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Copper is essential for the activity and stability of cyto-
chrome c oxidase (CcO), the terminal enzyme of the mito-
chondrial respiratory chain. Loss-of-function mutations in
genes required for copper transport to CcO result in fatal hu-
man disorders. Despite the fundamental importance of copper
in mitochondrial and organismal physiology, systematic iden-
tification of genes that regulate mitochondrial copper homeo-
stasis is lacking. To discover these genes, we performed a
genome-wide screen using a library of DNA-barcoded yeast
deletion mutants grown in copper-supplemented media. Our
screen recovered a number of genes known to be involved in
cellular copper homeostasis as well as genes previously not
linked to mitochondrial copper biology. These newly identified
genes include the subunits of the adaptor protein 3 complex
(AP-3) and components of the cellular pH-sensing pathway
Rim20 and Rim21, both of which are known to affect vacuolar
function. We find that AP-3 and Rim mutants exhibit
decreased vacuolar acidity, which in turn perturbs mitochon-
drial copper homeostasis and CcO function. CcO activity of
these mutants could be rescued by either restoring vacuolar pH
or supplementing growth media with additional copper.
Consistent with these genetic data, pharmacological inhibition
of the vacuolar proton pump leads to decreased mitochondrial
copper content and a concomitant decrease in CcO abundance
and activity. Taken together, our study uncovered novel genetic
regulators of mitochondrial copper homeostasis and provided a
mechanism by which vacuolar pH impacts mitochondrial
respiration through copper homeostasis.

Copper is an essential trace metal that serves as a cofactor
for a number of enzymes in various biochemical processes,
including mitochondrial bioenergetics (1). For example,
copper is essential for the activity of cytochrome c oxidase
(CcO), the evolutionarily conserved terminal enzyme of the
mitochondrial respiratory chain and the main site of cellular
respiration (2). CcO metalation requires transport of copper
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to mitochondria followed by its insertion into Cox1 and
Cox2, the two copper-containing subunits of CcO (3). Ge-
netic defects that prevent copper delivery to CcO disrupt its
assembly and activity resulting in rare but fatal infantile
disorders (4–6).

Intracellular trafficking of copper poses a challenge because
of the high reactivity of this transition metal. Copper in an
aqueous environment of the cell can generate deleterious
reactive oxygen species via Fenton chemistry (7) and can
inactivate other metalloproteins by mismetallation (8).
Consequently, organisms must tightly control copper import
and trafficking to subcellular compartments to ensure proper
cuproprotein biogenesis while preventing toxicity. Indeed,
aerobic organisms have evolved highly conserved proteins to
import and distribute copper to cuproenzymes in cells (9).
Extracellular copper is imported by plasma membrane copper
transporters and is immediately bound to metallochaperones
Atx1 and Ccs1 for its delivery to different cuproenzymes
residing in the Golgi and cytosol, respectively (10).

However, copper transport to the mitochondria is not well
understood. A nonproteinaceous ligand, whose molecular
identity remains unknown, has been proposed to transport
cytosolic copper to the mitochondria (3), where it is stored in
the matrix (11). This mitochondrial matrix pool of copper is
the main source of copper ions that are delivered to CcO
subunits in a particularly complex process requiring multiple
metallochaperones and thiol reductases (3, 12, 13). Specifically,
copper from the mitochondrial matrix is exported to the
intermembrane space via a yet unidentified transporter, where
it is inserted into the CcO subunits by metallochaperones
Cox17, Sco1, and Cox11 that operate in a bucket-brigade
manner (13). The copper-transporting function of metal-
lochaperones requires disulfide reductase activities of Sco2 and
Coa6, respectively (14, 15).

In addition to the mitochondria, vacuoles in yeast and
vacuole-like lysosomes in higher eukaryotes have been iden-
tified as critical storage sites and regulators of cellular copper
homeostasis (16–18). Copper enters the vacuole by an un-
known mechanism and is proposed to be stored as Cu(II)
coordinated to polyphosphate (19). Depending on the cellular
requirement, vacuolar copper is reduced to Cu(I), allowing its
mobilization and export through Ctr2 (20, 21). Currently, the
complete set of factors regulating the intracellular distribution
J. Biol. Chem. (2021) 296 100485 1
Biochemistry and Molecular Biology. This is an open access article under the CC

https://doi.org/10.1016/j.jbc.2021.100485
https://doi.org/10.1016/j.jbc.2021.100485
https://orcid.org/0000-0002-0467-5094
https://orcid.org/0000-0002-8027-0822
https://orcid.org/0000-0002-9110-9508
https://orcid.org/0000-0002-0314-5307
https://orcid.org/0000-0002-7518-695X
https://orcid.org/0000-0002-9920-2563
mailto:vgohil@tamu.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbc.2021.100485&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Genetic regulators of mitochondrial copper
of copper and its transport to the mitochondria remains
unknown.

