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P H Y S I C S

Unifying fluctuation-dissipation temperatures of  
slow-evolving nonequilibrium systems from the 
perspective of inherent structures
Jianhua Zhang†, Wen Zheng†, Shiyun Zhang, Ding Xu, Yunhuan Nie, Zhehua Jiang, Ning Xu*

For nonequilibrium systems, how to define temperature is one of the key and difficult issues to solve. Although 
effective temperatures have been proposed and studied to this end, it still remains elusive what they actually 
are. Here, we focus on the fluctuation-dissipation temperatures and report that such effective temperatures 
of slow-evolving systems represent characteristic temperatures of their equilibrium counterparts. By calcu-
lating the fluctuation-dissipation relation of inherent structures, we obtain a temperature-like quantity TIS. 
For monocomponent crystal-formers, TIS agrees well with the crystallization temperature Tc, while it matches 
with the onset temperature Ton for glass-formers. It also agrees with effective temperatures of typical nonequilib-
rium systems, such as aging glasses, quasi-static shear flows, and quasi-static self-propelled flows. From the 
unique perspective of inherent structures, our study reveals the nature of effective temperatures and the under-
lying connections between nonequilibrium and equilibrium systems and confirms the equivalence between 
Ton and Tc.

INTRODUCTION
To understand the physics of nonequilibrium systems is one of the 
major challenges in condensed matter and materials physics (1, 2). 
An important and core issue of nonequilibrium systems is how to 
define temperature. In equilibrium systems, there are multiple ways 
to define temperature, e.g., from thermodynamic fundamental laws, 
Gibbs relation, transport quantities, fluctuation-dissipation relations 
(FDRs), kinetic energy, and potential energy, and they all lead to an 
identical temperature. In nonequilibrium systems, however, although 
we can still use these definitions, they normally result in different 
“temperatures,” which are called effective temperatures (3–5). Even 
in simple systems such as ideal gases and electromagnetic radiation, 
the definition of nonequilibrium temperature is also a problem (5–7). 
Because there are multiple definitions of effective temperatures, each 
of which has its own meaning, it remains elusive what these effec-
tive temperatures really represent.

In this work, we focus on one of the definitions of effective tem-
peratures, the fluctuation-dissipation temperature derived from the 
FDR. This effective temperature has been paid much attention to 
and widely adopted in the study of typical nonequilibrium systems 
such as aging glasses, sheared particulate systems, and active matter. 
In these systems, the FDR is violated (8–11). The ratio of the correla-
tion to the response, which is the well-defined heat bath tempera-
ture T in thermal equilibrium, has been shown to be time dependent 
(11–17). At short times, it is equal to T. At long times, however, it is 
higher, which has been defined as the effective (fluctuation-dissipation) 
temperature Teff. The emergence of Teff is expected to have theoretical 
merit to explain why solid-like states with the heat bath temperature 
being too low to overcome energy barriers can still undergo structural 
relaxation under nonequilibrium conditions. Although expected to 
play an important role in the understanding of nonequilibrium systems, 

like other definitions of effective temperatures, it still remains elusive 
what Teff actually is and whether it is indeed a unique temperature 
of nonequilibrium systems with abstract physical meanings. People 
have also put effort into the modification of the FDR under certain 
nonequilibrium conditions (7, 18, 19), from which other different 
effective temperatures could probably be obtained, but these attempts 
still could not settle the questions above.

In view of the potential energy landscape, the aging of glasses 
and flowing of particles under shear or self-propulsion are processes 
that the system moves among different inherent structures (20, 21), 
i.e., zero-temperature metastable states at local potential energy 
minima, separated by energy barriers. It has been shown that inherent 
structures can provide special insight into physics of nonequilibrium 
systems. For instance, inherent structures have the predictive power 
of heterogeneous dynamics of supercooled liquids (22–25), instability 
and particle rearrangements under excitations (26–29), and glass 
transition (30). Compared to the success in linking local structural 
and vibrational properties of inherent structures to specific features 
of excited nonequilibrium systems, less attention has been paid to 
the statistical mechanical aspects of inherent structures. Just for the 
FDR (9, 12–15), there has been no attempt yet to investigate whether 
there is a meaningful relation between some kind of correlation and 
response of inherent structures. If such a relation could be con-
structed, a temperature might be derived from it. Such a tempera-
ture may shed light on our understanding of effective temperatures 
from the perspective of zero-temperature solids and thus broaden 
the predictive power of inherent structures.

