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Abstract
Benzo[a]pyrene (BaP) is bioactivated in most organisms by the cytochrome P450 (CYP) enzymes, mainly CYP1A1, ulti-
mately resulting in the reactive metabolite BaP-7,8-dihydrodiol-9,10-epoxide (BPDE) capable of covalently binding to 
DNA and forming adducts. This step has been defined as the key process in cancer initiation in humans. However, limited 
knowledge is available about the consequences of BaP exposure in organisms lacking this classical CYP1A1 pathway, one 
example is the model nematode Caenorhabditis elegans. The aim of this study was to define the genotoxic potential of BaP 
in C. elegans and to advance our understanding of xenobiotic processing in the absence of the CYP1A1 pathway. Exposure 
to high concentrations of BaP (0–40 µM) significantly affected life cycle endpoints of C. elegans, which were manifested 
by a reduced reproductive output and shortened life span. An optimised comet assay revealed that DNA damage increased 
in a dose-dependent manner; however, no bulky DNA adducts (dG-N2-BPDE) were observed by 32P-postlabelling. Global 
transcriptomic analysis by RNA-Seq identified responsive transcript families, most prominently members of the cyp-35 
and UDP-glucuronosyltransferases (UGTs) enzyme families, both of which are linked to xenobiotic metabolism. Strains 
harbouring mutations in the cyp-35A2 and cyp-35A3 genes were notably less prone to BaP-mediated toxicity, and BaP led to 
longevity in cyp-35A5 mutants. In summary, BaP induces transcriptional, genotoxic and phenotypic responses in C. elegans, 
despite the absence of the classical CYP1A1 bioactivation pathway. This provides first evidence that parallel pathways are 
implicated in BaP metabolism in C. elegans and this seems to be mediated via the cyp-35 pathway.
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Introduction

Polycyclic aromatic hydrocarbons (PAHs) are products of 
the incomplete combustion of organic matter which are pre-
sent in polluted air, diesel engine exhaust and tobacco smoke 
(Phillips 1999). Benzo[a]pyrene (BaP) is classified as Group 
1 human carcinogen by IARC, because it can induce DNA 
damage and mutations in growth-controlling genes such as 
tumour suppressors or oncogenes leading to tumour develop-
ment (IARC 2010). BaP has been extensively studied and is 
often used as a model PAH to define the underlying mecha-
nisms linked to PAH carcinogenesis (Kasala et al. 2015). As 
a pro-carcinogen, BaP requires bioactivation by members 
of the cytochrome P450 (CYP) superfamily, which entail 
many haem-containing mono-oxygenases. In humans and 
rodents, BaP is first oxidised predominantly by CYP1A1 
to BaP-7,8-epoxide, which is converted by microsomal 
epoxide hydrolase to BaP-7,8-dihydrodiol. Further activa-
tion by CYP1A1 leads to BaP-7,8-dihydrodiol-9,10-epoxide 
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(BPDE) which can form pre-mutagenic adducts by cova-
lently binding to DNA (Arlt et al. 2008; Alexandrov et al. 
2016; Kucab et al. 2019). BPDE mainly react with purine 
bases in DNA, with 10-(deoxyguanosin-N2-yl)-7,8,9-trihy-
droxy-7,8,9,10-tetrahydro-BaP (dG-N2-BPDE) being the 
most abundant DNA adduct detected in mammalian DNA 
(IARC 2012). Additionally, BaP can produce depurinating 
adducts by metabolite (e.g., ortho-quinones, benzylic sul-
phate esters, and radical cations) interactions with the N7 
positions of purine bases which consequently lead to the 
generation of apurinic sites inside the sugar phosphate back-
bone of DNA (Rogan et al. 1993; Casale et al. 2001; Chiang 
and Means 2008). BaP can generate reactive oxygen spe-
cies (ROS) indirectly (through the activity of redox metabo-
lites) that can also damage the DNA by producing lesions 
(e.g., 9-OH- dG), propene adducts, or DNA single-strand 
breaks (Harvey et al. 2005). The BaP mediated genotoxic 
pathway has been studied in fine detail in higher eukaryotes 
and involves the intricate processing via CYP1 enzymes 
(CYP1A1, CYP1B1, and CYP1A2) (Shimada et al. 1997; 
Gotoh 1998; Xue and Warshawsky 2005; Shimada 2006; 
Luch and Baird 2010). There is evidence that members of 
the less-known CYP2 sub- family (e.g., CYP2C8, CYP2C9, 
CYP2C18, and CYP2C19) are also capable of metabolizing 
BaP (Guengerich and Shimada 1992; Bauer et al. 1995; Šulc 
et al. 2016). Indeed, many studies have demonstrated that 
the human exposure to PAHs (including BaP) results in the 
formation of DNA adducts (Albert et al. 1991; Harvey et al. 
2005; Reed et al. 2018; Willis et al. 2018). A widely used 
and efficient technique in identifying DNA adducts induced 
by BaP (mainly the dG-N2-BPDE) is the thin-layer chroma-
tography 32P-postlabelling (Phillips and Arlt 2007, 2020).

Caenorhabditis elegans is a non-parasitic nematode 
which lives within the interstitial water in the soil. Char-
acterised by a fast generation time and large brood size 
(Riddle et al. 1997) and its completely sequenced and fully 
annotated genome, C. elegans has been subjected to many 
genetical and biochemical studies (Steinberg et al. 2008). 
Some 60–80% of genes within the worm genome are orthol-
ogous to their human counterparts (Lai et al. 2000; Kal-
etta and Hengartner 2006), for example 12 out of 17 signal 
transduction pathways are conserved between humans and 
C. elegans (NRC 2000). More importantly, 40% of human 
disease-associated genes are represented by orthologs in 
the C. elegans genome (Culetto 2000). C. elegans has been 
used in the discovery of pharmacological targets for human 
diseases and is gaining attention as a promising multicel-
lular alternative for studying environmental pollutants at 
the molecular level as well as the level of whole organisms 
(Meier et al. 2014; Polak et al. 2014; Steinberg et al. 2008; 
Volkova et al. 2020). Previous toxicological research with 
C. elegans mainly focused on inorganic substances, such as 
heavy metals (Williams and Dusenbery 1990; Harada et al. 