Here, we sought to identify regulators of mitochondrial
copper homeostasis by exploiting the copper requirement of
CcO in a genome-wide screen using a DNA-barcoded yeast
deletion library. Our screen was motivated by prior observa-
tions that respiratory growth of yeast mutants such as coa6Δ
can be rescued by copper supplementation in the media
(22–24). Thus, we designed a copper-sensitized screen to
identify yeast mutants whose growth can be rescued by addi-
tion of copper in the media. Our screen recovered Coa6 and
other genes with known roles in copper metabolism while
uncovering genes involved in vacuolar function as regulators
of mitochondrial copper homeostasis. Here, we have high-
lighted the roles of two cellular pathways—adaptor protein 3
complex (AP-3) and the pH-sensing pathway Rim101—that
converge on vacuolar function, as important factors regulating
CcO biogenesis by maintaining mitochondrial copper levels.
Results

A genome-wide copper-sensitized screen using a DNA-
barcoded yeast deletion mutant library

We chose the yeast, Saccharomyces cerevisiae, to screen for
genes that impact mitochondrial copper homeostasis because
it can tolerate mutations that inactivate mitochondrial respi-
ration by surviving on glycolysis. This enables the discovery of
novel regulators of mitochondrial copper metabolism whose
knockout is expected to result in a defect in aerobic energy
generation (25). Yeast cultured in glucose-containing media
(YPD) uses glycolytic fermentation as the primary source for
cellular energy; however in glycerol/ethanol-containing non-
fermentable media (YPGE), yeast must utilize the mitochon-
drial respiratory chain and its terminal cuproenzyme, CcO, for
energy production. Based on the nutrient-dependent utiliza-
tion of different energy-generating pathways, we expect that
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deletion of genes required for respiratory growth will specif-
ically reduce growth in nonfermentable (YPGE) medium, but
will not impair growth of those mutants in fermentable (YPD)
medium. Moreover, if respiratory deficiency in yeast mutants
is caused by defective copper delivery to mitochondria, then
these mutants may be amenable to rescue via copper supple-
mentation in YPGE respiratory growth media (Fig. 1). There-
fore, to identify genes required for copper-dependent
respiratory growth, we cultured the yeast deletion mutants in
YPD and YPGE with or without 5 μM CuCl2 supplementation
(Fig. 1). Our genome-wide yeast deletion mutant library was
derived from the variomics library reported previously (26); it
is composed of viable haploid yeast mutants, where each
mutant has one gene replaced with the selection marker
kanMX4 and two unique flanking sequences (Fig. 1). These
flanking sequences labeled “UP” and “DN” contain universal
priming sites as well as a 20-bp barcode sequence that is
specific to each deletion strain. This unique barcode sequence
allows for the quantification of the relative abundance of in-
dividual strains within a pool of competitively grown strains by
DNA barcode sequencing (27). Here, we utilized this DNA
barcode sequencing approach to quantify the relative fitness of
each mutant grown in YPD and YPGE ± Cu to early stationary
phase (Fig. 1).

Genes required for respiratory growth

We began the screen by identifying mutant strains with
respiratory deficiency since perturbation of mitochondrial
copper metabolism is expected to compromise aerobic en-
ergy metabolism. To identify mutants with this growth
phenotype, we compared the relative abundance of each
barcode in YPD with that of YPGE using a T-score based on
Welch’s two-sample t test. The T-score provides a quanti-
tative measure of the difference in the abundance of a given
mutant in two growth conditions. A negative T-score
identifies mutants that grow poorly in respiratory
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Genetic regulators of mitochondrial copper
conditions; conversely, a positive T-score identifies mutants
with better competitive growth in respiratory conditions.
We rank-ordered all mutants from negative to positive T-
scores and found that the lower tail of the distribution was
enriched in genes with known roles in mitochondrial res-
piratory chain function, confirming the fidelity of the
screening conditions and the knockout strains (Fig. 2A;
Table S1). The top “hits” representing mutants with the
most negative T-score included COQ3, COX5A, RCF2,
COA4, and PET54, genes that are involved in coenzyme Q
and respiratory complex IV function (Fig. 2A). To more
systematically identify cellular pathways that were enriched
for reduced respiratory growth, we performed gene ontology
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Figure 2. Genes required for respiratory growth. A, growth of each mutant i
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OXPHOS subunits and assembly factors, where genes depicted in red were “h
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analysis using an online tool—Gene Ontology enRichment
anaLysis and visuaLizAtion (GOrilla) (28). The gene
ontology (GO) analysis identified mitochondrial respiratory
chain complex assembly (p-value: 7.73e-23) and cytochrome
c oxidase assembly (p-value: 5.09e-22) as the top-scoring
biological process categories (Fig. 2B) and mitochondrial
part (p-value: 1.40e-25) and mitochondrial inner membrane
(p-value: 1.48e-20) as the top-scoring cellular component
category (Fig. 2C). This unbiased analysis identified the ex-
pected pathways and processes validating our screening re-
sults. We further benchmarked the performance of our
screen by determining the enrichment of genes encoding for
mitochondria-localized and oxidative phosphorylation
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Genetic regulators of mitochondrial copper
(OXPHOS) proteins at three different p-value thresholds
(p < 0.05, p < 0.025, and p < 0.01) (Fig. S1). We observed
that at a p-value of <0.05, �25% of the genes encoded for
mitochondrially localized proteins, of which �40% are
OXPHOS proteins (Fig. S1; Table S2). The percentage of
mitochondria-localized and OXPHOS genes increased pro-
gressively as we increased the stringency of our analysis by
decreasing the significance cutoff from p-value of 0.05 to
0.01 (Fig. S1). A total of 370 genes were identified to have
respiratory deficient growth at p < 0.01, of which 116 are
known to encode mitochondrial proteins (29), nearly half of
these are OXPHOS proteins from a total of 137 known
OXPHOS genes in yeast (Fig. S1; Table S2). Expectedly, the
respiratory deficient mutants included genes required for
mitochondrial NADH dehydrogenase (NDI1) and OXPHOS
complex II, III, IV, and V as well as genes involved in cy-
tochrome c and ubiquinone biogenesis, which together form
mitochondrial energy-generating machinery (Fig. 2D,
Table S2). Additionally, genes encoding TCA cycle enzymes
and mitochondrial DNA expression were also scored as hits
(Fig. S2). Surprisingly, a large fraction of genes required for
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respiratory growth encoded nonmitochondrial proteins
involved in vesicle-mediated transport (Fig. S2).

