimate poses.14,15 This estimation was achieved by representing the images in a dimensionally reduced space, using techniques such as

principal component analysis to generate features. The estimation process involved unsupervised clustering of pose dynamics. By comparing

spectra or fitting autoregressive models to low-dimensional projections, these methods can identify and classify dozens to hundreds of

unique stereotypical behaviors in animals, including flies and mice.16,17 These methods have proven valuable in uncovering underlying pat-

terns and structures in animal behavioral data. Consequently, they have contributed significantly to studies involving social interaction, gene

mutation, and neural perturbation.18–22 However, thesemethods have limitations related to video properties and are challenging to adapt to

different experimental settings, thus restricting their application in certain scenarios.

In animal behavioral experiments, the accuracy of posture recognition can be compromised when the recorded video quality is poor, such

as in dim conditions during water maze experiments. This can result in significant position deviations of key points used for estimation. In
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some cases, the recognition target may even be lost entirely, which can have a notable impact on the reliability of behavioral experiments.

Consequently, manual identification by experimentalists is still necessary and software tools cannot fully replace this human involvement.

Additionally, striking the right balance between recognition accuracy and speed poses a challenge. Real-time pose estimation is crucial

for enabling closed-loop experimental setups in neuroscience research. Establishing closed-loop protocols that manipulate ongoing

neuronal activity is highly valuable for studying in vivo electrophysiological experiments. It allows researchers to detect specific electrophys-

iological events in conjunction with stimulation and track specific behaviors through real-time monitoring of neuronal operation.23,24 How-

ever, current behavioral analysis software that operates in real time often requires the attachment of sensors or tracking devices to animals,

which presents additional complexities.

With advancements in computer vision, deep learning, and GPU computing, new techniques have revolutionized the analysis of human

behavioral posture.25–30 The success in this field is largely attributed to the effective training and evaluation of images using convolutional

neural networks.31,32 However, when it comes to pose estimation for laboratory animals, there are subtle differences that must be taken

into consideration. While algorithms developed human images can handle diverse situations in terms of human shape, environment, and

quality, they typically require large training sets of labeled images.33,34 Behavioral experiments in laboratory offer more control, but the

recording conditions can be highly specific to each experimental paradigm. Thismakes it challenging to label data for each animal type, which

is not readily available. Consequently, transfer learning becomes vital for training models for these specific scenarios. Recently, some open-

source tools for animal pose estimation have been proposed, such as DeepPoseKit, DeepLabCut, and SLEAP.35–40 Automated analysis tech-

niques have also been explored for fruit flies, broiler chickens, primates, and zebrafish.35,41–43 These advancements not only contribute to the

field of animal behavior analysis but also facilitate standardized and scalable approaches for pose estimation in various laboratory animal

species.

DeepPoseKit uses a multi-scale deep learning model (named Stacked DenseNet) and a GPU-based detection algorithm for fast peaks

(estimating key-point locations with sub-pixel accuracy). They explored a number of small-scale image recognition methods, with the images

having clearly defined edges. However, in the actual behavioral experiments, in order to meet some experimental conditions (such as dark

field, water maze, etc.), the video quality is difficult to reach the clarity of its example dataset. At the same time, the most important point is to

ensure the recognition speed. The DeepPoseKit model has a few parameters, which leads to a smaller image size that it can process (fly:

192 3 192, locust: 160 3 160, zebra: 160 3 160) and is significantly different from regular animal behavior videos. As it is not reasonable

to ask experimenters to restrict the behavioral experiment itself for the sake of later video analysis, therefore it needs to meet the animal

detection accuracy under normal video size and various video quality while ensuring the video processing speed.

DeepLabCut employs transfer learning on amodel trained with a large image dataset (ResNet50, 25million parameters) to achieve behav-

ioral video recognition.While its training and prediction speedsmay be slower compared to DeepPoseKit, DeepLabCut offers greater adapt-

ability to various experimental scenarios and boasts higher detection accuracy. SLEAP, the advanced successor of the single-animal pose-

estimation method LEAP, is a multi-animal pose tracking system with a sophisticated graphical user interface (GUI) akin to DeepLabCut. It

facilitates effortless dataset production and training within the program, boasting exceptional recognition speed and accuracy on par

with DeepLabCut.40 SBeA is a computational framework designed to surmount data limitations by leveraging a minimal number of labeled

frames for multi-animal 3D estimation. Its findings demonstrate that outstanding performance can be attained across diverse species by uti-

lizing existing custom datasets.44

Moreover, YOLOv8 is one of themost well-established image recognitionmodels in recent years. It encompasses various functions such as

target recognition, image segmentation, and key-point detection. Particularly, the key-point detection component of YOLOv8-pose is

capable of recognizing 17 key points on the human body. It excels in real-time recognition and offers high precision even in environments

with complex backgrounds. Leveraging the strength of YOLOv8, we developed a spatiotemporal approach for mouse behavior pose estima-

tion. By building our approach upon YOLOv8-pose, we aim to harness its robustness and accuracy in recognizing targets in complex back-

grounds. This allows us to achieve precise and real-time pose estimation for mouse behavior, empowering researchers in their behavioral

analysis and further advancements in the field.

Themain challenge in pose estimation is to strike a balance between generality of use, recognition accuracy, processing speed, and anno-

tation cost. To address this challenge, we propose a spatiotemporal PoseNet (STPoseNet) model that focuses on achieving high accuracy in

mouse pose estimation, while maintaining fast processing speed and minimizing labeling efforts (with fewer than 100 images required for a

single experimental scenario). Our approach incorporates two modules that leverage time domain information: a tracking-cropping module

(TCM) and a Kalman filter-based module. We first evaluated the effectiveness of our method in two experimental scenarios: an open field,

where mice chase artificial prey against a clear background, and a water maze, where mice swim in dim conditions. Then we utilized publicly

accessible open field exploration experiment videos for further evaluation of performance. In our study, YOLOv8-pose, DeepLabCut and

SLEAP were used as benchmarks to compare the performance of our proposed approach for mouse pose estimation. Themain contributions

of this study can be summarized as follows.