2007) or pesticides (Jones et al. 1996; Rajini et al. 2008). 
Only few studies have centred around PAHs or more spe-
cifically BaP. Life cycle assessment revealed that growth, 
reproduction and survival are impacted in C. elegans after 
BaP exposure (Sese et al. 2009). DNA damage, measured 
as DNA breaks, was also observed in BaP-exposed worms 
when using the alkaline version of the single cell electropho-
resis assay (comet assay) (Imanikia et al. 2016).

The present study investigated phenotypical alterations, 
molecular genetic responses, and genotoxicity induction of 
nematodes exposed to the environmental carcinogen BaP. 
The C. elegans model is uniquely positioned as it lacks the 
classical CYP1A1 pathway and thus allows the investigation 
of alternative mechanisms that drive BaP (geno)toxicity.

Materials and methods

Chemicals

BaP (CAS number 50-32-8; purity ≥ 96%; Sigma-Aldrich, 
USA) was dissolved in dimethyl sulfoxide (DMSO; Sigma-
Aldrich) to make a 40 mM stock solution.

C. elegans strains and maintenance

C. elegans strains were maintained at 20 °C on Nematode 
Growth Media (NGM) plates supplemented with Escheri-
chia coli OP50 as the food source. The C. elegans wild-type 
N2 Bristol as well as the mutant strains RB1788 [genotype: 
C03G6.14, cyp-35A1 (ok2306) V.], VC743 [genotype: 
C03G6.15, cyp-35A2 (gk326) V.], RB2046 [genotype: 
K09D9.2, cyp-35A3 (ok2709) V.], RB1613 [genotype: 
K07C6.5, cyp-35A5 (ok1985) V.] were obtained from the 
Caenorhabditis Genetics Center (CGC), University of Min-
nesota. For each assay, nematodes were age-synchronised 
using an alkaline hypochlorite treatment to isolate the eggs. 
Thereafter, eggs were allowed to hatch overnight in M9 
solution and arrested at L1 stage. On the following day, age 
synchronous L1 worms were transferred to NGM plates and 
utilised for the assays.

Exposure of C. elegans to BaP

BaP exposures were achieved by mixing E. coli OP50 bac-
teria with the appropriate volume of BaP stock solution 
to reach the desired concentration (0–40 µM) for testing. 
DMSO at a final concentration of 0.1% was used through-
out (including untreated controls). Aliquots of bacteria and 
BaP mixture were seeded on NGM plates and incubated at 
room temperature for 2 days. Thereafter, L1-synchronised 
worms were plated on 90 mm petri dishes which contained 
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the bacteria (a culture containing BaP or DMSO [controls]). 
Worms were incubated at 20 °C for 48 h to reach the L4 
stage.

Reproduction assay

Twenty-four age-synchronised L4 nematodes grown on 
OP50-inoculated NGM plates, supplemented with differ-
ent concentrations of BaP, were individually transferred to 
12-well OP50-inoculated NGM plates supplemented with 
corresponding BaP concentrations. Worms were transferred 
daily to the same well positions of new 12-well plates under 
the same conditions until egg laying ceased, typically within 
a 4-day period. One day after the eggs hatched, images of the 
individual wells were taken using a high-resolution camera, 
and the number of viable L1 larvae were counted daily over 
a 6-day period.

Life span assay

Age-synchronised L1 worms were seeded onto OP50-inoc-
ulated NGM plates supplemented with different BaP con-
centrations. After 2 days, when the worms reached L4 stage, 
200–400 worms were transferred to new plates containing 
the same BaP concentration. After that, daily transfers of 
all worms were performed. The worm status was assessed 
while transferring with a sterile platinum wire, scoring the 
worms as alive, dead, or lost (censored). The data input was 
analysed and processed in GraphPad Prism (version 8.2.1) 
by the Kaplan–Meier method, where the median survival, 
in days, were compared.

Comet assay

The basic procedure described in this study is adopted from 
Imanikia et al. (2016). Modifications were made to increase 
the sensitivity and specificity by applying formamidopy-
rimidine DNA glycosylase (FPG) which is a base excision 
repair enzyme able to recognize and remove a wide range of 
oxidised purines from corresponding damaged DNA. After 
lysis of the cells, the microscope slides were incubated twice 
in FPG-buffer for 10 min. Therefore, 45 μL of 10,000 times 
diluted FPG enzyme (Sigma-Aldrich) was introduced to 
each slide and incubated in a humidity chamber at 37 °C for 
30 min. Comets were analysed using a Leica fluorescence 
microscope (Leica DMLB 020-519-010 LB30T). DNA dam-
age was scored using the Comet IV capture system (version 
4.11; Perceptive Instruments, UK). Each technical replicate 
consisted of three slides in which fifty cell nucleoids were 
assessed per slide, and each sample was analysed in tripli-
cate. All samples were scored blind. The tail intensity (% 
tail DNA), defined as the percentage of DNA migrated from 

the head of the comet into the tail, was used as a measure of 
DNA damage induced.

Genomic DNA extraction and 32P‑postlabelling 
assay

Age-synchronised L4 worms, grown under different BaP 
concentrations, were collected from plates with M9 buffer, 
serially washed with M9 buffer, mixed with sterile glass 
beads, and flash-frozen in liquid nitrogen. A 400 μL mix-
ture of ethylenediaminetetraacetic acid (EDTA, 1 mM) and 
tris(hydroxymethyl)aminomethane (Tris, 50 mM) was added 
to each tube before vertexing for 5 min. Then, the superna-
tants were transferred to new 1.5-mL microcentrifuge tubes, 
and 9 μL of an RNase mixture of equal amounts of pan-
creatic ribonuclease (RNase A, 10 mg/mL, Sigma-Aldrich) 
and ribonuclease T1 (RNase T1, 50 KU, Sigma-Aldrich) 
were added to the samples. The tubes were incubated on 
a shaker (400 rpm) at 37 °C for 30 min. Thereafter, 40 μL 
of a freshly prepared proteinase K [10 mg/mL dissolved in 
a mix of EDTA (1 mM) and Tris (50 mM)] were added 
and mixed with the samples. The tubes were incubated on 
a shaker (400 rpm) at 37 °C overnight. The following day, 
DNA was isolated using a standard phenol–chloroform 
extraction method. DNA pellet was resuspended in Tris-
EDTA (TE) buffer were stored at − 20 °C until analysis. 
The presence of BaP-derived DNA adducts (dG-N2-BPDE) 
was assessed using the nuclease P1 enrichment method of 
the 32P-postlabelling protocol as described previously (Arlt 
et al. 2008; Phillips and Arlt 2020).