Pathway analysis for copper-based rescue

Next, we focused on identifying mutants in which copper
supplementation improved their fitness in respiratory growth
conditions by comparing their frequency in YPGE +5 μM
CuCl2 versus YPGE growth conditions. We rank-ordered the
genes from positive to negative T-scores. Mutants with posi-
tive T-scores are present in the upper tail of the distribution
that displayed improved respiratory growth upon copper
supplementation (Fig. 3A, Table S3). Notably, several genes
known to be involved in copper homeostasis were recovered as
high-scoring “hits” in our screen and were present as expected
in the upper tail of distribution (Fig. 3A). For example, we
recovered CTR1, which encodes the plasma membrane copper
transporter (30), ATX1, which encodes a metallochaperone
involved in copper trafficking to the Golgi body (31), GEF1 and
KHA1, which encode proteins involved in copper loading into
the cuproproteins in the Golgi compartment (22, 32), GSH1
and GSH2, which are required for biosynthesis of copper-
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Genetic regulators of mitochondrial copper
binding molecule glutathione, and COA6, which encodes a
mitochondrial protein that we previously discovered to have a
role in copper delivery to the mitochondrial CcO (15, 23, 33)
(Fig. 3A). Nevertheless, for many of our other top-scoring hits,
evidence supporting their role in mitochondrial copper ho-
meostasis was either limited or lacking entirely.

To determine which cellular pathways are essential for
maintaining copper homeostasis, we performed GO analysis
using GOrilla. GO analysis identified biological processes—
Golgi to vacuole transport (p-value: 1.49e-6), and post-Golgi
vesicle-mediated transport, (p-value: 3.75e-6) as the most
significantly enriched pathways (Fig. 3B). Additionally, GO
category transition metal ion homeostasis was also in the top
five significantly enriched pathways, (p-value: 1.75e-5)
(Fig. 3B). GO analysis for cellular component categories
identified adaptor protein 3 complex (AP-3), which is known
to transport vesicles from the Golgi body to vacuole, as the
top-scoring cellular component (p-value: 2.85e-11) (Fig. 3C).
All four subunits of AP-3 complex (APL6, APM3, APL5, APS3)
complex were in the top ten of our rank-sorted list (Fig. 3A,
Table S3) (34, 35). Additionally, two subunits of the Rim101
pathway (RIM20 and RIM21), both of which are linked to
vacuolar function (36), were also in our list of top-scoring
genes (Table S3). Of note, the seven major components of
the Rim101 pathway were identified as top-scoring hits for
respiratory deficient growth (Fig. S2). Placing the hits from our
screen on cellular pathways revealed a number of hits that
were either involved in Golgi bud formation (Sys1, Arf2),
vesicle coating (AP-3 and AP-1 complex subunits), tethering
and fusion of Golgi vesicle cargo to the vacuole (Vam7), and
vacuolar ATPase expression and assembly (Rim20, Rim21,
Rav2) (Fig. 3D). We reasoned that these biological processes
and cellular components were likely high scoring due to the
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at 37 �C, which was fully restored by copper, but not by mag-
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these cells is dysregulated copper homeostasis. Here we used 37
�C for growth measurement as an additional stressor to fully
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Genetic regulators of mitochondrial copper
levels serve as a reliable proxy for mitochondrial copper con-
tent. The steady-state levels of Cox2 were modestly but
consistently reduced in all four AP-3 mutants tested (Fig. 4B).

AP-3 complex function has not been directly linked to
mitochondria but is linked to the trafficking of proteins from
the Golgi body to the vacuole. Therefore, the decreased
abundance of Cox2 in AP-3 mutants could be due to an in-
direct effect involving the vesicular trafficking role of the AP-3
complex. A previous study has shown that the AP-3 complex
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interacts with a subunit of the V-ATPase in human cells (34).
As perturbations in V-ATPase function had been linked to
defective respiratory growth (37–41), we sought to determine
if AP-3 impacts mitochondrial function via trafficking V-
ATPase subunit(s) to the vacuole. We first measured vacuolar
acidification and found that the AP-3 mutant, aps3Δ, exhibited
significantly increased vacuolar pH (Fig. 4C). We hypothesized
that the elevated vacuolar pH of aps3Δ cells could be due to a
perturbation in the trafficking of V-ATPase subunit(s). To test
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this possibility, we measured the levels of V-ATPase subunit
Vma2, in wild type (WT) and aps3Δ cells, by western blotting
and found that Vma2 levels were indeed reduced in the iso-
lated vacuolar fractions of aps3Δ cells but were unaffected in
the whole cells (Fig. 4D). The decreased abundance of Vma2 in
vacuoles of yeast AP-3 mutant explains decreased vacuolar
acidification because Vma2 is an essential subunit of V-
ATPase. Taken together, these results suggest that the AP-3
complex is required for maintaining vacuolar acidification,
which in turn could impact mitochondrial copper homeostasis.