Here, we implement the calculation of the density correlation 
and response of inherent structures. A quantity with the tempera-
ture dimension, TIS, is derived from their ratio. For several widely 
studied model systems in both two (2D) and three (3D) dimensions, 
TIS agrees well with the crystallization temperature of monocomponent 
systems and the onset temperature (to be defined later) of glass-
formers. We also compare TIS of inherent structures obtained from 
the fast quenching of high-temperature states with that of ultra-
stable inherent structures obtained from the swap Monte Carlo 
algorithm (31), corresponding to extremely slow quenching, and find 
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identical results. Note that we deal with nonequilibrium systems 
in the absence of dynamics (i.e., at zero temperature), so it is not 
straightforward that the calculation could lead to equilibrium tem-
peratures. This finding builds up the links between nonequilibrium 
and equilibrium systems and between onset and crystallization tem-
peratures and suggests an indirect way to obtain characteristic 
temperatures of equilibrium systems. Driven by the curiosity about 
whether the agreement between TIS and equilibrium temperatures 
hints anything about effective temperatures in slow-evolving non-
equilibrium systems, we directly calculate effective temperatures for 
aging glasses and quasi-static flows of sheared and self-propelled 
systems and find that they all agree well with TIS.

RESULTS
FDR of inherent structures
To show that our results are not just for a chosen system, here, we 
study three types of widely used model systems over a wide range of 
densities, with harmonic (HARM), Lennard-Jones (LJ), and repulsive 
LJ (RLJ) particle interactions, respectively (see Materials and Methods 
for the details). We also study mono-, bi-, and polydisperse systems 
for diversity. We choose the Fourier transform of the density

      k   =   1 ─  N ′      ∑ 
j
        j   exp (  i  

→
 k   ⋅    → r    j   )     (1)

as the observable, where N′ is the number of large particles for 
bidisperse systems and is equal to the total number of particles N for 
mono- and polydisperse ones, the sum is over all N′ particles,    

→
 k   = k  ̂  x    

is the wave vector along the x direction satisfying the periodic boundary 
conditions,     → r    j    is the location of particle j, and j is randomly chosen 
to be 1 or  −1 with a zero mean. As most of previous studies, we 
choose k to be approximately the value at which the static structure 
factor reaches the first maximum, which quantifies the average sep-
aration between nearest neighbors. We apply a weak external field 
by introducing a perturbation (9, 32)

  H = − h    k    (2)

to the Hamiltonian, where h is the strength of the field. This leads to 
an external force −∇j(H) on particle j. In most of our studies, in-
herent structures are obtained by quenching high-temperature states 
to local energy minima at a given density and in the presence of a 
given external field via the fast inertial relaxation engine (FIRE) 
minimization algorithm (33). Then, we decrease h by a small step 
size h and perform the FIRE minimization again. We repeat this 
procedure until h decays to zero. In the small h limit, we obtain the 
linear response

  R =   lim  
h→0

     
 〈    k,IS   〉  h   −  〈    k,IS   〉  0  

  ─ h    (3)

where k, IS denotes the density of inherent structures, and ⟨.⟩ de-
notes the ensemble average with the subscript showing the field. For 
inherent structures with h = 0, we also calculate the correlation

  C =  〈   k,IS  2   〉  
0
   −  〈    k,IS   〉 0  2   (4)

where ⟨.⟩ also denotes the ensemble average. Borrowing the FDR, 
we define a temperature-like quantity

   T  IS   =   C ─ R    (5)

The expression of TIS has exactly the same form of the effective 
temperatures derived from the FDR in previous studies (10–17), only 
that, here, TIS is calculated directly from zero-temperature states in 
the absence of dynamics. It is not straightforward to tell whether TIS 
can be a meaningful temperature and whether it can be related to 
effective temperatures of evolving systems with dynamics.