Total RNA extraction

A minimum of 7000 synchronised L4 stage C. elegans were 
washed off from NGM plates and collected. Total RNA was 
extracted using Tri-reagent (Sigma-Aldrich, St. Louis, MO, 
USA) modified to include a homogenization of nematodes 
by vortexing with an equal quantity of acid-washed glass 
beads (particle size 425–600 μm, Sigma-Aldrich). The con-
centration and integrity of total RNA was determined with 
a NanoDrop 1000 Spectrophotometer (NanoDrop Technolo-
gies, Inc., Wilmington, DE, USA) and by 2% agarose gel 
electrophoresis.

RNA sequencing and data processing

RNA was extracted from BaP-exposed L4 nematodes, fro-
zen at − 80 °C. The RNA integrity number (RIN) for each 
sample was determined via the Agilent Technology 2100 
Bioanalyzer system using an RNA 6000 Nano kit (Supple-
mentary figures 1 and 2). RNA-seq libraries prepared by 
GENEWIZ™ (Essex, UK) according to Illumina’s instruc-
tions. Briefly, mRNAs were purified using Poly(A) selection 
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from total RNA and then fragmented. First strand of cDNA 
was synthesised using random priming, followed by the syn-
thesis of the second strand of cDNA. The resulting double-
strand cDNA was end repaired, phosphorylated and A-tailed. 
Adapter ligation and PCR amplification were performed, 
rendering the library ready for Illumina flow cell cluster-
ing and sequencing on an Illumina HiSeq 2500 to sequence 
tens of millions of sequence clusters in parallel (Bentley 
et al. 2008).

Sequence reads (at least 30 million per sample/repli-
cate) were trimmed to remove possible adapter sequences, 
sequence reads shorter than 30 nucleotides and nucleotides 
with poor quality (error rate < 0.05) were removed. The 
sequence reads were mapped to the C. elegans reference 
genome using the CLC Genomics Server program and the 
hit counts and RPKM values for genes calculated. After 
quantile normalization and log2-transformation on RKPM 
values, unsupervised hierarchical clustering and Principal 
Component Analysis (PCA) were performed. Comparisons 
of genes between various groups of samples were performed. 
A student t test was conducted for each comparison after 
quantile normalization and log2-transformation. A gene 
was selected if the p value was < 0.05 and the fold-change 
of normalized RPKMs was > 2. To analyse the variation of 
gene expression across the duplicates, the mean normalized 
RPKMs, standard deviation and coefficient of variation (CV) 
was calculated within each group.

Real‑time quantitative PCR

cDNA was synthesized from 1000 ng RNA using an oligo 
dT primer (5′-(T)20VN-3′) and M-MLV reverse transcriptase 
(Promega, Southampton, UK) applying standard incuba-
tion conditions. The transcript quantity was measured on an 
ABI Prism 7500 Fast (Applied Biosystems®, Paisley, UK) 
using the housekeeping gene rla-1 (acidic ribosomal subunit 
protein P1) for normalization purposes (Swain et al. 2004; 
Polak et al. 2014). All probes and primers were designed 
to be compatible with the Universal Probe Library (Roche 
Applied Sciences, Burgess Hill, UK) (Supplementary 3). 
The CT values were determined using the 7500 Fast System 
SDS Software (Applied Biosystems®) and the fold changes 
in gene expression were calculated by applying the  2−ΔΔCt 
method. Statistical analysis was performed on three inde-
pendent biological replicates, each consisting of three tech-
nical repeat measurements.

Statistical analysis

The analysis of variance (ANOVA) was employed to evalu-
ate the majority of data in the study. T tests were employed 
to scrutinize the variation significance between an exposure 
sample and a control. All statistical tests for this project were 

conducted using GraphPad Prism (version 8.2.1). Statisti-
cal significances throughout were indicated by asterisks; * 
for a p value ≤ 0.05, ** for a p value ≤ 0.01, *** for a p 
value ≤ 0.001, and **** for a p value ≤ 0.0001.

Results

Impact of BaP exposure on reproduction

A key endpoint which evaluates toxicity of xenobiotics in 
C. elegans is brood size. Changes in reproductive output 
in BaP-exposed wild-type worms (0–40 μM from L1 to L4 
stage) was assessed by counting the number of viable off-
spring during the egg laying period. The cumulative brood 
size was determined to be 223 ± 12 viable larvae in wild-type 
control (unexposed). In comparison, the cumulative average 
number of viable larvae decreased significantly with increas-
ing BaP concentration, resulting in 176 ± 11 and 171 ± 21 
offspring per worm exposed to 5 and 10 μM, respectively. 
For worms exposed to 20 μM BaP, the reproductive output 
decreased to 134 ± 20. Exposure to 40 μM BaP for 6 days 
reduced the number of viable larvae to 129 ± 13 (Fig. 1a). 
During the first 3 days of egg laying, a significant decrease 
in the number of the viable larvae was observed in worms 
exposed to 20 μM and 40 μM BaP in comparison with con-
trol (unexposed) worms.

Impact of BaP exposure on life span

The life span assay is used routinely to determine the effect 
of a xenobiotic chemical on aging and death (Koch et al. 
2014). Age-synchronised L1 wild-type C. elegans were 
exposed to different concentrations of BaP (0–40 μM), trans-
ferred daily onto freshly prepared NGM plates with the same 
experimental conditions and the numbers of alive, dead, and 
censored worms were recorded. This was repeated until all 
worms of all groups died. The median survival (50% alive) 
of wild-type control worms was determined to be 12 days 
which decreased by 1–2 days at concentrations of BaP 
above 1 μM BaP, an effect which was statistically signifi-
cant (Fig. 1b).