Genetic defects in Rim101 pathway perturb mitochondrial
copper homeostasis

Next, we focused on two other hits from the screen, Rim20
and Rim21, which are the members of the Rim101 pathway
that has been previously linked to the V-ATPase expression
(42–45). The loss of Rim101 results in the decreased expres-
sion of V-ATPase subunits (43, 44). Consistently, we found
elevated vacuolar pH in rim20Δ cells (Fig. 5A). We then
compared the respiratory growth of rim20Δ and rim21Δ on
YPD and YPGE media with or without Cu, Zn, or Mg sup-
plementation. Consistent with our screening results, these
mutants exhibited reduced respiratory growth that was fully
restored by copper but not magnesium or zinc (Fig. 5B). To
directly test the roles of these genes in cellular copper ho-
meostasis, we measured the whole-cell copper levels of rim20Δ
by inductively coupled plasma–mass spectrometry (ICP-MS).
The intracellular copper levels under basal or copper-
supplemented conditions in rim20Δ cells were comparable to
WT cells, suggesting that the copper import or sensing ma-
chinery is not defective in this mutant (Fig. 5C). In contrast to
the total cellular copper levels, rim20Δ did exhibit significantly
reduced mitochondrial copper levels, which were restored by
copper supplementation (Fig. 5D).

The decrease in mitochondrial copper levels is expected to
perturb the biogenesis of CcO in rim20Δ cells. Therefore, we
measured the abundance and activity of this complex by
western blot analysis and enzymatic assay, respectively.
Consistent with the decrease in mitochondrial copper levels,
rim20Δ cells exhibited a reduction in the abundance of Cox2
along with a decrease in CcO activity, both of which were
rescued by copper supplementation (Fig. 5, E and F). To
further dissect the compartment-specific effect by which
Rim20 impacts cellular copper homeostasis, we measured the
abundance and activity of Sod1, a mainly cytosolic cuproen-
zyme. We found that unlike CcO, Sod1 abundance and activity
remain unchanged in rim20Δ cells (Fig. S4).

To determine if the decrease in CcO activity in the absence
of Rim20 was due to its role in maintaining vacuolar pH, we
manipulated vacuolar pH by changing the pH of the growth
media. Previously, it has been shown that vacuolar pH is
influenced by the pH of the growth media through endocytosis
(46, 47). Indeed, acidifying growth media to pH 5.0 from the
basal pH of 6.7 normalized vacuolar pH of rim20Δ to the WT
levels and both strains exhibited lower vacuolar pH when
grown in acidified media (Fig. 5G). Under these conditions of
reduced vacuolar pH, the respiratory growth of rim20Δ was
restored to WT levels (Fig. 5H). Notably, alkaline media also
reduced the respiratory growth of WT cells, though the extent
of growth reduction was lower than rim20Δ, which is likely
because of a fully functional V-ATPase in WT cells (Fig. 5H).
The restoration of respiratory growth by copper supplemen-
tation was independent of growth media pH (Fig. 5H). To
uncover the biochemical basis of the restoration of respiratory
growth of rim20Δ by acidified media, we measured CcO
enzymatic activity in WT and rim20Δ cells grown in either
basal or acidified growth medium (pH 6.7 and 5.0), respec-
tively. Consistent with the respiratory growth rescue, the CcO
activity was also restored in cells grown at an ambient pH of
5.0 (Fig. 5I). Taken together, these findings causally link
vacuolar pH to CcO activity via mitochondrial copper
homeostasis.

Pharmacological inhibition of the V-ATPase results in
decreased mitochondrial copper

To directly assess the role of vacuolar pH in maintaining
mitochondrial copper homeostasis, we utilized Concanamycin
A (ConcA), a small-molecule inhibitor of V-ATPase. Treating
WT cells with increasing concentrations of ConcA led to
progressively increased vacuolar pH (Fig. 6A). Notably, the
increase in vacuolar pH with pharmacological inhibition of V-
ATPase by ConcA was much more pronounced (Fig. 6A) than
via genetic perturbation in aps3Δ or rim20Δ cells (Figs. 4C and
5A). Correspondingly, we observed a pronounced decrease in
CcO abundance and activity in ConcA-treated cells (Fig. 6, B
and C). This decrease in abundance of CcO is likely due to a
reduction in mitochondrial copper levels (Fig. 6D). This data
establishes the role of the vacuole in regulating mitochondrial
copper homeostasis and CcO function.

Discussion

Mitochondria are the major intracellular copper storage sites
that harbor important cuproenzymes like CcO. When faced
with copper deficiency, cells prioritize mitochondrial copper
homeostasis suggesting its critical requirement for this organ-
elle (48). However, the complete set of factors required for
mitochondrial copper homeostasis has not been identified.
Here, we report a number of novel genetic regulators of mito-
chondrial copper homeostasis that link mitochondrial bio-
energetic function with vacuolar pH. Specifically, we show that
when vacuolar pH is perturbed by genetic, environmental, or
pharmacological factors, copper availability to the mitochondria
is subsequently limited, which in turn reduces CcO function
and impairs aerobic growth and mitochondrial respiration.

