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Abstract: Global warming significantly impacts forest range areas by increasing soil acidification or
aluminum toxicity. Aluminum (Al) toxicity retards plant growth by inhibiting the root development
process, hindering water uptake, and limiting the bioavailability of other essential micronutrients.
Pinus massoniana (masson pine), globally recognized as a reforestation plant, is resistant to stress
conditions including biotic and abiotic stresses. This resistance is linked to the symbiotic relation-
ship with diverse ectomycorrhizal fungal species. In the present study, we investigated the genetic
regulators as expressed proteins, conferring a symbiotic relationship between Al-stress resistance
and Suillus luteus in masson pine. Multi-treatment trials resulted in the identification of 12 core
Al-stress responsive proteins conserved between Al stress conditions with or without S. luteus in-
oculation. These proteins are involved in chaperonin CPN60-2, protein refolding and ATP-binding,
Cu-Zn-superoxide dismutase precursor, oxidation-reduction process, and metal ion binding, phos-
phoglycerate kinase 1, glycolytic process, and metabolic process. Furthermore, 198 Al responsive
proteins were identified specifically under S. luteus-inoculation and are involved in gene regulation,
metabolic process, oxidation-reduction process, hydrolase activity, and peptide activity. Chlorophyll
a-b binding protein, endoglucanase, putative spermidine synthase, NADH dehydrogenase, and
glutathione-S-transferase were found with a significant positive expression under a combined Al and
S. luteus treatment, further supported by the up-regulation of their corresponding genes. This study
provides a theoretical foundation for exploiting the regulatory role of ectomycorrhizal inoculation
and associated genetic changes in resistance against Al stress in masson pine.

Keywords: Pinus massoniana; aluminum stress; ectomycorrhizal fungi; differential expressed proteins

1. Introduction

Pinus massoniana Lamb., also known as masson pine, is native to South China and a
pioneer species in the forest chain dominating the subtropical areas of East Asia [1]. Salient
features, including resistance to environmental stress, ability to grow in marginal soils,
and tolerance to metal contaminated soils, have enabled this species to be highly used for
afforestation and reforestation in China [2,3]. P. massoniana accounts for 7.74% of the total
arborical forest zone in China [4]. Masson pine has been widely adopted for its timber and
pulp due to the fast-growing habit and the high yield advantages [5]. Besides its economic
importance, the afforestation of this species has potentially contributed to improve the
ecosystem productivity and carbon sequestration [1].

Pinus spp. have been widely used in different reforestation programs worldwide [6].
Their dependency on symbiosis, hosting a wide range of ectomycorrhizal fungal
species [7–9], is advantageous for their optimal growth and development under various
natural environmental conditions [10]. The symbiotic effect of ectomycorrhizal fungi is well
known for improving the growth of the host plants [9] with enhanced tolerance towards
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environmental stresses [11–14]. Studies have shown that Pinus species inoculated with
ectomycorrhizal fungi display improved photosynthesis, water uptake, nutrient utilization,
and immune system [11,12].

The continuous decline in forest population is mainly attributed to soil acidifica-
tion, resulting from air pollution and intensive fertilizer applications. Moreover, nutrient
depletion coupled with an accumulation of toxic elements also causes adverse effects
on the forest population. The acidification of soils associated to an increased level of
Aluminum (Al), causes a substantial reduction in plant growth by inhibiting root devel-
opment [15,16], water uptake [17,18], and translocation of nutrients [19,20]. A controlled
inoculation of ectomycorrhizal fungi is a useful approach for enhancing the performance
of out-planted seedlings [7,21]. Previous reports showed enhanced fitness in different
Pinus species against toxic concentrations of heavy metals under mycorrhizal fungus in-
oculation [22–26]. Suillus luteus, an ectomycorrhizal fungus, is considered a symbiotic
solution for heavy-metal toxicities, including Al3+ stress [27–30]. Another study described
the positive growth regulation of P. massoniana under the inoculation of the mycorrhizal
fungus, Pisolithus tinctorius [31].

Morphophysiological changes and cellular responses under Al-stress conditions are
ascribed to the gene expression and cellular metabolism. Previous reports for Al stress
resistance in different plants identified multiple pathways including, membrane trans-
porters, oxidative stress pathways, primary metabolism, cell wall synthesis, and protein
metabolism [32–43]. However, the genetic pathways for induced Al stress tolerance in
P. massoniana are not well documented. In particular, clarifying the contribution of ectomy-
corrhizal fungi in P. massoniana resistance to abiotic stresses has been the focus of recent
studies [44,45]

The goal of this study was to identify the key proteins underlying the alleviated
Al toxicity in P. massoniana under ectomycorrhizal fungi inoculation. We employed a
comparative proteomics approach to probe the symbiotic relationship of S. luteus and
P. massoniana seedlings in response to Al toxicity. This study provides insight into the
proteome variations induced by ectomycorrhizal fungi under Al toxicity in P. massoniana.

2. Materials and Methods
2.1. Plant Material and Ectomycorrhizal Fungus

The investigated tree species in this study was P. massoniana. The seeds were collected
from the tree Huang 12 located in Duyun City, Guizhou Province, China. The ectomycor-
rhizal fungus species Suillus luteus (SL) was used for plant inoculation. The fruiting body
was collected from the pine forest of Longli Forest Farm, Longli County, Guiyang City,
Guizhou Province. The inoculum was prepared, followed by inoculation, according to the
methods described by Yu et al. [44]. The seedlings inoculated with S. luteus were selected
after six months of germination, and the control plants were kept without inoculation of SL.