Induction of DNA strand breaks (comet assay) 
after BaP exposure

Wild-type nematodes were exposed to various concentra-
tions of BaP (0, 1, 5, 10, 20, and 40 μM) for 48 h. Cells 
successfully isolated from these worms were then embed-
ded onto pre-coated agarose slides. A portion of these slides 
was further incubated with FPG to measure oxidative dam-
age to DNA. FPG is a base excision repair enzyme which 
recognises and removes a wide range of oxidised purines 
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from the corresponding damaged DNA. This additional step 
increases the sensitivity and specificity of the comet assay 
(Hansen et al. 2010). Afterwards, all the slides were run 

through a single-cell gel electrophoresis (comet assay) and 
DNA damage was scored using the Comet IV capture sys-
tem (Fig. 2a). No inter-sample differences in atypical comets 

Fig. 1  a Wild-type C. elegans were exposed to BaP (0–40  µM) for 
8  days, and the average daily number of viable larvae was counted 
every 24  h and cumulatively added during the egg laying phase 
(marked 1–6). Error bars represent SEM. Statistical analysis was 
performed using a two-way ANOVA, followed by a Tukey’s multi-
ple comparisons test, n = 24 per BaP concentration. Ψ = the p value 
of 0 vs. 20 µM BaP ≤ 0.01, and of 0 vs. 40 ≤ 0.001. b The percentage 
survival of wild-type C. elegans exposed to different concentrations 
of BaP (0–40 μM). The worms were scored by transferring them all 

to a new plate every 24 h from L1 stage until all worms were dead. 
Lost or mistakenly killed worms were censored and removed from the 
data. Note that the median survival (50% alive) of worms was meas-
ured to be 12 days for the control worms (BaP [0 μM]; DMSO [0.1% 
v/v]) but only 10  days for the highest BaP concentration (40  μM). 
Statistical analysis was performed using log-rank (Mantel-Cox) test, 
n = 400 per BaP concentration. All samples contained DMSO (0.1% 
v/v)

Fig. 2  a Images on the upper row are representative cells after per-
forming the comet assay isolated from wild-type C. elegans exposed 
for 48 h to different BaP doses (0, 1, 5, 10, 20, or 40 μM). The images 
on the lower row are outputs from the Comet IV software (version 
4.11, Perceptive Instruments Ltd., UK). b A box plot of the % tail 
DNA in cells isolated from wild-type C. elegans exposed for 48  h 
to different doses of BaP (0, 1, 5, 10, 20, or 40 μM) and treatment 
with FPG at 0 and 40  μM BaP. Fifty cell nucleoids were measured 

per slide (technical replicates), for a total of 150 cells per biological 
replicate (3 slides) and 450 total cells per experimental condition (3 
biological replicates). The average of 150 cells was calculated for all 
biological replicates and then averaged (n = 3). Statistical analysis 
was performed using a one-way ANOVA, followed by a Tukey’s mul-
tiple comparisons test; a, b, c, d refers to the calculated probability 
(p value), where different letter denote p ≤ 0.0001. All samples con-
tained DMSO (0.1% v/v)
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(e.g., hedgehogs) were noted; however, an increase in the 
tail intensity (% tail DNA) was observed after exposure 
to increasing BaP concentrations. The baseline in control 
(unexposed) worms was about 10%. After BaP exposure tail 
intensity increased to ~ 17% in worms treated with 5 and 
10 μM BaP and further increased up to ~ 30% after treatment 
with 20 and 40 μM BaP. When the FPG-modified comet 
assay was performed background DNA damage increased 
from 10 to 19% in controls (unexposed). Similarly, the % tail 
DNA generated from a comet assay on cells dissociated from 
nematodes exposed to 40 μM BaP also increased by ~ 9% 
when the comet assay was modified with FPG (from ~ 30% 
to ~ 39%) (Fig. 2b). No information was gathered regarding 
the viability of the cells used for the comet assay.

DNA adduct formation after BaP exposure

For DNA adduct analysis the 32P-postlabelling assay was 
performed (Phillips and Arlt 2020) which is capable of 
detecting BaP-derived DNA adducts (Arlt et al. 2008). As 
shown in Fig. 3a, using BaP-exposed mouse liver DNA 
as positive control, BaP exposure lead to one major DNA 
adduct spot on the thin-layer chromatography plate which 
was previously identified as dG-N2-BPDE (Arlt et  al. 
2008). In contrast, no BaP-derived DNA adducts (i.e., dG-
N2-BPDE) were detected in wild-type C. elegans exposed 
to 20 μM (Fig. 3b) and 40 μM BaP for 48 h. Nematodes 

exposed to BaP were independently tested twice, Fig. 3 
showing representative images.

Transcriptional analysis

A global RNA-seq transcriptomic experiment was investi-
gated to provide an understanding of the underlying mech-
anisms by which BaP exerts its effects on the nematode. 
Principal component analysis (PCA) was performed using 
the ClustVisTM web tool (Metsalu and Vilo 2015) which 
illustrates the reproducible technical generation of samples 
(Supplementary Figures 4 and 5). Additional validation on 
15 transcripts was performed by qPCR which confirmed that 
the overall trend in expression dynamics was comparable 
between RNA-seq and qPCR (Supplementary Figures 6 and 
7). A distinct transcriptional response was observed, namely 
the expression of only 312 transcripts were significantly 
(p ≤ 0.05) and differentially (2-fold or higher) altered after 
BaP exposure to either 5 or 20 μM BaP in comparison to 
control (unexposed) (Fig. 4a). Many of the most significantly 
up-regulated transcripts were common in worms exposed 
to 5 μM or 20 μM BaP, with clear dose-dependent increase 
in expression levels (Table 1). In contrast, only four of the 
177 significantly (p ≤ 0.05) down-regulated transcripts were 
common in worms exposed to 5 or 20 μM BaP. No genes 
were up-regulated in samples exposed to 5 μM BaP and at 
the same time down-regulated in samples exposed to 20 μM 
BaP, nor vice versa (Fig. 4a).