It has been known for a long time that V-ATPase mutants
have severely reduced respiratory growth (39, 40) and more
recent high-throughput studies have corroborated these ob-
servations (49–51). However, the molecular mechanisms un-
derlying this observation have remained obscure. Recent
studies have shown that a decrease in vacuolar acidity (i.e.,
increased vacuolar pH) perturbs cellular and mitochondrial
iron homeostasis, which impairs mitochondrial respiration, as
J. Biol. Chem. (2021) 296 100485 7
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Genetic regulators of mitochondrial copper
iron is also required for electron transport through the mito-
chondrial respiratory chain due to its role in iron–sulfur
cluster biogenesis and heme biosynthesis (37, 38, 52, 53). In
an elegant series of experiments, Hughes et al. (38) showed
that when V-ATPase activity is compromised, there is an
elevation in cytosolic amino acids because vacuoles with
defective acidification are unable to import and store amino
acids. The resulting elevation in cytosolic amino acids,
particularly cysteine, disrupts cellular iron homeostasis and
iron-dependent mitochondrial respiration. Although this
exciting study took us a step closer to our understanding of V-
ATPase-dependent mitochondrial function, the mechanism by
which elevated cysteine perturbs iron homeostasis is still un-
clear. Since cysteine can strongly bind copper (54, 55) its
sequestration in cytosol by cysteine would decrease its avail-
ability to Fet3, a multicopper oxidase (56) required for the
uptake of extracellular iron, which in turn would aggravate
iron deficiency. Thus, a defect in cellular copper homeostasis
could cause a secondary defect in iron homeostasis. Consistent
with this idea, we observed a rescue of AP-3 mutants’ respi-
ratory growth with high iron supplementation (Fig. S3).
Interestingly, AP-3 has also been previously linked to vacuolar
cysteine homeostasis (57).
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Our results showing diminished CcO activity and/or Cox2
levels in AP-3, Rim20, and ConcA-treated cells (Fig. 4B,
Fig. 5, E and F, and Fig. 6, B and C) connect vacuolar pH to
mitochondrial copper biology. However, a modest decrease in
CcO activity may not be sufficient to reduce respiratory
growth. Therefore, it is very likely that the decreased respira-
tory growth we have observed is a result of a defect not only in
copper but also in iron homeostasis. Consistent with this idea,
previous high-throughput studies reported sensitivity of AP-3
and Rim101 pathway mutants in conditions of iron deficiency
and overload (58, 59). Moreover, Rim20 and Rim101 mutants
have been shown to display sensitivity to copper starvation in
Cryptococcus neoformans, an opportunistic fungal pathogen
(60) and partial knockdown of Ap3s1, a subunit of AP-3
complex in zebrafish, sensitized developing melanocytes to
hypopigmentation in low-copper environmental conditions
(61). Thus, the Rim pathway and the AP-3 pathway are linked
to copper homeostasis in multiple organisms. Our discovery of
AP-3 pathway mutants and other mutants involved in the
Golgi-to-vacuole transport (Fig. 3) is also consistent with a
previous genome-wide study, which identified the involvement
of these genes in Cu-dependent growth of yeast S. cerevisiae
(50); however, the biochemical mechanism underlying the
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functional connection between the vacuole and mitochondrial
CcO was not previously elucidated. Thus, the results from our
study are not only consistent with previous studies but also
provide a biochemical mechanism elucidating how disruption
in vacuolar pH perturbs mitochondrial respiratory function via
copper dependence of CcO. Interestingly, in both the genetic
and pharmacological models of reduced V-ATPase function,
mitochondrial copper levels were reduced (Figs. 5D and 6D)
but were not absent, suggesting that the vacuole may only
partially contribute to mitochondrial Cu homeostasis. Sup-
porting this hypothesis, rescue of respiratory growth by copper
supplementation was successful irrespective of vacuolar pH
(Fig. 5H).

The results of this study could also provide insights into
mechanisms underlying the pathogenesis of human diseases
associated with aberrant copper metabolism and/or decreased
V-ATPase function including Alzheimer’s disease, amyo-
trophic lateral sclerosis (ALS), and Parkinson’s disease
(62–68). Although multiple factors are known to contribute to
the pathogenesis of these diseases, our study suggests that
disrupted mitochondrial copper homeostasis may also be an
important contributing factor. In contrast to these multifac-
torial diseases, pathogenic mutations in AP-3 subunits are
known to cause Hermansky–Pudlak syndrome (HPS), a rare
autosomal disorder, which is often associated with high
morbidity (69–71). Just as in yeast, AP-3 in humans is required
for the transport of vesicles to the lysosome, which is evolu-
tionarily and functionally related to the yeast vacuole. Our
study linking AP-3 to mitochondrial function suggests that
decreased mitochondrial function could contribute to HPS
pathology. More generally, decreased activity of V-ATPase has
been linked to age-related decrease in lysosomal function (34,
72, 73) and impaired acidification of yeast vacuole has been
shown to cause accelerated aging (41). Therefore, in addition
to uncovering the fundamental aspects of cell biology of metal
transport and distribution, our study suggests a possible role of
mitochondrial copper in multiple human disorders.