To check whether TIS relies on quench rate, we also calculate TIS 
of ultrastable inherent structures. To obtain an ultrastable state, we 
first equilibrate a polydisperse system at a temperature lower than 
the glass transition temperature using the swap Monte Carlo algo-
rithm (31) and then quench the system to the local minimum via 
FIRE. The resultant ultrastable inherent structures can be viewed as 
states quenched with extremely slow rates. In the following, if not 
specified, the results are for fast-quenched inherent structures.

We first focus on mono- and bidisperse systems in 3D. Figure 1 
shows the density evolution of R, C, and TIS. For both LJ and RLJ 
systems, Fig. 1A shows that the response R monotonically decreases 
when the density  increases. Over the range of densities studied, R 
changes over a decade. In contrast, the correlation C varies more 
mildly, fluctuating by at most a factor of two, as shown in Fig. 1B.  
Therefore, the density dependence of TIS is mainly determined by 
R(). As shown in Fig. 1C, TIS monotonically increases with  for 
both mono- and bidisperse systems. At high densities, RLJ and LJ 
systems behave quantitatively the same, where attraction in LJ sys-
tems acts just as a small perturbation (30, 34–36). With the decrease 
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of , they depart from each other and the bifurcation is more and 
more pronounced, indicating the growth of the nonperturbative role 
of attraction (30, 35, 36). The presence of attraction helps to stabi-
lize LJ systems at low densities, leading to a smaller response and 
consequently a higher TIS.

Figure 1D indicates that the R() of HARM systems is qualita-
tively different from those of RLJ and LJ systems. With the increase 
of , R initially decreases but increases after reaching a minimum. 
Because C() also varies relatively mildly (see Fig. 1E), this non-
monotonic behavior of R() results in a nonmonotonic TIS(). As 
shown in Fig. 1F, TIS() exhibits a maximum.

Agreement between TIS and characteristic temperatures 
of equilibrium systems
The density dependence of TIS resembles some well-known liquid-solid 
transition temperatures, e.g., the crystallization temperature and the 
glass transition temperature. RLJ and LJ potentials have the same 
repulsive core, only that the LJ potential has an attractive tail. It has 
been shown that the glass transition temperature of LJ systems is 
higher than that of RLJ systems at low densities due to the nonper-
turbative role of attraction (30, 35, 36). At high densities, the glass 
transition temperatures of LJ and RLJ systems are almost identical 
and show a power-law scaling with density:   T g  LJ  ≈  T g  RLJ  ∼        with 
 ≈ 5 (30, 36–38). All these features are reproduced in TIS(). As 
shown in Fig. 1C,   T  IS  LJ  ≈  T  IS  RLJ  ∼     5   at high densities and   T  IS  LJ  >  T  IS  RLJ   
at low densities. Note that the crystallization temperature should 
have similar density dependence to the glass transition temperature 
(30, 35, 36, 39–41). The HARM potential is intrinsically different 
from LJ and RLJ potentials due to its soft-core nature (41). Because 
of this, HARM systems exhibit reentrant crystallization and glass 
transition, i.e., the crystallization and glass transition temperatures 
are nonmonotonic in density and have a maximum value (25, 41–43). 
This reentrant behavior is exactly reproduced in   T IS  HARM () , as shown  
in Fig. 1F.