(1) In laboratory mouse behavior experiments, we have developed a pose estimation model based on YOLOv8 that incorporates time

domain information from videos. This design ensures both accurate detection and high processing speed.

(2) To improve the accuracy of pose estimation in complex conditions, we developed a TCM based on time domain information for key-

point detection and developed a matching data enhancement approach for it.

(3) Additionally, we have integrated a Kalman filter-basedmodule to predict key points in consecutive video frames,minimizing the occur-

rence of missing results during the experiment.
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Figure 1. Schematic illustration of STPoseNet model and the processing flowchart for analyzing experimental mouse behavior videos

(A) The STPoseNet model is constructed based on the YOLOv8 network architecture. To enable spatiotemporal pose estimation, a tracking-cropping module

(TCM) is introduced into themodel. The TCM is independent from Backbone and Head parts. The TCM is responsible for tracking and cropping themouse poses

across consecutive frames. The data input process involves feeding images into the backbone layers (P1-P5) for feature extraction through convolution, before

transferring the data to the Head. The original input images are resized to a predetermined size before being fed into the TCM. Notations used in the model: C:

Concat, U: Upsample, D: Detect. The Bbox, Cls, and Pose in the Head part represent the bounding box information, the content category, and the key-points

information of the content, respectively.

(B) The flowchart demonstrates the sequential processing of mouse behavior videos. The green line represents the information flow during the normal mode,

where the original images are processed. The blue line illustrates the information flow when the TCM is activated, and the tracking-cropping module is utilized.

This allows for improved accuracy in estimating the mouse poses over time. In certain special conditions, denoted by the red line, the TCM leverages the Kalman

filter to make predictions, ensuring robust pose estimation even in challenging situations. See also Figure S1.
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(4) The STPoseNet model weights we provide are pre-trained under three different experimental conditions, reducing the cost of

applying them to new experimental scenarios through transfer learning.

RESULTS

Pose estimation process of STPoseNet model

STPoseNet is a neural network that we developed to incorporate both spatial and temporal information for accurate mouse pose estimation.

Figure 1 illustrates the architecture and experimental video processing flow of STPoseNet. Figure 2 demonstrates themouse tracking process

and pose estimation with consecutive video frames. Figure 3 highlights the evaluation metrics utilized for assessing the accuracy of mouse

pose estimation. The STPoseNet network architecture, TCM, data enhancement, error reduction estimation, and performance evaluation

methods are depicted in the STAR Methods section.

The data preprocessing, network model training, and testing were conducted on a Windows 10 system featuring an Intel i7-11800H pro-

cessor, 32 GB of RAM, and an NVIDIA GeForce RTX 3080 Laptop GPU. In the training process, STPoseNet and YOLOv8 were initialized with

preloaded weights from YOLOv8, whereas DeepLabCut utilized the initial training weights of ResNet50. To ensure robust performance, the

network models were trained using three datasets from two distinct experimental scenarios. The first dataset included 1,647 images (labeled

with 3 key points) from the open field scenario, the second dataset comprised 300 images (labeled with 11 key points) from the same open

field scenario, and the last dataset consisted of 1,392 images (labeled with 3 key points) from the water maze scenario. To assess mouse pose

estimation across varied experimental scenes, we employed 221 continuous video frames from the open field and 500 from thewatermaze for
iScience 27, 109772, May 17, 2024 3
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Figure 2. Process of mouse tracking and pose estimation using consecutive video frames

(A) The mouse tracking result of the first video frame serves as the basis for the following calculation.

(B) The area with the detected mouse is cropped for new frame processing.

(C) Loop is run over the process in (B) until detection failure or the frame is at the end of the video.
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evaluating model performance. Our objective was to assess the efficacy and adaptability of the models across diverse experimental condi-

tions through training on these heterogeneous datasets.

Following the completion of model training, the STPoseNet algorithm progresses to the testing phase by estimating the mouse pose us-

ing the original input frames. Once the key points are obtained, they are passed to the TCM for marking the corresponding locations in the

subsequent frame. The spatiotemporal processing of the video continues until either the video reaches the end or the confidence level of the

cropped image detection becomes too low. In cases where the mouse detection fails even with the original image (i.e., under extreme cir-

cumstances), the Kalman filter is applied to predict the key points obtained in the previous frame. This robust approach ensures that pose

estimation can still be achieved, even in challenging scenarios. By incorporating tracking, cropping, and the use of the Kalman filter, the

STPoseNet methodology provides a comprehensive solution for accurately estimating mouse pose throughout a video sequence. This dy-

namic approach enhances the reliability and robustness of the pose estimation results.

In assessing the robustness of STPoseNet, we conducted pose estimation evaluations across various video resolutions (3203 240, 480 3

360, 6403 480, 8003 600, and 9603 720) and frame rates (10Hz, 15 Hz, 30 Hz, 50 Hz, and 60Hz). The consistent and reliable estimations of the

3 key points (nose, neck, and tail) under these diverse conditions serve as a testament to the efficacy of our approach (Figure S1).