Experimental procedures

Yeast strains and growth conditions

Individual yeast S. cerevisiaemutants used in this study were
obtained from Open Biosystems or were constructed by one-
step gene disruption using a hygromycin cassette (74). All
Table 1
Saccharomyces cerevisiae strains used in this study

Yeast strains Ge

BY4741 WT MATa, his3Δ1, leu2Δ0, met1
BY4741 coa6Δ MATa, his3Δ1, leu2Δ0, met1
BY4741 gef1Δ MATa, his3Δ1, leu2Δ0, met1
BY4741 aps3Δ MATa, his3Δ1, leu2Δ0, met1
BY4741 aps3Δ - NMG MATa, his3Δ1, leu2Δ0, met1
BY4741 apm3Δ MATa, his3Δ1, leu2Δ0, met1
BY4741 apl5Δ MATa, his3Δ1, leu2Δ0, met1
BY4741 apl6Δ MATa, his3Δ1, leu2Δ0, met1
BY4741 rim20Δ MATa, his3Δ1, leu2Δ0, met1
BY4741 rim20Δ - NMG MATa, his3Δ1, leu2Δ0, met1
BY4741 rim21Δ MATa, his3Δ1, leu2Δ0, met1
strains used in this study are listed in Table 1. Authenticity of
yeast strains was confirmed by polymerase chain reaction
(PCR)-based genotyping. Yeast cells were cultured in either
YPD (1% yeast extract, 2% peptone, and 2% dextrose [w/v]) or
YPGE (3% glycerol +1% ethanol [w/v]) medium. Solid YPD
and YPGE media were prepared by addition of 2% (w/v) agar.
For metal supplementation experiments, growth medium was
supplemented with divalent chloride salts of Cu, Mn, Mg, Zn,
or FeSO4. For growth on solid media, 3 μl of tenfold serial
dilutions of precultures was seeded onto YPD or YPGE plates
and incubated at 37 �C for the indicated period. For growth in
the liquid medium, yeast cells were precultured in YPD and
inoculated into YPGE and grown to mid-log phase. To acidify
or alkalinize liquid YPGE, equivalents of HCl or NaOH were
added, respectively. Liquid growth assays in acidified or alka-
linized YPGE cultures involved growth for 42 h. For growth in
the presence of concanamycin A (ConcA), cells were first
cultured in YPD, transferred to YPGE and allowed to grow for
24 h, then ConcA was added and allowed to grow further for
20 h. Growth in liquid media was monitored spectrophoto-
metrically by measuring optical density at 600 nm.

Construction of yeast deletion pool

The yeast deletion collection for Bar-Seq analysis was
derived from the Variomics library constructed previously (26)
and was a kind gift of Xuewen Pan. The heterozygous diploid
deletion library was sporulated and selected in liquid haploid
selection medium (SC-Arg-His-Leu+G418+Canavanine) to
obtain haploid cells containing gene deletions. To do this, we
followed previously described protocol (26) with the following
modification of adding uracil to allow the growth of deletion
library lacking URA3. Prior to sporulation, the library pool was
grown under conditions to first allow loss of URA3 plasmids
and then subsequent selection for cells lacking URA3 plasmids.
Original deletion libraries were initially constructed where each
yeast open reading frame (ORF) was replaced with kanMX4
cassette containing two gene-specific barcode sequences
referred to as the UP tag and the DN tag since they are located
upstream and downstream of the cassette (75), respectively.

Pooled growth assays

A stored glycerol stock of the haploid deletion pool con-
taining 1.5 × 108 cells/ml (equivalent of 3.94 optical density/
notype Source

5Δ0, ura3Δ0 Greenberg, M.L.
5Δ0, ura3Δ0, coa6Δ:: kanMX4 Open Biosystems
5Δ0, ura3Δ0, gef1Δ:: kanMX4 Open Biosystems
5Δ0, ura3Δ0, aps3Δ:: kanMX4 Open Biosystems
5Δ0, ura3Δ0, aps3Δ:: hphMX4 This study
5Δ0, ura3Δ0, apm3Δ:: kanMX4 Open Biosystems
5Δ0, ura3Δ0, apl5Δ:: kanMX4 Open Biosystems
5Δ0, ura3Δ0, apl6Δ:: kanMX4 Open Biosystems
5Δ0, ura3Δ0, rim20Δ:: kanMX4 Open Biosystems
5Δ0, ura3Δ0, rim20Δ:: hphMX4 This study
5Δ0, ura3Δ0, rim21Δ:: kanMX4 Open Biosystems
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ml) was thawed and approximately 60 μl was used to inoculate
6 ml of YPD, YPGE or YPGE +5 μM CuCl2 media in qua-
druplicates in 50 ml falcon tubes at a starting optical density of
0.04, which corresponded to �1.5 × 106 cells/ml. The cells
were grown at 30 �C in an incubator shaker at 225 rpm until
they reached an optical density of �5.0 before harvesting. Cells
were pelleted by centrifugation at 3000g for 5 min and washed
once with sterile water and stored at –80 �C. Frozen cell pellets
were thawed and resuspended in sterile nanopure water and
counted. Genomic DNA was extracted from 5 × 107 cells using
YeaStar Genomic DNA kit (Catalog No.D2002) from Zymo
Research. The extracted DNA was used as a template to
amplify barcode sequence by PCR, followed by purification of
amplified DNA by QIAquick PCR purification kit from Qia-
gen. The number of PCR cycles used for amplification was
determined by quantitative real-time PCR such that barcode
sequence amplification did not exit the exponential portion of
the PCR reaction. The amplified UP and DN barcode DNA
were purified by gel electrophoresis and sequenced on Illu-
mina HiSeq 2500 with 50 base pair, paired-end sequencing at
Genomics and Bioinformatics Service of Texas A&M AgriLife
Research.