Fig. 3  Representative autoradiographic profiles of DNA adducts 
obtained by TLC 32P-postlabelling in wild-type C. elegans exposed 
to 20 µM BaP for 48 h. a Liver DNA isolated from mice treated with 
a single intraperitoneal dose of 125  mg/kg body weight BaP was 
used as positive control (Arlt et al. 2012). b The arrow indicates the 
dG-N2-BPDE adduct. Solvent conditions for the separation of BaP-

derived DNA adducts on PEI-cellulose TLC were as follows: D1, 
sodium phosphate (1 M), pH = 6.0; D3, lithium formate (3.5 M), urea 
(8.5  M), pH = 3.5; D4, lithium chloride (0.8  M), Tris (0.5  M), urea 
(8.5 M), pH = 8.0. The origins (OR), at the bottom left-hand corners, 
of each chromatogram were cut off before exposure
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Two main gene groups were significantly altered after 
BaP exposure. Firstly, the cyp genes (especially the cyp-
35 family), which are linked to xenobiotic response, redox 
reactions, and lipid metabolism. Seven (of the 10) cyp-35 
genes were represented in the list of the top 37 BaP most 
highly induced genes (0 vs. 20 μM, > 5-fold induction, t 
test, p ≤ 0.05, n = 3) (Table 2). Secondly, UDP-glucuronosyl-
transferase (UGT) genes, which are linked to the biotrans-
formation of xenobiotics, including phase II metabolism of 
BaP in higher eukaryotes (Brand et al. 2010; Kurita et al. 
2017). Nine (of 65) ugt genes were in the list of the top 37 
BaP-induced genes (0 vs. 20 μM, > 5-fold induction, t test, 
p ≤ 0.05, n = 3) (Table 3).

In addition to genes linked to BaP metabolism, based on 
the RNA-seq, two further groups of genes were significantly 
and differentially regulated, namely infection response and 
innate immune response genes such as F35E12.5 (irg-5), 
F08G5.6 (irg-4), C32H11.1 (irg-6) and C-type lectin (clec) 
genes. F35E12.5 (irg-5) was the most significantly up-reg-
ulated gene in the data set; it was induced ~ 90-fold at 5 μM 
BaP and ~ 270 fold at 20 μM BaP, respectively.

The most significant molecular functions (GO:0003674) 
obtained from the RNA-seq data set were the oxidore-
ductase activity, acting on paired donors, with incorpora-
tion or reduction of molecular oxygen (GO:0,016,705) 

and transferase activity, transferring hexosyl groups 
(GO:0016758) (Supplementary 8). These are linked to the 
significantly (t test, p ≤ 0.05) up-regulated cyp genes (mainly 
the cyp- 35′s) and the large number of the significantly (t 
test, p ≤ 0.05) up-regulated ugt genes, respectively (Fig. 4b).

The CYP phylogenetic tree

To investigate the relationship between human and C. ele-
gans BaP metabolism, a phylogenetic tree was constructed 
consisting of the Homo sapiens CYPs implicated in the 
metabolism of BaP, CYP1A1, CYP1B1, and CYP1A2 (Shi-
mada et al. 1997; Gotoh 1998; Xue and Warshawsky 2005; 
Shimada 2006; Luch and Baird 2010), CYP2s (Wang et al. 
2017), and others (Prakash et al. 2015) as well as the 75 
CYPs expressed in C. elegans. Based on sequence homol-
ogy, the majority of the human and worm CYPs clustered, at 
large, distinctly separate, with the human CYP1s / CYP2Cs 
and the worm CYP-35′s positioned within separate clades 
(Fig. 5). The H. sapiens CYP2Cs are located in neighbour-
ing clades close to C. elegans CYP-33 s and CYP-14 s, with 
cyp-14A4 notably shown to be significant upregulated in 
worms exposed to BaP. C. elegans CYP-34A9, the other 
upregulated CYP in worms, is also positioned close to 
the CYP-35s family. An equivalent phylogenetic tree was 

Fig. 4  a Proportionally sized Venn diagram showing the 312 sig-
nificantly (t test, p ≤ 0.05, n = 3) and differentially regulated genes 
(> 2-fold change) of wild-type C. elegans exposed to different doses 
of BaP (0, 5, or 20  µM) for 48  h. Ø marks a zero gene overlap. b 
Partial gene ontology (GO) hierarchical tree presenting molecular 
functions which were found to be significantly enriched in wild-type 
C. elegans exposed to different concentrations of BaP (0 vs. 5 and 0 
vs. 20 µM) for 48 h. Boxes on the graph represent GO terms labelled 
with their GO number, term definition, and statistical information 
(p value) on both sides on top of the boxes (5 and 20  µM BaP on 

the left and right side, respectively). The degree of colour saturation 
(from white through yellow to red) of one side of the box is positively 
correlated to the enrichment level of the term for that exposure con-
dition. Black dashed, black solid, and red solid lines represent zero, 
one, and two enriched terms at both ends connected by a line. The 
graph was based on the results of DAVID Bioinformatics Resources 
version 6.8 and PANTHER classification version 14.0 and was con-
structed manually. All samples contained DMSO (0.1% v/v) (colour 
figure online)
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generated for UGTs, again suggesting that worm and mam-
malian UGT’s differ, at least by sequence homology (Sup-
plementary 9).