Comparison of STPoseNet with other methods for distance error

To assess the pose estimation performance for mouse behavior data, we compared the proposed method with the original YOLOv8,

DeepLabCut and SLEAP methods in the two experimental scenarios, open field and water maze. For the two experimental scenarios,

the image quality of the open field experiment is good, and the mouse features are obvious, which can be used to compare the accuracy
4 iScience 27, 109772, May 17, 2024
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Figure 3. Illustration of the evaluation metrics used for mouse pose estimation

(A) The schematic diagrams depict themouse abdomen (left) and themouse back (right). In both cases, M andN represent the centrosymmetric line of themouse

(ground truth), which is based on the thoracic spine orientation of mouse, while M0 and N0 represent the centrosymmetric line estimated using the key-point

detection method. A–C represent the key points of the mouse’s nose, neck, and tail (ground truth), which are based on the front end of the head, cervical

spine, and tail vertebrae of mouse, while A0–C0 represent the estimated key-points using the detection method. The angle a indicates the deviation of the

head, and the angle b indicates the deviation of the body.

(B) The schematic diagrams depict the locations of 11 mouse key points, including nose, left and right ears, five positions evenly distributed along the mouse

spine, left and right hind legs, and tail.

(C) The tracking and key-point estimation results in the open field (top) and water maze (bottom) experiments, respectively. The red rectangle represents the

detection bounding box. The examples demonstrate the detection of multiple key-points in two experiments.
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of the pose estimation methods in simple scenario. In the water maze experiment, the image is relatively dim, and the mouse features

are partially occluded, which can be used to compare the reliability of the pose estimation methods in complex scenario. The four

models were trained on the same dataset, and the training loss values for each model converged after a set number of epochs

(Figure S2).

The representative results depicted in Figures 4A and 4B illustrate that the key-point distance error of the STPoseNetmodel is smaller than

that of YOLOv8, DeepLabCut, and SLEAP. Overall, STPoseNet demonstrated superior stability and accuracy in detecting multiple key points

(distance errors: 20.826 and 7.149), while the other three methods showed inconsistencies in recognizing the direction of the mouse body,

leading to significant distance errors. This indicates that STPoseNet is more reliable than DeepLabCut, YOLOv8, and SLEAP in conditions

such as mouse leaning, turning, and being underwater.

We conducted a comprehensive comparison of STPoseNet, YOLOv8, DeepLabCut, and SLEAP regarding error rates in two different

experiment scenarios. In the open field experiment, our findings indicate that STPoseNet achieved an impressive error rate of less than

8% of body length in 100% (nose), 100% (neck), and 95.023% (tail) of the testing dataset. In contrast, DeepLabCut only achieved 78.28%

(nose), 45.25% (neck), and 78.73% (tail). SLEAP achieved 90.5% (nose), 61.99% (neck), and 99.5% (tail) under the same conditions. Moving

on to the water maze experiment, we observed that STPoseNet attained an error rate of less than 8% of body length in 90.2% (nose),

89.4% (neck), and 85.2% (tail) of the testing dataset. Comparatively, DeepLabCut yielded 68.0% (nose), 57.6% (neck), and 66.4% (tail),

SLEAP achieved 90.6% (nose), 84.4% (neck), and 91.6% (tail) accuracy under the same conditions. To further highlight the enhanced efficacy

of pose estimation using STPoseNet, we conducted a statistical comparison with the original YOLOv8, DeepLabCut, and SLEAP, as shown in

Figure 5. The comparative analysis of the error of a single key point reveals that STPose outperformed YOLOv8, DeepLabCut, and SLEAP

significantly in terms of distance errors for nose and neck (Spine 1) estimations in the open field experiment (p < 0.05, two-sided Z test,

n = 221 images), as well as neck and tail estimations in the water maze experiments (p < 0.05, two-sided Z test, n = 500 images). In the

open field experiment, distance error comparisons for the other 8 key points are detailed in Figure S3. Furthermore, when comparing four

models using root-mean-square error (RMSE) for distance errors in the two experimental scenarios, the results consistently showed that

STPoseNet exhibited the smallest RMSE among all tested methods, as detailed in Table S1. These findings suggest that STPoseNet offers

superior and precise pose estimation compared to the other three methods, making it suitable for various applications across different

scenarios.
iScience 27, 109772, May 17, 2024 5
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Figure 4. Pose estimation examples of four methods in two experiments

(A and B) The examples demonstrate the key-point detection with STPoseNet, YOLOv8, DeepLabCut, and SLEAP in the open field (A) and water maze

(B) experiments, respectively. To quantify the comparison, the sum of the minimum distance errors of the three key points (D represents the sum of the

straight-line distances from all identified points to marked points) is utilized. See also Figure S2.
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Comparison of STPoseNet with other methods for angle deviation

We conducted a comparative analysis of STPoseNet, DeepLabCut, and SLEAP based on error angles in two different experiment scenarios. In

the open field experiment, we achieved an error angle of less than 10� in 84.16% (head orientation difference, i.e., the angle between the nose

and neck) and 90.05% (body orientation difference, i.e., the angle between the neck and tail) of the testing dataset using STPoseNet. Under

the same conditions, DeepLabCut achieved 35.75% (head orientation difference) and 85.52% (body orientation difference), SLEAP achieved

48.42% (head orientation difference) and 64.71% (body orientation difference).Moving on to thewatermaze experiment, we achieved an error

angle of less than 10� in 68.8% (head orientation difference) and 86.8% (body orientation difference) of the testing dataset using STPoseNet.