Assessing fitness of barcoded yeast strains by DNA sequencing

The sequencing reads were aligned to the barcode se-
quences using Bowtie2 (version 2.2.4) with the -N flag set to 0.
Bowtie2 outputs were processed and counted using Samtools
(version 1.3.1). Barcode sequences shorter than 15 nts or
mapped to multiple reference barcodes were discarded. We
noted that the DN tag sequences were missing for many genes
and therefore we only used UP tag sequences to calculate the
fitness score using T statistics. At a sequencing depth of
500,000 reads, UP tag sequences could be detected at the final
timepoint in the YPD media for 82.7% (3984/4817) of nones-
sential yeast ORFs and 27.5% (305/1110) of essential yeast
ORFs for a total genomic coverage of 72.5% (4927/5927) of all
yeast ORFs.

Gene ontology analysis

To identify enriched gene ontology terms, we generated a
rank-ordered list based on T-Scores (Tables S1 and S3) and
used the reference genome for S. cerevisiae in GOrilla (http://
cbl-gorilla.cs.technion.ac.il/).

Cellular and mitochondrial copper measurements

Cellular and mitochondrial copper levels were measured by
ICP-MS using NexION 300D instrument from PerkinElmer
Inc. Briefly, intact yeast cells were washed twice with ultrapure
metal-free water containing 100 μM EDTA (TraceSELECT;
Sigma) followed by two more washes with ultrapure water to
eliminate EDTA. For mitochondrial samples, the same pro-
cedure was performed using 300 mM mannitol (Trace-
SELECT; Sigma) to maintain mitochondrial integrity. After
washing, samples were weighed, digested with 40% (w/v) nitric
acid (TraceSELECT; Sigma) at 90 �C for 18 h, followed by 6 h
digestion with 0.75% H2O2 (Sigma-Supelco), then diluted in
10 J. Biol. Chem. (2021) 296 100485
ultrapure water, and analyzed. Copper standard solutions were
prepared by diluting commercially available mixed metal
standards (BDH Aristar Plus).
Subcellular fractionation

Whole-cell lysates were prepared by resuspending �100 mg
of yeast cells in 350 μl SUMEB buffer (1.0% [w/v] sodium
dodecyl sulfate, 8 M urea, 10 mM MOPS, pH 6.8, 10 mM
EDTA, 1 mM Phenylmethanesulfonyl fluoride [PMSF], and 1X
EDTA-free protease inhibitor cocktail from Roche) containing
350 mg of acid-washed glass beads (Sigma-Aldrich). Samples
were then placed in a bead beater (mini bead beater from
Biospec products), which was set at maximum speed. The bead
beating protocol involved five rounds, where each round lasted
for 50 s followed by 50 s incubation on ice. Lysed cells were
kept on ice for 10 min, then heated at 70 �C for 10 min. Cell
debris and glass beads were spun down at 14,000g for 10 min
at 4 �C. The supernatant was transferred to a separate tube and
was used to perform SDS-PAGE/western blotting.

Mitochondria were isolated as described previously (76).
Briefly, 0.5–2.5 g of cell pellet was incubated in DTT buffer
(0.1 M Tris-HCl, pH 9.4, 10 mM DTT) at 30 �C for 20 min.
The cells were then pelleted by centrifugation at 3000g for
5 min, resuspended in spheroplasting buffer (1.2 M sorbitol,
20 mM potassium phosphate, pH 7.4) at 7 ml/g, and treated
with 3 mg zymolyase (US Biological Life Sciences) per gram of
cell pellet for 45 min at 30 �C. Spheroplasts were pelleted by
centrifugation at 3000g for 5 min, then homogenized in ho-
mogenization buffer (0.6 M sorbitol, 10 mM Tris-HCl, pH 7.4,
1 mM EDTA, 1 mM PMSF, 0.2% [w/v] bovine serum albumin
(BSA) [essentially fatty acid-free, Sigma-Aldrich]) with 15
strokes using a glass Teflon homogenizer with pestle B. After
two centrifugation steps for 5 min at 1500g and 4000g, the final
supernatant was centrifuged at 12,000g for 15 min to pellet
mitochondria. Mitochondria were resuspended in SEM buffer
(250 mM sucrose, 1 mM EDTA, 10 mM MOPS-KOH, pH 7.2,
containing 1X protease inhibitor cocktail from Roche).

Isolation of pure vacuoles was performed as previously
described (77). Yeast spheroplasts were pelleted at 3000g at
4 �C for 5 min. Dextran-mediated spheroplast lysis of 1 g of
yeast cells was performed by gently resuspending the pellet in
2.5 ml of 15% (w/v) Ficoll400 in Ficoll Buffer (10 mM PIPES/
KOH, 200 mM sorbitol, pH 6.8, 1 mM PMSF, 1X protease
inhibitor cocktail) followed by addition of 200 μl of 0.4 mg/ml
dextran in Ficoll buffer. The mixture was incubated on ice for
2 min followed by heating at 30 �C for 75 s and returning the
samples to ice. A step-Ficoll gradient was constructed on top
of the lysate with 3 ml each of 8%, 4%, and 0% (w/v) Ficoll400
in Ficoll Buffer. The step gradient was centrifuged at 110,000g
for 90 min at 4 �C. Vacuoles were removed from the 0%/4%
Ficoll interface.