The effect of BaP on knockout mutant strains

Five cyp-35 genes (cyp-35A1, cyp-35A2, cyp-35A3, cyp-
35A5, and cyp-35B1), identified by RNA-Seq as key 
genes with possible links to xenobiotic exposure and 

metabolism, were selected to explore their involvement 
on BaP mediated changes in the physiological end points 
measurements. When cyp-35A2 KO worms were exposed 
to 40 μM BaP, their average cumulative viable larvae 
count was significantly higher compared to wild-type nem-
atodes exposed to the same BaP concentration (Fig. 6a, b). 
In addition, there was no significant change in the aver-
age cumulative number of viable larvae between control 
(unexposed) and BaP-exposed cyp-35A2 KO nematodes 

Table 1  Top upregulated gene 
with their sequence names, their 
expression differences (0 vs. 
5 and 20 µM BaP), and their t 
test p values obtained from the 
RNA-seq data (0 vs. 20 µM 
BaP, > 5-fold change, t test, 
p ≤ 0.05, n = 3) in comparison to 
the control (0 µM BaP)

Gene Sequence
Name Name Expression T-test Expression T-test

(fold) p-value (fold) p-value
irg-5 F35E12.5 90.3 4.96E-04 268.8 2.90E-06

cyp-35A1 C03G6.14 48.1 2.40E-03 232.3 1.42E-03
clec-206 F59A7.1 15.2 2.01E-03 57.6 1.93E-03
F56A4.2 F56A4.2 12.8 1.28E-02 29.2 6.61E-03
clec-209 Y19D10A.9 12.6 1.04E-02 28.8 5.26E-03
irg-6 C32H11.1 6.2 2.73E-02 16.6 8.09E-03
irg-4 F08G5.6 8.4 2.91E-04 15.1 5.98E-05

F49F1.7 F49F1.7 6.3 2.39E-03 15.0 2.03E-05
cyp-35C1 C06B3.3 5.6 4.06E-03 14.6 6.31E-04
ugt-33 C35A5.2 6.3 9.65E-05 14.5 2.48E-03

cyp-35A5 K07C6.5 5.6 1.46E-03 12.8 4.54E-03
H23N18.4 H23N18.4 5.6 0.0603 12.1 3.07E-02
T16G1.6 T16G1.6 4.5 1.88E-03 11.4 2.72E-03

Y73C8C.10 Y73C8C.10 8.3 2.64E-04 11.4 6.25E-04
cyp-35A3 K09D9.2 2.0 3.76E-03 11.1 4.07E-04
ugt-16 ZC443.6 5.2 3.96E-04 9.9 8.04E-05
clec-174 Y46C8AL.2 3.9 4.41E-02 8.1 1.58E-02

Y41D4B.15 Y41D4B.15 5.3 5.43E-03 7.5 4.16E-04
ugt-10 T19H12.11 3.3 0.056 7.4 2.14E-02
C29F7.2 C29F7.2 4.6 2.30E-05 7.3 9.04E-03
dhs-23 R08H2.1 3.7 2.43E-02 7.1 1.55E-02

F55G11.2 F55G11.2 4.4 1.46E-02 6.7 8.63E-03
cyp-35A2 C03G6.15 2.5 4.96E-02 6.6 2.93E-03
F20G2.5 F20G2.5 2.4 3.11E-02 6.6 6.31E-03
ugt-41 F10D2.11 3.1 1.02E-02 6.5 2.49E-03
ugt-51 C03A7.11 2.9 3.26E-03 6.5 1.11E-04
ugt-14 H23N18.2 3.2 1.12E-02 6.4 2.47E-03
ugt-40 F10D2.5 2.5 4.47E-02 6.3 4.64E-04
ugt-9 T19H12.1 2.6 5.12E-03 6.2 2.90E-04

E02C12.10 E02C12.10 2.0 0.173 5.9 2.77E-02
oac-6 C31A11.5 3.2 6.71E-03 5.7 3.52E-03

cyp-37B1 F28G4.1 5.0 3.91E-02 5.7 3.20E-02
cyp-35B1 K07C6.4 4.4 3.86E-02 5.4 2.17E-02
ugt-8 H23N18.3 3.5 8.10E-03 5.4 4.03E-04

T25G12.13 T25G12.13 2.9 2.94E-02 5.3 3.17E-03
cgt-1 T06C12.10 3.6 1.84E-03 5.2 2.17E-03
ptr-22 Y80D3A.7 3.0 1.68E-02 5.0 7.94E-03

5 µM BaP 20 µM BaP

Gene
Expression

Level
+300

-5
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(Fig. 6a, b). The average median survival of cyp-35A2 KO 
worms exposed to 40 μM BaP did not significantly change 
in comparison to controls (unexposed) (Fig. 6f). However, 
the median survival of cyp-35A2 KO worms was signifi-
cantly longer than wild-type nematodes after exposure to 
40 μM BaP (Fig. 6e, f).

The average number of offspring produced by cyp-35A3 
KO worms to BaP was significantly lower compared to wild-
type nematodes in the presence or absence of BaP expo-
sure (Fig. 6a, c). On the other hand, there was no significant 
change in the average cumulative number of viable larvae 
between the control (unexposed) and BaP-exposed cyp-
35A3 KO nematodes (Fig. 6c). Also, the median survival 

did not differ in cyp-35A3 KO nematodes after exposure to 
0 or 40 μM BaP (Fig. 6g); however, compared to wild-type 
nematodes their median survival after exposure to 40 μM 
BaP was significantly extended (Fig. 6e, g).

The average cumulative reproductive performance of 
cyp-35A5 worms exposed to BaP did not significantly 
differ to wild-type nematodes (Fig. 6a, d). The median 
survival of BaP-exposed cyp-35A5 KO nematodes was, 
however, significantly extended compared to controls 
(unexposed) (Fig.  6h), which was also significantly 
extended compared to wild-type nematodes (Fig. 6e, h). 
Due to the internal hatching of the progeny, all nematodes 

Table 2  List of all cyp-35 genes 
in wild-type C. elegans with 
their sequence names, their 
expression differences (0 vs. 
5 and 0 vs. 20 µM BaP), and 
their t test p values as obtained 
from the RNA-seq data (t test, 
p ≤ 0.05). N/A = not available

Gene
Expression

Level
+300

-5

Gene Sequence
Name Name Expression T-test Expression T-test

(fold) p-value (fold) p-value
cyp-35A1 C03G6.14 48.1 2.40E-03 232.3 1.42E-03
cyp-35B2 K07C6.3 69.9 N/A 71.1 N/A
cyp-35C1 C06B3.3 5.6 4.06E-03 14.6 6.31E-04
cyp-35A5 K07C6.5 5.6 1.46E-03 12.8 4.54E-03
cyp-35A3 K09D9.2 2.0 3.76E-03 11.1 4.07E-04
cyp-35A2 C03G6.15 2.5 4.96E-02 6.6 2.93E-03
cyp-35B1 K07C6.4 4.4 3.86E-02 5.4 2.17E-02
cyp-35B3 K07C6.2 23.6 N/A 4.7 N/A
cyp-35A4 C49G7.8 1.0 0.887 2.6 0.0709
cyp-35D1 F14H3.10 1.0 0.764 1.9 4.72E-02