Comparatively, DeepLabCut yielded 67.6% (head orientation difference) and 85.4% (body orientation difference) and SLEAP yielded 65.8%

(head orientation difference) and 88.6% (body orientation difference) under the same conditions. We also performed a statistical comparison

of the angle differences for head orientation and body orientation estimation among the four methods, as shown in Figure 6. The results indi-

cate that STPoseNet consistently exhibited significantly smaller error angles compared to YOLOv8, DeepLabCut and SLEAP (p < 0.05, two-

sided Z test, n = 221 images for the open field, n = 500 images for the water maze). Furthermore, we conducted a comparison of four models

using RMSE for error angles in the two experimental scenarios, and the results revealed that, on average, STPoseNet demonstrated the lowest

RMSE among all testedmethods, as presented in Table S2. Thus, STPoseNet exhibited reduced error angles in pose estimation compared to

the other three methods.

Comparison of STPoseNet with other methods for processing speed

In Figure 7A, we present themouse tracking results obtained using STPoseNet for the open field andwatermaze experiments, demonstrating

how it accurately tracks themovement of themouse. Themouse position and pose estimation data provided by STPoseNet can be combined

with neural recordings to analyze the behavioral and neural mechanisms. We demonstrate mouse pose estimation with 3 key-point detection

in Video S1, 11 key-point detection in an open field in Video S2, and 3 key-point detection in a water maze in Video S3. Moreover, we assessed

the processing speed of the four methods, as depicted in Figure 7B. We found that STPoseNet achieved a processing speed of 30 and 25

frames per second when analyzing the mouse behavior videos from the two experiments. This processing speed is sufficient for real-time

pose estimation. While the processing speed of STPoseNet is slower than the original YOLOv8 and SLEAP due to the inclusion of TCM
6 iScience 27, 109772, May 17, 2024
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Figure 5. Distance error comparison of four methods

(A and B) Distance errors for the nose (left), neck (middle, Spine 1 in 11 key-points) and tail (right) estimation in the open field (A) and water maze (B) experiments,

respectively. Comparison of STPoseNet with other methods, one-way ANOVA, open field experiment: F = 5.83, p = 6.0 3 10�4 (nose); F = 6.62, p = 2.0 3 10�4

(neck); F = 89.9, p = 1.03 10�50 (tail); water maze experiment: F = 26.98, p = 4.23 10�17 (nose); F = 76.74, p = 5.63 10�47 (neck); F = 15.47, p = 6.03 10�10 (tail).

Violin plots are used for showing statistical comparison, two-sided Z test, *p < 0.05, **p < 0.01, ***p < 0.001; ns, not significant. YOLOv8 is abbreviated as YOLO,

and DeepLabCut is abbreviated as DLC. See also Figures S3 and S4; Table S1.
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and Kalman filter modules, it is notably faster than DeepLabCut. This highlights the advantage of STPoseNet, as it provides accurate pose

estimation while maintaining a reasonable processing speed. Researchers can benefit from utilizing STPoseNet for real-time analysis of

mouse behavior and its integration with neural recordings for a comprehensive understanding of behavioral-related neural mechanisms.

It is worth noting that the input images were resized to 6403 640, and the resolution of the image itself has minimal impact on processing

speed. The primary reason for the faster processing speed in thewatermaze compared to the open field ismay be due to the larger size of the

mouse in the open field, resulting in faster relative movement than in the water maze. This variance affects the continuity of detection and

tracking in TCM. In case of poor recognition quality in the segmented image, a secondary round of original image recognition was carried

out. This resulted in certain frames in the video being processed twice, thereby contributing significantly to the reduction in processing speed.

Comparison of STPoseNet with other methods using public dataset

To enhance the verification of the generality and stability of our model, we utilized publicly accessible mouse behavioral videos.45 Within this

dataset, we adopted the 6 key points referenced in the literature, comprising the nose, left forehand, right forehand, left hindhand, right hind-

hand, and tail. We utilized two videos, one for the training dataset (300 images) and the other for the testing dataset (100 frames), to conduct a

comparative analysis of pose estimation using four methods. The training loss values exhibited convergence after a set number of iterations

(Figure S2). In Figure 8A, it is evident that STPoseNet exhibited a smaller distance error compared to the other three methods. For instance,

SLEAP failed to detect the right forehand and thus exhibited a large error level. Through statistical analysis (Figure 8B), the results indicate that

STPoseNet had a significantly lower distance error than the other three methods, which is consistent with the findings presented in the pre-

ceding section.
iScience 27, 109772, May 17, 2024 7
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(B) experiments, respectively. Comparison of STPoseNet with other methods, one-way ANOVA, open field experiment: F = 53.56, p = 8.5 3 10�32 (head); F =

18.30, p = 1.6 3 10�11 (body); water maze experiment: F = 2.62, p = 4.9 3 10�2 (head); F = 9.98, p = 1.6 3 10�6 (body). Violin plots are used for showing

statistical comparison, two-sided Z test, *p < 0.05, **p < 0.01, ***p < 0.001; ns, not significant. YOLOv8 is abbreviated as YOLO, and DeepLabCut is

abbreviated as DLC). See also Table S2.
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By comparing the performance metrics including distance error, angle, and processing speed in the mouse behavioral experiments, it is

evident that STPoseNet surpasses YOLOv8, DeepLabCut and SLEAP in terms of accuracy. This superiority is evident not only in our own ex-

periments (water maze and open field) but also in the open field exploration experiment conducted by another laboratory. Thus, STPoseNet

consistently delivers reliable and robust pose estimation results. Furthermore, STPoseNet exhibits a promising processing speed for video

data, allowing for real-time recognition. This means that researchers can rely on STPoseNet for instant analysis and tracking of pose in behav-

ioral experiments.
STPoseNet  YOLOv8  DeepLabCut   SLEAP

Processing speed

60

40
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Figure 7. Mouse tracking results and video processing speed

(A) The example mouse pose tracking (the key points of nose tip) results from open field (left) and water maze (right) experimental scenarios.