Crude cytosolic fractions used to quantify Sod1 activity and
abundance were isolated as described previously (78). Briefly,
�70 mg of yeast cells were resuspended in 100 μl of solubili-
zation buffer (20 mM potassium phosphate, pH 7.4, 4 mM
PMSF, 1 mM EDTA, 1X protease inhibitor cocktail, 1% [w/v]

http://cbl-gorilla.cs.technion.ac.il/
http://cbl-gorilla.cs.technion.ac.il/
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Triton X-100) for 10 min on ice. The lysate was extracted by
centrifugation at 21,000g for 15 min at 4 �C, to remove the
insoluble fraction. Protein concentrations for all cellular frac-
tions were determined by the BCA assay (Thermo Scientific).

SDS-PAGE and western blotting

For SDS–polyacrylamide gel electrophoresis (SDS-PAGE)/
western blotting experiments, 20 μg of protein was loaded for
either whole cell lysate or mitochondrial samples, while 30 μg
of protein was used for cytosolic and vacuolar fractions. Pro-
teins were separated on 4–20% stain-free gels (Bio-Rad) or 12%
NuPAGE Bis-Tris mini protein gels (Thermo Fisher Scientific)
and blotted onto a polyvinylidene difluoride membranes.
Membranes were blocked for 1 h in 5% (w/v) nonfat milk
dissolved in Tris-buffered saline with 0.1% (w/v) Tween 20
(TBST-milk), followed by overnight incubation with a primary
antibody in TBST-milk or TBST- 5% (w/v) BSA at 4 �C. Pri-
mary antibodies were used at the following dilutions: Cox2,
1:50,000 (Abcam 110271); Por1, 1:100,000 (Abcam 110326);
Pgk1, 1:50,000 (Life Technologies 459250), Sod1, 1:5000, and
Vma2, 1:10,000 (Sigma H9658). Secondary antibodies (GE
Healthcare) were used at 1:5000 for 1 h at room temperature.
Membranes were developed using Western Lightning Plus-
ECL (PerkinElmer) or SuperSignal West Femto (Thermo
Fisher Scientific).
Enzymatic activities

To measure Sod1 activity, we used an in-gel assay as
described previously, (79). Twenty-five micrograms of cyto-
solic protein was diluted in NativePAGE sample buffer
(Thermo Fisher Scientific) and separated onto a 4–16% Nati-
vePAGE gel (Thermo Fisher Scientific) at 4 �C. The gel was
then stained with 0.025% (w/v) nitroblue tetrazolium, 0.010%
(w/v) riboflavin for 20 min in the dark. This solution was then
replaced by 1% (w/v) tetramethylethylenediamine for 20 min
and developed under a bright light. The gel was imaged by Bio-
Rad ChemiDoc MP Imaging System and densitometric anal-
ysis was performed using Image Lab software.

CcO and citrate synthase enzymatic activities were
measured as described previously (80) using a BioTek’s Syn-
ergy Mx Microplate Reader in a clear 96-well plate (Falcon).
To measure CcO activity, 15 μg of mitochondria was resus-
pended in 115 μl of CcO buffer (250 mM sucrose, 10 mM
potassium phosphate, pH 6.5, 1 mg/ml BSA) and allowed to
incubate for 5 min. The reaction was started by the addition of
60 μl of 200 μM reduced cytochrome c (equine heart, Sigma)
and 25.5 μl of 1% (w/v) N-Dodecyl-Beta-D-Maltoside.
Oxidation of cytochrome c was monitored at 550 nm for
3 min, then the reaction was inhibited by the addition of 7 μl of
7 mM KCN. To measure citrate synthase activity, 10 μg of
mitochondria was resuspended in 100 μl of citrate synthase
buffer (10 mM Tris-HCl pH 7.5, 0.2% [w/v] Triton X-100,
200 μM 5,50-dithio-bis-[2-nitrobenzoic acid]) and 50 μl of
2 mM acetyl-CoA and incubated for 5 min. To start the re-
action, 50 μl of 2 mM oxaloacetate was added and turnover of
acetyl-CoA was monitored at 412 nm for 10 min. Enzyme
activity was normalized to that of WT for each replicate.

Measuring vacuolar pH

Vacuolar pH was measured using a ratiometric pH indicator
dye, BCECF-AM (20,70-bis-(2-carboxyethyl)-5-(and-6)-carbox-
yfluorescein [Life Technologies]) as described by (81) using a
BioTek’s Synergy Mx Microplate Reader. Briefly, 100 mg of
cells were resuspended in 100 μl of YPGE containing 50 μM
BCECF-AM for 30 min shaking at 30 �C. To remove extra-
cellular BCECF-AM, cells were washed twice and resuspended
in 100 μl of fresh YPGE. In total, 25 μl of this cell culture was
added to 2 ml of 1 mM MES buffer, pH 6.7 or 5.0. The fluo-
rescence emission intensity at 535 nm was monitored by using
the excitation wavelengths 450 and 490 nm in a clear bottom
black 96-well plate, (Falcon). A calibration curve of the fluo-
rescence intensity in response to pH was carried out as
described (81).

Statistics

T-scores for each pairwise media comparison (e.g., YPD
versus YPGE) were calculated using Welch’s two-sample t test
for yeast knockout barcode abundance values normalized for
sample sequencing depth (i.e., counts per million). Statistical
analysis on bar charts was conducted using two-sided Stu-
dent’s t test. Experiments were performed in three or four
biological replicates, where biological replicates are defined as
experiments performed on different days and different starting
preculture. Error bars represent the standard deviation.
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