Monodisperse systems are easy to crystallize, so compared to 
crystallization temperatures, it is not straightforward to determine 
their glass transition temperatures. In contrast, the bidisperse sys-
tems studied here have been widely used as typical glass-formers, 
which hinder the crystallization. However, for both mono- and bidisperse 
systems, we obtain TIS(). In addition, note that FIRE minimization 
always leads to inherent structures with glassy (disordered) structures in 
3D (44). It is then plausible to expect that TIS represents the same type 
of characteristic temperatures, independent of systems. Because crys-
tallization and glass transition temperatures are intrinsically different, 
it would be bizarre if TIS agrees with the crystallization temperature 
for monodisperse systems but the glass transition temperature for 
bidisperse systems. Then, the question is whether TIS indeed reflects 
any known temperature or it just happens to capture the density 
dependence of some characteristic temperatures qualitatively.

To answer this question, it is necessary to directly compare all 
these temperatures. For all thermal systems, we perform molecular 
dynamics simulations in the canonical (NT) ensemble, collecting 
data after relaxing the system over a long time. We locate the char-
acteristic temperatures from the liquid side by successively decreas-
ing the temperature. For monodisperse systems, the crystallization 
temperature Tc is defined as the temperature at which the pressure 
p shows a discontinuous jump with the decrease of temperature. 
For bidisperse systems, we calculate the intermediate scattering 
function

    F  s  (k, t ) =   1 ─  N ′     〈 ∑ 
j
    exp (  i  

→
 k   ⋅ [   → r    j  (t ) −    → r    j  (0 ) ]  )  〉   (6)

where ⟨.⟩ denotes the ensemble average and all the other symbols 
are the same as those in Eq. 1, from which the relaxation time  
satisfying Fs(k, ) = e−1Fs(k,0) is obtained. Figure 2A shows some 
examples of Fs(k, t) at various temperatures. The glass transition 
temperature Tg is determined by fitting the low-temperature part of 
(T) in Fig. 2B into the Vogel-Fulcher function,  = 0 exp [M/(T − Tg)], 
where 0 and M are fitting parameters.

In Fig. 2C, we first compare TIS with Tg of bidisperse systems and 
Tc of monodisperse systems for all systems shown in Fig. 1. While 
Tc seems to quantitatively agree with TIS, Tg is apparently lower 
than TIS. The comparison indicates that TIS may reflect the crystal-
lization temperature but is not related to the glass transition tem-
perature. The agreement between TIS and Tc at least suggests that 
TIS should not be a meaningless quantity, but the question is what 
TIS represents for bidisperse systems.

Note that for glass-formers, there is another characteristic temperature 
named as the onset temperature, which separates the high- temperature 
simple liquids from the low-temperature “landscape- influenced” 
supercooled liquids (23,  45). As shown in Fig.  2B, the relaxation 
time (T) at high temperatures is Arrhenius:  = a exp (Ea/T) with 
a and Ea being the prefactor and activation energy, respectively. 
This is a typical behavior of simple liquids. The Arrhenius behavior 
is destroyed and replaced with the super-Arrhenius behavior described 
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by, for example, the Vogel-Fulcher function, when the temperature 
is lower than the onset temperature Ton. It is then interesting to know 
whether TIS of bidisperse systems can agree with Ton.

We then compare Ton with TIS in Fig. 2C. They turn out to agree 
well. Recent studies have proposed that Ton is consistent with the 
melting (crystallization) temperature (23, 45–47), especially a direct 
illustration of the quantitative agreement between them (47). The 
fact that both Tc and Ton agree with TIS provides a strong piece of 
evidence linking the onset temperature of glass-formers to the crystal-
lization temperature from the unique perspective of inherent structures. 
It is also intriguing that the calculation of TIS from nonequilibrium 
inherent structures results in equilibrium temperatures.

Dependence on spatial dimension and quench rate
It is well known that due to the interference of interfacial energy, 
there is a hysteresis effect in the crystallization and melting processes 
for some materials so that the melting temperature Tm is higher 
than Tc. As shown in Fig. 3A, taking the 3D monodisperse HARM 
systems as the example, there is indeed a hysteresis effect. Here, we 
find that TIS agrees with Tc but not Tm. A possible explanation is 
that Tc is the lower temperature limit for liquids with Arrhenius 
behavior to exist, while Ton plays the same role. In Fig. 3 (B and C), 
we show that liquids between Tm and Tc still exhibit an exponentially 
decayed Fs(k, t) and an Arrhenius (T), similar to the behaviors of 
simple liquids above Ton for glass-formers.