(B) Comparison of processing speed (the average time of the recognition process) for the four methods tested in the two experimental conditions (video image

resolution is 1280 3 720 for water maze and 720 3 480 for open field). See also Videos S1, S2, and S3.
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STPoseNet YOLOv8 DeepLabCut SLEAP

△ = 41.327 △ = 49.437 △ = 62.061 △ = 833.700

A B

***
***

***

STPoseNet   YOLO      DLC       SLEAP

Figure 8. Testing the pose estimation methods with publicly available dataset

(A) The examples demonstrate the pose estimation with STPoseNet, YOLOv8, DeepLabCut, and SLEAP in the open field exploration experiment. To quantify the

comparison, the sum of the minimum distance errors of the key points (D represents the sum of the straight-line distances from all identified points to marked

points) is utilized.

(B) Comparison of STPoseNet with other methods, one-way ANOVA: F = 230.28, p = 1.93 10�86, n = 100 frames. Violin plots are used for statistical comparison,

two-sided Z test, ***p < 0.001.
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Performance improvement with Kalman filter

The Kalman filter module is integrated into STPoseNet to make predictions when the mouse is not detected, considering image conditions

such as occlusion andmotion blur. The activation of the Kalman filter is initiatedwhen the likelihood value falls below a certain threshold. In the

context of utilizing the Kalman filter module, the key-point detection results in the water maze indicate that the Kalman filter effectively

decreased the distance error (as shown in Figure 9A) once the likelihood value exceeded a certain threshold (illustrated in Figure 9B). Incor-

porating the Kalman filter in mouse pose estimation leads to enhanced and dependable performance.

Transfer learning with different new training dataset sizes

To explore the training data requirements for transfer learning in different animal behavior experiments, we conducted experiments to

compare the dataset sizes needed to apply STPoseNet to various tasks. We trained a pre-trained weight using data from three different ex-

periments: eight-arm maze (n = 894 images), water maze (n = 1,253 images), and conditioned fear (n = 400 images). After migration training
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Figure 9. Pose estimation improvement with Kalman filtering

(A) Comparison of distance errors of the model with Kalman filtering (red dashed line) and without Kalman filtering (blue solid line).

(B) The confidence changes associated with using Kalman filter. The five red dots represent the frames that used the Kalman filter module.
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with this dataset, we validated the model using the dataset from the open field experiment, which consisted of different numbers of images

(25, 50, 100, 200, 400, and 1,483, respectively). The results demonstrate that when the number of images is small (e.g., 25), themodel struggles

to learn, and the likelihood values fail to reach a high and stable level. However, as the number of images increases to 50, there is a significant

improvement in the confidence of key-point identification, and the likelihood values for mAP50 (Box), mAP50-95 (Box), mAP50 (Pose), and

mAP50-95 (Pose) converge to a high level (as shown in Figure 10A–10D). These performance patterns continue to improve with 100, 200,

and 400 images.

Furthermore, we compared the shortest distance error of each key point for the open field video (consisting of 221 images). In Figures 10E–

10G, we observed that even with a reduced number of images (around 50), the average accuracy still achieved an error of less than 3 pixels,

with the maximum error not exceeding 7 pixels (considering the mouse body length is approximately 60 pixels, the average error is 5%, and

the maximum error is 11%). This indicates that our STPoseNet model can be successfully transferred to new behavioral experiments with a

small number of labeled datasets using the pre-trained model while achieving promising performance. This advantage allows our model

to be easily applied to various experimental scenarios, as it significantly reduces the burden of gathering large amounts of labeled data. Re-

searchers can leverage the model’s transfer learning capability and achieve reliable results with minimal data requirements.

DISCUSSION

In this study, we propose an end-to-end network model that tackles the challenges of automatic, accurate, and robust key-point detection in

mousebehavior experiments.Our networkmodel is developed uponYOLOv8 and incorporates the TCMandKalman filtermodules (Figure 1).

This approach effectively tracks mouse images, especially in extreme cases, and supplements key-point locations based on time domain in-

formation, which not only avoids error amplification but also enhances the reliability of key-point detection. By leveraging video time domain

information and implementing tracking and cropping approach, we have achieved significantly improved accuracy inmouse pose estimation.

Comparative results illustrate that our model surpassed the performance of the original YOLOv8, DeepLabCut, and SLEAP (Figures 4, 5,

and 6). Due to the frame-by-frame approach of DeepLabCut and SLEAP in pose estimation, their effectiveness may deteriorate in scenarios

with occlusions, motion blur, or missed features in certain frames.37 On the contrary, STPoseNet integrates spatial and temporal information

through the TCM and Kalman filter, thereby improving the consistency of pose estimation throughout video frames and reinstating key-point

detection with predictive capabilities (Figure 9). The thorough examination of performance metrics firmly establishes STPoseNet as an

advanced and reliable solution for pose estimation. Its superior accuracy and real-time processing capabilities render it an indispensable

tool for researchers in the field of neuroscience. The results also demonstrate the convenience of training and testing with STPoseNet, the

end-to-end training process minimizes the possibility of errors. Even with a small training set, our model can accurately estimate mouse

posture key points. Overall, our approach stands out from conventional methods by leveraging time domain information, enabling accurate

and fast key-point identification across different experimental conditions.

Limitations of the study

Our work is subject to certain limitations:

(1) In this study, we did not implement the separation of the original image recognitionmodel and the cropped image recognitionmodel.

Consequently, the sameweight is used to predict both the small target with a large background and the large target with a small back-

ground. This approach could benefit from further improvement to enhance recognition accuracy.