5 µM BaP 20 µM BaP

Table 3  List of all significantly 
and differentially regulated 
ugt genes, out of a total of 65 
ugt genes (> 2-fold change, 
t test, p ≤ 0.05, n = 3), with 
their sequence names, their 
expression differences (0 vs. 5 
and 0 vs. 20 µM BaP), and their 
t test p values, as obtained from 
the RNA-seq data

Gene Sequence
Name Name Expression T-test Expression T-test

(fold) p-value (fold) p-value
ugt-33 C35A5.2 6.3 9.65E-05 14.5 2.48E-03
ugt-16 ZC443.6 5.2 3.96E-04 9.9 8.04E-05
ugt-10 T19H12.11 3.3 0.056 7.4 2.14E-02
ugt-41 F10D2.11 3.1 1.02E-02 6.5 2.49E-03
ugt-51 C03A7.11 2.9 3.26E-03 6.5 1.11E-04
ugt-14 H23N18.2 3.2 1.12E-02 6.4 2.47E-03
ugt-40 F10D2.5 2.5 4.47E-02 6.3 4.64E-04
ugt-9 T19H12.1 2.6 5.12E-03 6.2 2.90E-04
ugt-8 H23N18.3 3.5 8.10E-03 5.4 4.03E-04
ugt-13 H23N18.1 2.1 0.0606 3.8 1.70E-02
ugt-4 ZC455.5 2.5 2.07E-02 3.7 1.72E-02
ugt-1 AC3.7 2.3 4.95E-02 2.6 3.59E-02
ugt-36 F09G2.6 2.0 0.0682 2.5 3.56E-02
ugt-22 C08F11.8 1.5 0.0928 2.3 1.03E-02
ugt-5 ZC455.6 3.0 3.08E-02 2.2 4.99E-02
ugt-52 F56B3.7 2.2 2.97E-02 2.1 1.52E-02
ugt-53 T03D3.1 -1.2 2.81E-02 -2.4 1.82E-02

5 µM BaP 20 µM BaP

Gene
Expression

Level
+300

-5
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of the cyp-35A1 KO strain were dead by day 4 (Supple-
mentary 10) (Fig. 7).

Discussion

Physiological endpoints in C. elegans an organism 
which lacks the classical CYP1 enzymes

The effects on key physiological endpoints underlines the 
notion that BaP induces substantial toxicological effects on 
C. elegans despite the fact that it lacks the CYP1 enzymes. 

Previous research focusing on the toxicity effects of BaP on 
C. elegans used the aqueous media (Sese et al. 2009; Ura 
et al. 2002; Haegerbaeumer et al. 2018). Our plate-based 
dosing method also revealed the significant reduction in 
reproductive capacity and life span observed in C. elegans 
exposed to BaP, and therefore, this aligns, in general, with 
previous reports.

Genotoxicity in C. elegans

The existence of DNA strand breaks indicates the pres-
ence of a genotoxic potential. The alkaline single-cell 

Fig. 5  Maximum likelihood 
cladogram showing the relation-
ships between the different 
CYP proteins of C. elegans: 10 
CYP-35′s (red), other signifi-
cantly (t test, p ≤ 0.05, n = 3) up-
regulated CYP’s (orange), and 
the significantly (t test, p ≤ 0.05) 
down-regulated CYP’s (yel-
low), in Homo sapiens: CYP1′s 
(blue), the CYP2C’s (purple), 
and others (green). The tree 
was generated using the MEGA 
software, version 7.0.26 (colour 
figure online)
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electrophoresis, conventionally referred to as the alkaline 
comet assay, was utilised on cells dissociated from wild-
type C. elegans exposed to BaP. The comet assay displayed 

a ~ 3-fold increased DNA damage in nematodes exposed 
to 40 μM BaP, a response which was similar to the data 
reported previously in our laboratory (Imanikia et al. 2016). 

Fig. 6  Brood size and percentage survival of wild-type C. elegans 
and cyp-35 knockout (KO) strains that were exposed to BaP (0 and 
40 µM). a–d Wild-type C. elegans and cyp-35 knockout (KO) strains 
were exposed to BaP (0 and 40 µM) for 8 days, and the average daily 
number of viable larvae was counted and cumulatively added during 
the egg laying phase, i.e., 6 days (starting at day 4 from L1) and are 
labelled 1–6 on the graphs. The number of viable larvae was counted 

every 24  h. Error bars represent SEM. Statistical analysis was per-
formed using a two-way ANOVA, followed by a Sidak’s multiple 
comparisons test, n = 24 per condition. e–h The worms were scored 
every 24  h until all worms were dead. Statistical analysis was per-
formed using the log-rank (Mantel-Cox) test, n = 200 per BaP con-
centration per strain. All BaP doses contained DMSO (0.1% v/v)

Fig. 7  Summary of the molecular genetic and physiological 
responses of C. elegans exposed to BaP based on our research. The 
physiological end points of the wild-type animals showed the sig-
nificant reduction of reproduction and lifespan. The global tran-
scriptomic analysis demonstrated that the cyp and ugt families were 
involved in xenobiotics detoxification process. The assessment of 

genotoxicity confirmed an increase in DNA damage (comet) although 
no BaP-derived DNA adducts (i.e., dG-N2-BPDE) were detectable 
by 32P-postlabelling. The physiological measurements on KO strains 
revealed potential candidates which induce BaP toxicity and contrib-
ute to longevity
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Others have demonstrated that the comet assay can be modi-
fied with FPG which increases the sensitivity and specificity 
in mammalian systems (Speit et al. 2004), and the results 
obtained here suggested FPG addition improved the sensi-
tivity of the comet assay but were inconclusive regarding 
BaP’s link to oxidative stress. The DNA damage identified 
here contradict the results of a previous investigation which 
didn’t detect DNA lesions of BaP exposed nematodes using 
a qPCR assay in aqueous media (Leung et al. 2010).