In 2D, the hysteresis effect is weak and Tm ≈ Tc, as shown in 
Fig. 3D. If TIS could still agree with Tc, the link between TIS and the 
crystallization (melting) process would be less vague. In Fig. 2D, we 
compare TIS with Tc for 2D monodisperse HARM systems. They 
turn out to agree well. Figure 2D also shows that TIS ≈ Ton > Tg for 
2D bidisperse systems. Therefore, our argument that TIS is connected 
to Tc and Ton does not rely on spatial dimension.

Another issue probably affecting the robustness of our argument 
is the quench rate. We calculate TIS for ultrastable inherent struc-
tures obtained from the swap Monte Carlo algorithm. As shown 
in Fig. 2D, TIS still matches well with Ton of the corresponding 
polydisperse system but is larger than Tg. Ultrastable inherent struc-
tures correspond to extremely slow quench rates. Therefore, our 
argument does not depend on quench rate, either.

Effective temperatures
Although derived from the FDR, TIS is obtained in the absence of 
dynamics, different from previous studies of effective temperatures 
in typical nonequilibrium systems such as aging glasses, shear flows, 
and active matter (10–17, 48–50). It is then important to know the 
relationship between TIS and previously defined effective temperatures. 
Can TIS be the effective temperature of any or all these systems in 
the slow dynamics limit?

We then calculate the time-dependent FDR for bidisperse systems 
of aging glasses, quasi-static shear flows, and quasi-static self-propelled 
active flows. The time-dependent correlation and response func-
tions are calculated as  C(t ) = 〈  ρ  k  (t +  t  w   )  ρ  k   ( t  w  ) 〉  0   −  〈  ρ  k  ( t  w   )〉 0  2   and 
R(t) = [〈k(t + tw)〉h − 〈k(t + tw)〉0]/h, where tw is the waiting time 
and ⟨.⟩ denotes the ensemble average with the subscript showing 
the strength of the perturbation field h.

Figure 4 (A and B) shows an example of C(t) and R(t), respec-
tively, for an aging glass of HARM systems in 3D. To study the aging, 
we suddenly drop the temperature of the equilibrium liquid below 
the glass transition temperature and take the measurement after a 

waiting time tw. With the increase of time, C(t) decays, while R(t) 
increases.

When we plot R(t) against C(t), as shown in Fig. 4C, there are 
apparently two distinct short- and long-time behaviors. This is dif-
ferent from equilibrium systems. It is well known that equilibrium 
systems show a linear R(C) at all times and the temperature can 
be calculated from the slope of the R(C) curve:  T = −  dC(t) _ dR(t)   . As 
discussed in most of previous studies (11–17, 48–50), the slope   dC(t) _ dR(t)    
is time dependent for nonequilibrium systems. If we still define tem-
perature from the slope, the temperature will vary with time. At 
short times,  −  dC(t) _ dR(t)    is approximately equal to the heat bath temperature 
T. With the increase of time, R(C) first exhibits a nonlinear crossover 
and then becomes linear at long times, from which the effective tem-
perature   T  eff   = −  dC(t) _ dR(t)    is defined. It has been shown that the effective 
temperature is independent of waiting time tw (48). In Fig. 4C, we com-
pare R(C) curves of aging glasses at three different temperatures. 
Although their heat bath temperatures are different, their R(C) curves 
are parallel at long times, indicating that they have the same Teff.

Remember that we intend to see whether there are any connec-
tions between TIS and Teff. Therefore, in Fig. 4D, we compare Teff of 
aging glasses at various temperatures with Ton, which is TIS for 
bidisperse systems. They all agree well with Ton.