(2) The network model we pretrained for this study was trained using only three experimental datasets. To enhance the practical perfor-

mance of our pre-trainedmodel, we recognize the need to engagewith a wider range of experimental scenarios and incorporatemore

diverse training data. For instance,mice implantedwith optical fibers or electrodes are frequently used in neuroscience experiments to

facilitate closed-loop real-time studies.46 Nevertheless, accurate pose estimation in such scenarios poses a significant challenge due to

the obscured head and difficult detection. Therefore, expanding our research to tackle these challenges by integrating this type of

dataset will greatly enhance key-point detection in neuroscience experiments.

(3) We conducted key-point detection tasks involving 3, 6, and 11 key points. The detection of 11 key points significantly enhances the

amount of information available compared to just 3 key points. This expanded set of key points enables a more in-depth analysis

of intricate mouse behaviors such as leaning and turning, thereby propelling the software beyond the capabilities of existing commer-

cially available models. As the key-point quantity being constrained by video quality and mouse size, integrating video restoration

techniques with STPoseNet will enhance the efficacy of multi-key-point detection in challenging situations with low-quality data

and complex environments.

Conclusions

Our study presents a fast, robust, and well-adapted model for the analysis of laboratory mouse behavioral experiments. To further enhance

the performance and applicability of ourmodel, future research should address the limitations. By addressing these areas of improvement, we

can continue to advance the field of animal behavior analysis and provide valuable tools for researchers in various fields.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:
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Figure 10. Comparison of different training dataset sizes

(A–D) The datasets are from open field experiment (3 key points). The likelihood changes of mAP50 (Box) (A), mAP50-95 (Box) (B), mAP50 (Pose) (C), and

mAP50-95 (Pose) (D) along with epochs during model training. Five training data sizes, from n = 25 to n = 400 images, are compared for the performance.

(E–G) The distance errors of nose (E), neck (F) and tail (G) estimation are compared for the six training data sizes, from n = 25 to n = 1,483 images.
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Software and algorithms

Python 3.8.11 Python Software Foundation https://www.python.org/downloads/

release/python-3811/

Opencv-Python 4.7.0 Opencv software https://opencv.org/blog/release/opencv-4-7-0/

Pytorch 1.90 Pytorch software https://pytorch.org/blog/pytorch-1.9-released/

Matplotlab 3.4.3 Matplotlab software https://matplotlab.org/3.4.3/

Deeplabcut Mathis et al.35 https://github.com/DeepLabCut/DeepLabCut

SLEAP Pereira et al.40 https://sleap.ai/

YOLOv8 Maji et al.48 https://docs.ultralytics.com/

Other

Source code Github https://github.com/lvrgb777/STPoseNet
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Xiang Liao (xiang.liao@cqu.

edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� The data that support the findings of this study are available on request from the lead contact.
� All original code has been deposited at GitHub and is publicly available as of the date of publication. The URL is listed in key resources

table.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

All the experimental procedures were performed in accordance with institutional animal welfare guidelines and were approved by the Third

Military Medical University Animal Care and Use Committee. The ethics approval: No. AMUWEC20210251.

Dataset of open field experiment

In this experiment, adult C57BL/6J mice (male, 6-8 weeks of age) were used for predation habit experiments. In the experiment, we imple-

mented a real-time interactive platform measuring 800 mm in diameter and 300 mm in height (Figure 3C, top). This platform consisted

of artificial prey in the form of round neodymium magnets, measuring 40 mm in diameter and 10 mm in height, as well as food pellets

(5 3 0.2 mg, Bio-serve, USA) that were magnetized to simulate an attempt to escape from approaching hungry mice. Prior to each trial,

the mice were fasted for 12 hours to reduce their body weight to 90-95% of their normal weight. During this fasting period, the mice had

free access to water. Following each trial, a recovery period of 24 hours was provided, during which the mice were given food and water.

To monitor the positions of the mouse and prey in real-time (30 fps), a webcam was mounted on top of the platform.

For the creation of our training and validation sets, we used 5 experimental videos that had a combined duration of 3 minutes and 40 sec-

onds. From these videos, we extracted a total of 1647 images to form the dataset (training and validation) for 3 key-points and 300 images to

establish the dataset (training and validation) for 11 key-points. In the testing dataset, we utilized a 7-second video comprising 221 frames to

compare and evaluate the final pose estimation results. The lengths of training and testing datasets were determined based on the course of

specific mouse behavior in the open field experiments. The images from the open field experiment dataset exhibited good image quality,
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with a significant color difference between the background and the mouse, and a clear outline of the mouse’s edges. Additionally, since the

experiment was conducted in an open field environment, the mice exhibited a strong motivation to move.

Dataset of water maze experiment

In this experiment, adult male mice C57BL/6J (aged 2-3 months at the start of the experiment) were given free access to food and water and

lived in a 12-hour light/diurnal cycle (lights turned on at 7 am). In the experiment, we conducted experiments in a circular swimming pool

measuring 120 cm in diameter and 40 cm in height. The pool contained opaque water (maintained at 20G 1�C) achieved by adding titanium

dioxide. Themice were trained to escape onto a hidden platformpositioned 30 cm away from the pool wall and 1 cmbelow the water surface.

Visual cues were placed on the pool wall to provide spatial references for the platform’s location. Importantly, the platform’s position re-

mained fixed throughout all the training trials.47

For the creation of our training and validation set, we utilized 6 experimental videoswith a combinedduration of 3minutes and 38 seconds.

From these videos, we extracted a total of 1392 images to create our dataset (training and validation) for 3 key-points. In the test dataset, we

used a 20-second video comprising 500 frames of images to compare and evaluate the final recognition results. The lengths of training and

testing datasets were determined based on the course of specific mouse behavior in the water maze experiments.