Interestingly, the 32P-postlabelling technique was not able 
to detect the presence of dG-N2-BPDE adducts in wild-type 
C. elegans exposed to BaP. Although the radical cation (Cav-
alieri and Rogan 1985; Devanesan et al. 1996) and o-qui-
none pathways (Penning 2014) for BaP lead to radical-DNA 
interaction and DNA depurination but their role in BaP car-
cinogenesis in C. elegans was beyond the scope of the pre-
sent study and other techniques such as mass-spectrometry 
might be required to explore whether different forms of BaP 
metabolites generate other types of DNA adducts.

Transcriptional analysis of C. elegans exposed to BaP

RNA-seq is a high-throughput assay which enabled the 
identification of transcriptomic changes in response to BaP 
exposure. The assay revealed that the 312 highly responsive 
transcripts were dominated by the cyp-35′s and ugt’s fami-
lies with subsequent gene ontology analysis highlighting 
oxidation–reduction processes (GO:0055114), transferase 
activity (GO:0016758), and response to xenobiotic stimulus 
(GO:0009410), among others. The cyp-35s are thought to be 
part of the first stage xenobiotic detoxification response in C. 
elegans and were shown to be induced by β-naphthoflavone, 
PCB52, atrazine and lansoprazole. (Menzel et al. 2001, 
2005, 2007; Lindblom and Dodd 2006; Harlow et al. 2018). 
BaP is metabolised in Homo sapiens mainly by the action of 
CYP1′s (CYP1A1, CYP1A2, and CYP1B1) (Shimada et al. 
1997; Gotoh 1998; Xue and Warshawsky 2005; Shimada 
2006; Luch and Baird 2010). However, members of the less-
known CYP2 sub- family have been shown to metabolise 
BaP as well, namely CYP2C8, CYP2C9, CYP2C18, and 
CYP2C19 (Guengerich and Shimada 1992; Bauer et al. 
1995; Šulc et al. 2016). However, inspection of the maxi-
mum likelihood tree derived from C. elegans and human 
CYP protein revealed no close CYP1 and CYP2C sequence 
homologs in the nematode. Besides, the protein sequence 
alignment between CYP-35A1 (P04798) and CYP1A1 
(O02627) by Clustal Omega revealed an identity score of 
only 21%. The CYP-35s protein structure is at this point not 
unavailable, and although the structure of human CYP2A6 
(PDB ID: 2FDV) is available, the sequence shares an iden-
tity of only 25% sequence with C.elegans CYP-35A1. To 
what extent the nematode CYP-35s can compensate or 

substitute the function of human CYP1 and CYP2C is at 
present not known.

Phase 2 metabolism comprises the detoxification reac-
tions of xenobiotic metabolism, and UGT enzymes are a key 
player in this process. There are at least 72 genes that code 
for UGT-like proteins in C. elegans (Lindblom and Dodd 
2006), 16 of which were shown to be up-regulated by BaP 
exposure. In humans, UGTs have been identified to play a 
role in the BaP detoxification process, which implies that 
nematode UGTs may have a similar function (Dellinger et al. 
2006; Zhang et al. 2013a; Vergara et al. 2020).

Physiological endpoints in mutant C. elegans

Five C. elegans cyp-35 knock-out strains were selected and 
changes in the physiological end points evaluated upon 
exposure to BaP. Due to worm bagging of cyp-35A1 KO 
nematodes, the brood size data as well as its life span data 
were only available for 4 days which rendered them unsuit-
able to investigate their role in BaP metabolism. C. elegans 
lacking cyp-35A3 were characterised by an absence of a 
BaP-induced increase in toxicity, suggesting that cyp-35A3 
might play an important role in BaP metabolism. Previous 
reports have linked cyp-35A1 and cyp-35A3 to lipid metabo-
lism (Aarnio et al. 2011; Zhang et al. 2013a, b; Imanikia 
et al. 2015), indeed, animals lacking another fat metabolising 
gene (fat-3) displayed a similar abnormal egg-laying behav-
iour (Lesa et al. 2003; Reisner et al. 2011). The nematodes 
with a cyp-35A2 or cyp-35A3 mutation exhibited no altera-
tion in median life span after BaP exposure. Taken together 
this suggests that cyp-35A1, cyp-35A2 and cyp-35A3 are 
required to initiate the toxic effects of BaP.

BaP even extended the life span of cyp-35A5 deletion 
mutant, which is the first report of its involvement in lon-
gevity in C. elegans. Previous studies demonstrated that the 
RNAi of cyp-35A5 resulted in a lower fat content pheno-
type (Aarnio et al. 2011). Imanikia et al. (2016) stated that 
the expression of cyp-35A5 and daf-16 were upregulated 
in fat-5;cyp-35A2 double thereby providing a tentative link 
between these two genes, where daf-16 serves important 
stress responsive functions and regulate longevity (Barsyte 
et al. 2001; Garsin et al. 2003; Mendenhall et al. 2006; Shore 
and Ruvkun 2013). Furthermore, life span was prolonged by 
an additional 3 days when the cyp-35A5 mutant was exposed 
to BaP. This extended longevity might be triggered by the 
activation of alternative CYPs which contributes to longev-
ity through the clearance of toxins generated by endogenous 
processes, such as metabolism as well as lipophilic by-prod-
ucts (Gems and McElwee 2005).
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Conclusion and future perspectives

Overall, this study demonstrates that the exposure to BaP 
significantly affects C. elegans, including the physiologi-
cal, genotoxic and transcriptional levels, notably despite the 
absence of a CYP1 homolog. The highly responsive cyp-35 
genes play a central role in regulating the BaP biotransfor-
mation response and appear to be a key player in the hitherto 
uncharacterised metabolic pathway of BaP in C. elegans. It 
is suggested that further genotoxic assays are performed and 
C.elegans CYP-35 antibodies raised to pinpoint the specific-
ity and interplay of the cyp-35 family in the worm’s response 
to BaP.
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