Then, we repeat the work for quasi-static shear flows and quasi- 
ic self-propelled active flows and show the results in Fig. 4 (E to H). 
The simulation details of both types of flows are described in Materials 
and Methods. For both types of flows, the waiting time tw is sufficiently 
large to guarantee that the measurements are taken in steady flows. 
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Figure 4 (E and G) show that for both flows, R(C) curves are also 
linear at long times and parallel for different shear rates    ̇    or self- 
propulsion velocities vsp studied here. As shown in Fig. 4 (F and H), 
in the quasi-static flow regime, Teff is also equal to Ton for both sheared 
and self-propelled systems.

Now, we see that Teff of aging glasses, quasi-static shear flows, and 
quasi-static self-propelled flows all agree with Ton (TIS) for bidisperse 
systems. According to our argument that TIS ≈ Tc for monodisperse 
systems, if Teff of slow-evolving systems indeed reflects TIS, we should 
see Teff ≈ Tc for monodisperse systems. In Fig. 4 (F and H), we also 
compare Teff of quasi-statically sheared and self-propelled mono-
disperse HARM systems. As expected, Teff ≈ Tc.

Figures 5 and 6 are counterparts of Fig. 4 for bidisperse LJ and 
RLJ systems in 3D. They tell the same story. On the basis of the re-
sults of Figs. 4 to 6, we are able to claim that TIS measures the effective 
(fluctuation-dissipation) temperatures of slow-evolving non-
equilibrium systems, independent of particle interactions and ways 
to drive the system to evolve. Therefore, our results suggest that 
fluctuation-dissipation temperatures of slow-evolving nonequilibrium 
systems may not be so mysterious as initially imagined. They all 
reflect the characteristic equilibrium temperatures, crystallization, 
and onset temperatures. This also provides another evidence of the 
connection between Tc and Ton.

DISCUSSION
By calculating the FDR of inherent structures, we obtain a temperature- 
like quantity TIS, which agrees well with the crystallization tempera-
ture of monodisperse systems and the onset temperature of bi- and 
polydisperse glass-formers. This statistical approach of inherent 
structures is crucial in several aspects. First, it shows that inherent 

structures have the predictive power of characteristic temperatures of 
equilibrium systems, providing another evidence of the underlying 
connections between equilibrium and nonequilibrium systems (41). 
Second, it suggests a fast and easy way to indirectly calculate the crystal-
lization and onset temperatures. Third, it evidences that the onset tem-
perature and the crystallization temperature are essentially consistent.

Then, the question is why TIS agrees with Tc and Ton. Note that 
TIS is calculated from the FDR of inherent structures. It thus assumes 
the “exploration” of inherent structures even in the absence of dy-
namics. In this sense, TIS could be regarded as the effective temperature 
at T = 0, which may correspond to the lowest heat bath temperature 
required to drive the system to traverse the potential energy land-
scape by overcoming energy barriers and explore all inherent structures. 
For monocomponent crystal-formers, the crystallization tempera-
ture Tc naturally acts as such a kind of temperature, because when T 
< Tc, the system crystallizes and loses the ability to freely explore the 
potential energy landscape. We do find that TIS ≈ Tc, consistent 
with our expectation. For glass-formers, previous studies have sug-
gested that the onset temperature Ton plays a similar role as Tc 
(23, 45–47). It is then reasonable to expect that TIS agrees with Ton 
for glass-formers, which is exactly what we find here. Conversely, 
TIS ≈ Ton and TIS ≈ Tc found here directly illustrate the consistency 
between Ton and Tc. Of course, the situation is more complicated 
for glass-formers. Unlike crystals at T < Tc, supercooled liquids at T 
< Ton can still diffuse. However, it is well known that systems at T < 
Ton are in the landscape-influenced regime and selective of configu-
rations (23), showing special dynamics distinct from simple liquids 
at T > Ton such as two-step structural relaxation and dynamic hetero-
geneity (39, 51, 52). The fact that TIS ≈ Ton consistently reflects that 
the system starts to explore the potential energy landscape in a way 
different from simple liquids when T < Ton.
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Although easy to crystallize, monodisperse systems can still form 
glasses with sufficiently fast quench rates. We may then view Tc as 
Ton for the glass-formation of monodisperse systems on the basis of 
the consistency between Tc and Ton. On the other hand, widely used 
glass-formers, especially bidisperse systems, may slowly evolve to 
microphase or phase separation with sufficiently slow quench rate 
(41, 53). If phase separation occurs, Ton could be regarded as the 
onset temperature of the separation (ordering) as well. Therefore, 
whether crystals (phase separation) or glasses are formed is usually 
time dependent for some materials. However, TIS has nothing to do 
with time, so does the characteristic temperature it represents, i.e., 
the lowest temperature for simple liquids with the Arrhenius behavior 
to exist. Below such a temperature, crystallization (phase separation) 
and glass-formation can occur at different time scales, but both 
processes exhibit dynamics deviating from the Arrhenius behavior. 
Then, how to interpret the temperature represented by TIS (as Tc or 
Ton) depends on the form of the resultant solid.