In the water maze experiment (Figure 3C, bottom), we encountered challenges due to poor lighting conditions and the maze partially ob-

structing the mouse’s body. Specifically, when the mouse turned, its head became completely immersed in water. These factors posed dif-

ficulties for testing the reliability and accuracy of our pose estimation method.

Dataset annotation

To ensure accurate annotations, two experienced annotators independently labeled the key-points of the mouse (nose, neck, and tail

etc) in each image. Their labeled results were then compared, and a final consensus was reached to produce the ground truth for

the dataset.

The length of the videos in the training dataset was determined according to the specifications of the animal behavior experiments,

such as when the mouse captured the target in the open field pursuit experiment or when the mouse located the platform in the water

maze experiment. There was no human intervention with the animals during these experiments. We utilized the napari module in

DeepLabCut for annotating the key-points of the mouse and python-labelme for annotating the object bounding boxes. To create 3

key-points on the mouse body, we initially labeled the nose, neck, and tail (Figure 3A). Subsequently, we extended the key-point label-

ing to include the nose, left and right ears, five positions evenly distributed along the mouse spine, as well as the left and right hind legs,

and the tail (Figure 3B). Subsequently, we converted the dataset into the format required by each model, while ensuring the consistency

of the dataset. The training and testing datasets are derived from different videos, which ensures the authenticity of the model

evaluation.

METHOD DETAILS

Neural network architecture

The STPoseNet model is designed based on YOLOv8-pose and added two new modules, one is the TCM and another is Kalman filter. The

TCM is used in estimation with data enhancement matching for model training. STPoseNet is an end-to-end model in the process of model

training and video processing, which ensures the stability in real applications.

In the architecture of STPoseNet, we added the proposedmodules based on YOLOv8 and adjustedmodel parameters. The backbone and

head of YOLOv8 were not adjusted and used its default parameters (4.37 million parameters).48 The backbone part passes through the five-

layer convolutional network, and then the head part connects to the TCM, and the TCM outputs the final prediction result (Figure 1A). We set

batch size as 8, max epoch as 400, intersection over union (IoU) as 0.7 in our model training.

Overall process of the tracking-cropping module

The tracking-croppingmodule (TCM) is an approachwe proposed to leverage time-domain information inmouse behavior videos. It achieves

the process by enlarging and cropping the image area around the detectedmouse, thereby enhancing the prediction capability, especially in

extreme cases. During the video recognition process by the model, the TCM module coordinates and controls the recognized images and

recognition strategies (Figure 1).

When a recognition task begins, or when the cropped image (Figure 1A, right image) fails to recognize the mouse (determined by a

likelihood lower than a predefined value), the original image is used for pose estimation (Figure 1B, green line). After obtaining the recog-

nition results (bounding box and key-points) through the Backbone and Head modules, these results are marked and generated (Figure 1B,

frame output). Simultaneously, the coordinates are forwarded to the next frame for the annotation and image cropping (Figure 1B, crop-

ping image). The cropped image is then passed to the Backbone and Head model for key-point detection (Figure 1B, blue line). The ob-

tained coordinates need to be converted back to the coordinates of the original image, and the next frame is marked and cropped as well.

Moreover, when the mouse is not recognized in the original image, Kalman filtering is employed to predict key-point locations (indicated

by red lines). Overall, the TCM module plays a crucial role in optimizing the recognition process, ensuring improved performance in mouse

behavior analysis.
iScience 27, 109772, May 17, 2024 15
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Tracking and cropping process for mouse detection

Our main strategy for improving recognition accuracy is to track the cropped mouse region (Figure 1B, blue line). In many behavioral exper-

imental scenarios, themouse only occupies a small portion of the image, resulting in a small target with a large background. One challenge in

improving accuracy lies in the fact that deep learning models require a fixed input size (in our model, 6403 640). As a result, general behav-

ioral recognition images need to be scaled down for the input, which reduces the target (i.e., the mouse itself) that is relatively small. Addi-

tionally, when the identified targets and key-points are generated, they need to be scaled back up, which amplifies errors in equal proportion.

Hence it is a major obstacle in improving accuracy in current pose estimation methods.

To address this, we leverage the short interval time between adjacent frames and the limited displacement speed of the mouse in reality.

Based on the mouse’s position and range in the previous frame (Figure 2A, top image), we can obtain the possible range of the mouse in the

next frame (Figure 2B,middle image) by expanding the range (currently, doubling it). Using this range, we crop the next frame image to obtain

a new input image with a larger target and smaller background (Figure 2B, bottom image). The new image is then fed into the model for

recognition. The obtained key-point coordinates are converted to actual coordinates (Equations 1, 2, and 3), completing a complete round

of tracking and cropping recognition (Figure 2C). This approach not only avoids the information loss caused by scaling down the image before

input (i.e., fewer image pixels occupied by the mouse), but also mitigates error amplification caused by scaling up.
Data enhancement for TCM

Due to the varying proportions of images occupied by themouse after tracking and cropping, it is crucial to adapt to this situation by expand-

ing the dataset. This expansion allows themodel to effectively recognize imageswith large targets and small backgrounds. To achieve this, we

perform a specific operation of cropping and transforming the original data’s annotated images and labels according to the predetermined

tracking crop magnification ratio. By performing this operation, we can ensure that the model is exposed to a more diverse range of training

examples, facilitating its ability to accurately identify and classify imageswith different target-to-background ratios. This approach contributes

to the model’s robustness and overall performance in recognizing and tracking mouse behavior. The transformation formula is:

Imgi+1
cut = Imgi+1

orig

h
Boxmousex

i
orig � Tfx

i
orig : Boxmousex

i
orig + Tfx

i
orig;Boxmousey

i
orig
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i
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(Equation 3)

where Img is image information, Boxmousex ;Boxmousey ;Boxmousewidth ;Boxmouselength are the central coordinates (x and y) of the box and the width

and length of the box, respectively.
Estimation of error ratio

As illustrated in Figure 2, the original frame’s image size is 6403 480. The size of the mouse itself is approximately 503 40, and the size of the

original image is around 1003 80. Since the input of model has a fixed size of 640 3 640 pixels, images of varying sizes are resized to fit this

dimension and then restored after the recognition process is completed. Without the TCM, the conversion ratio for the input image obtained

during the recognition process can be calculated as k1 = (Area1)/(Area2), where Area1 represents the image area size of themodel input, and

Area2 denotes the area size of the original image. This ratio accounts for the transformation necessary to map the original image to the fixed

model size. By considering this conversion ratio, themodel can effectively analyze the resized image andmake accurate recognition, ensuring

reliable tracking of the mouse behavior. Assuming that the identification error is m1, the final error is k13 m1. When passing through the TCM,

the conversion ratio of the input image obtained by the recognition process is k2 = (Area1)/(Area3), where Area3 is the cropped area size that

is generally 23 2 times of the size of the mouse target frame. Assuming the error is still m2 (the error will be less than m1 in the real case), the

final error size is m2/k2. When the difference of error size between m1 and m2 is ignored, the optimization magnification is about k2/k1(Area2/

Area3).

Therefore, the specific error optimization ratio K is:

K =
S1

S2
(Equation 4)

where S1 is the original image size and S2 is the cropped size is generally 2 3 2 times the size of the mouse target frame.

The optimization effect becomes more pronounced as the proportion of mouse in the original image decreases. This observation was

particularly evident when we compared the final results of the open field and water maze experiments.
Prediction module for missing pose data

In addition to the TCMmodule, we also account for various extreme situations that may occur during the actual experiments. These situations

can lead to ineffective image recognition, resulting inmissing tracking results. To prevent this, we employ a Kalman filter to calculate the char-

acteristic parameters of the recognition results from several previous frames. When the confidence of the recognition results is extremely low
16 iScience 27, 109772, May 17, 2024
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(indicating a low confidence in the recognition box or key-points), it signifies that the recognition results are unacceptable, then a Kalman filter

is applied:

xn = Fnxn� 1 + vn (Equation 5)
yn = Hnxn +wn (Equation 6)

where Fn is the D3D state-transition matrix, vn is a D31 Gaussian random state noise vector with zero mean and covariance matrixQn, Hn is

theM3D measurement matrix, and wn is aM31 Gaussian randommeasurement noise vector with zero mean and covariance matrix Rn. The

state space model (Equation 5) describes a dynamical system in which the state evolution and measurement processes are both linear and

Gaussian. Using the time-domain information to identify the key-point position change before, the mouse position of this frame is identified

to preventmissing data. By implementing the Kalman filter, we aim to ensure that such unreliable recognition results are detected and appro-

priately handled.49,50 This helps to improve the overall accuracy and reliability of the tracking process, allowing for a more robust analysis of

mouse behavior.

Performance evaluation

Previous studies have often used likelihood of recognition and the ratio of recognition pixel error to mouse body length as evaluation metrics

for key-point recognition of animal postures. However, there are no precise criteria for comparing the size of the error, nor do they compare

the final results of pose estimation, such as the head orientation of the mouse.

In our study, we address these limitations by defining the nose, neck, and tail beginning of the mouse as key-points for recognition. We

introduce three measurement indicators to evaluate the accuracy of the pose estimation. The evaluation metrics include: (1) distance error

(Equations 7 and 8), the linear distance between the three marked points (Figures 3A, A-B-C) and the identified key-points (Figure 3A,

A’-B’-C’); (2) head deviation angle a (Figure 3A :A’B’M’) is the angle between nose and neck, and tail deviation angle b (Figure 3A,

:C’B’N’) is the angel between neck and tail; (3) likelihood of calculating the three key-points of mouse.

D = Dhead +Dnose +Dtail (Equation 7)
Di =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxlabel � xresultÞ2+ðylabel � yresultÞ2

q
(Equation 8)

SLEAP employed an error threshold of approximately 3% for insect detection. However, considering the flexible nature of mice bodies

where their body lengths can vary significantly, with the maximum length potentially exceeding twice the minimum length (Figure S4), we

established 8% of the maximum body length as the distance error threshold. Adhering to this criterion, we derived the angle threshold by

bisecting a mouse. The tangent value of the difference between head orientation and body orientation angles was set at double the value

of 0.08, resulting in arctan0.16 (around 10�). Hence, we utilized a 10% threshold for angle error determination.

The formula for calculating RMSE (Root Mean Square Error):

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i = 1

ðYi � f ðxiÞ2
s

(Equation 9)

To measure likelihood, mAP50 and mAP50-95 were calculated. The mAP is the average of AP over all detected classes, and AP is the area

under the precision-recall curve. ThemAP50 is themean average precision calculated at an IoU threshold of 0.5. ThemAP50-95 is the average

mAP over different IoU thresholds, from 0.5 to 0.95, step 0.05.

QUANTIFICATION AND STATISTICAL ANALYSIS

To compare data among the different methods, we used one-way ANOVA to calculate the statistical significance. To compare data between

two groups, we conducted two-sided Z-test to determine the statistical significance, with a threshold of p < 0.05 for the differences observed.

In the figures, the violin plot represents the median (central mark), the entire range of the data (dashed line boundary), and the whiskers

extend to the minimum and maximum values excluding outliers. The generation of violin plots was conducted using Matplotlib v3.4.3 soft-

ware. All data processing in this article is done using scripts written in python.

For further statistical information regarding the experiments, please refer to the figure legends.
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