Under certain conditions, bi-disperse systems can also form 
complex crystals such as Laves phases (54). In the parameter space 
studied in this work, we do not see any sign of the formation of complex 
crystals. If complex crystals could be formed, we expect that TIS would 
still measure the crystallization temperature on the basis of our findings 
here. This requires the realization of complex crystals, which is be-
yond the scope of this work and will be left for future studies.

Acting as the zero-temperature effective temperature, TIS unifies 
fluctuation-dissipation temperatures of typical slow-evolving non-
equilibrium systems, such as aging glasses, shear flows, and self- 
propelled active matter. This clarifies the long-standing puzzles about 
the effective temperature: what the effective temperature defined 
from the FDR represents and whether it is a well-defined thermo-
dynamic temperature unique to nonequilibrium systems. Our work 
reveals that it actually reflects the characteristic temperatures of 
equilibrium systems. For given systems, the crystallization or onset 
temperature is just a function of density. Therefore, once the density 
if fixed, the effective temperature of the corresponding slow-evolving 
system is fixed. In another word, the effective temperature is governed 
by density. If such an effective temperature could act as a thermodynamic 
temperature as the heat bath temperature in equilibrium systems 
does, it would obey the zeroth law of thermodynamics. Namely, for 
example, if we put two quasi-static shear flows with different effec-
tive temperatures into thermal contact, i.e., allowing heat to transfer 
between them, then we would expect that the effective temperature 
gradient causes “heat” flux to equilibrate the temperatures and, lastly, 
their effective temperatures are equal, although no particle exchange 
is allowed between the two systems and their densities are not al-
lowed to change. However, this cannot happen (49). Because effec-
tive temperatures are controlled by density, as long as the densities 
of the two contacting shear flows are fixed, the effective tempera-
ture gap between them will maintain and no heat flux can be pro-
duced. Our work thus calls for the revisit of the effective temperature 
and the theories based on it. Being possibly the simplest case, the 
effective temperature of sheared ideal gases and its multiple defini-
tions (6, 7) may be the good starting point.

MATERIALS AND METHODS
System details
Our systems are equilateral boxes with a side length L, containing N = 
1000 (1024) particles with the same mass m in 3D (2D). In bidisperse 

systems, there are NA A particles and NB( = N − NA) B particles, while 
NA = N and there are only A particles in monodisperse systems. We 
apply Lees-Edwards boundary conditions (55) when studying shear 
flows and periodic boundary conditions in all directions for all the 
other cases.

For LJ and RLJ systems, the interaction potential between parti-
cles i and j is

   U( r  ij   ) =   
 ϵ  ij   ─ 72   [     (     

   ij   ─  r  ij     )     
12

  −   (     
   ij   ─  r  ij     )     

6
  ]   + f( r  ij  )   (7)

where rij is the separation between the two particles, ij and ϵij de-
pend on the types of interacting particles, and f(rij) ensures that U = 
U′ = 0 at the truncation   r  ij   =  r ij  c   . For bidisperse systems, we use the 
Kob-Anderson model (56): NA = 0.8 N and NB = 0.2 N with the 
parameters ϵAB = 1.5ϵAA, ϵBB = 0.5ϵAA, AB = 0.8AA, and BB = 
0.88AA. The potential cutoff   r ij  

c    is 2.5ij for LJ potential and 21/6ij 
for RLJ potential.

For HARM systems, the interaction potential is

   U( r  ij   ) =   ϵ ─ 2     (  1 −   
 r  ij   ─    ij     )     

2
   (  1 −   

 r  ij   ─    ij     )     (8)

where ij is the sum of radii of particles i and j, and (x) is the 
Heaviside step function. For bidisperse systems, NA = NB = 0.5 N 
and the diameters of A and B particles are 0 and 0/1.4, respective-
ly. We also use polydisperse HARM systems to efficiently generate 
ultrastable inherent structures. For polydisperse systems, the parti-
cle diameters  are chosen from the distribution P() ∼ −3, where 
 ∈ [0.730,1.630].

Calculation of onset temperature
To locate the onset temperature, we fit the intermediate scattering 
function Fs(k, t) with the Kohlrausch-Williams-Watts stretched 
exponential form, Fs(k, t) ∼ exp[(t/)]. For simple liquids with 
Arrhenius behavior,  = 1. When T < Ton and the liquids exhibit 
super-Arrhenius behavior,  < 1. We set Ton as the temperature at 
which  decays to 0.8 ∼ 0.9 (57, 58).

Simulation of shear flows
To mimic shear flows, we apply the shear in the x direction with a 
shear rate    ̇    and integrate the equation of motion

   m    d   2     → r    i   ─ 
d  t   2 

   = −  ∑ 
j
     [     

dU( r  ij  ) ─ 
d    → r    i  

   + (   → v    i   −    → v    j   )  ]     (9)

where     → r    i    and     → v    i    are the location and velocity of particle i,  is the 
damping coefficient, and the sum is over all particles interacting with 
particle i. Here, we use  = 0.5 in units to be defined below.

Simulation of self-propelled flows
For self-propelled active systems, we study a minimal model gov-
erned by the overdamped equation of motion (59)

      → v    i   = −  ∑ 
j
       

dU( r  ij  ) ─ 
d    → r    i  

   + f    → n    i   =    → F    i   + f    → n    i    (10)

where  is the damping coefficient, f and     → n    i    are the strength and 
orientation of self-propulsion, respectively, and the sum is over all 
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particles interacting with particle i. The orientation     → n    i    is set at the 
beginning of the simulation and remains fixed, satisfying   ∑ i        → n    i   = 0 . 
To probe quasi-static flows of self-propelled particles [see (60) for 
the reasons in detail], we use a recently developed constant propul-
sion velocity algorithm (60) by setting

  f =   v  sp   −   1 ─ N     ∑ 
i=1

  
N

       → F    i   ⋅    → n    i    (11)

where   v  sp   =   1 _ N   ∑ i=1  N       → v    i   ·    → n    i    is the average self-propulsion velocity. 
Then, we are able to control vsp and access quasi-static flows in the 
vsp → 0 limit.

Units
For LJ and RLJ systems, we set the units of length, mass, and energy 
to be AA, m, and ϵAA, respectively. The temperature is in units of   
ϵ  AA    k B  −1   with kB being the Boltzmann constant. The density  is de-
fined as  N   AA  3    L   −3  . For self-propelled systems with m = 0, the time 
is in units of     AA  2   /  ϵ  AA   . For all the other systems, the time is in units 
of   m   1/2     AA    ϵ AA  −1/2  . For HARM systems, we replace AA and ϵAA 
with 0 and ϵ.
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