The research was conducted in a greenhouse with a sand culture and parameters (light
intensity of 600–800µmol m−2s−1, relative humidity of 55%, photoperiod of 16 h, 25 ◦C,
and 18 ◦C in the dark) were kept constant during the growth period. For sand culture,
quartz-sand purchased from Kasper Building Materials Company (Potter, WI, USA) was
used. Thoroughly rinsed quartz-sand was sterilized and then filled into nutrition bowls.
Selected seedlings with consistent growth were transplanted into pots. Al stress treatment
was applied to the selected seedlings after normal growth for two weeks [45].

2.2. Collection, Separation, and Purification of Suillus Luteus

The fruit-bodies of S. luteus were searched in the masson pine forest by trampling. The
collected fruit-bodies were cleaned to get rid of any surface contamination. The cleaned
fruit-bodies were individually numbered and placed in a Ziplock bag, placed in an icebox,
and brought back to the laboratory. Young and tender fruit-bodies were selected for
further experiment. Separation work was carried out on an ultra-clean workbench. The
surface of the fruit-bodies was disinfected with 75% alcohol and rinse twice with sterile
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water. The fruit-bodies were then transferred to Pachlewski medium and placed in an
incubator for dark culture at 25 ◦C with a 50% humidity level. Hyphae were collected after
appearance and cultured in a new medium until the strain was purified [46]. To confirm the
purity, mycelium was collected from the outer surface and transferred to the Pachlewski
medium. Active mycelium was collected and transferred from the solid cultured colony to
the Pachlewski medium and observed for ten days of cultivation. The samples with no
contamination were stored in the refrigerator at 4 ◦C for later use [47].

2.3. Identification of Suillus Luteus Strain

The purified fungus was inoculated in Pachlewski medium and cultivated for 15 days.
According to Fan Yongjun’s method, DNA extraction was performed, followed by PCR-
based amplification. The amplified DNA was sequenced, and the ITS sequence was cut and
uploaded to NCBI, and the Blastn comparison was performed in the NCBI database. The
fungal strain was confirmed with 99% similarity, as formerly elaborated by Du et al. [48]
and Feng et al. [49].

2.4. Stress Treatments

The test set included 4 treatments, namely 2 inoculated LB-0 (Al3+, 0 mmol L−1), LB-04
(Al3+, 0.4 mmol L−1) and two non-inoculated treatments CK-0 (Al3+, 0 mmol L−1), CK-04
(Al3+, 0.4 mmol L−1. AlCl3 (Tianjin Komiou Chemical Reagent Co., Ltd.) was added to
Hoagland solution (complete nutrient solution), and pH of the Hoagland solution was
adjusted to 4.1 ± 0.1 by adding 0.1 M diluted HCl or NaOH. The nutrient composition
of Hoagland solution was as 5 mmol L−1 KNO3, 4.5 mmol L−1 Ca(NO3)·4H2O, 2 mmol
L−1 MgSO4·7H2O, 1 mmol L−1 KH2PO4, and 25 µmol L−1 Fe-Na EDTA [50]. To maintain
the quality, the treatment solution was changed after a week interval. Al activity was
maintained by adding CaCl2 solution purchased from Xilong Chemical Co., Ltd., into the
nutrient solution, a standard treatment acting as a buffer to avoid possible interface between
Al ions and solution ions [51]. Due to the unstable Al ions, the high concentration of
phosphorus in the nutrient solution can cause a reaction with Al ions and reduce the actual
Al concentration of the treatment. Hence, after adding a low concentration of CaCl2, Ca2+

can preempt the binding site of Al3+, which ensures the target Al3+ concentration [52,53].
The proteome was determined from the needle samples collected 60 days after Al treatment.

2.5. Protein Extraction

The needles and samples of the same parts of P. massoniana seedlings with differ-
ent treatments were selected for protein extraction by utilizing the phenol extraction
method [54]. Tissue samples of pinus needles (stored at −80 ◦C before use) were weighed
and ground into a fine powder. Phenol extraction buffer was added to the powdered sam-
ples, followed by sonication. The samples were centrifuged at 5500xg for ten minutes after
adding Tris-balanced phenol. After centrifugation, methanol was added to supernatant
and kept overnight. 8M urea was added to the overnight-kept samples to reconstitute the
pallet. Later, protein concentration was estimated for each sample with a Bio-Rad protein
assay kit (BCA kit, Bio-Rad, Hercules, CA, USA).

2.6. LC-MS/MS Analysis

To perform Liquid Chromatography with tandem mass spectrometry, HPLC was used
to fractionate the tryptic peptides before mass spectrometry analysis. The parameters
used for the step gradient were set to acetonitrile (pH 9.0); 8–32%. Later, we combined
the peptides, followed by freeze-drying in a vacuum chamber. EASY-nLC 1200 UPLC
system (Thermo Fisher Scientific, Waltham, MA, USA) was employed to separate dissolved
peptides. The liquid phase gradient was set to B (Methanole %); 9–25% for 30 min; 25–35%
for 22 min; 35–80% for 4 min; 80% for 4 min, while the flow rate was kept constant at
350 nL/min. Orbitrap Fusion LUMOS platform was utilized to perform Tandem mass
spectrometry (MS/MS) with standard mass spectrometry parameters.



Life 2021, 11, 177 4 of 15

The MS raw data for each sample were searched using the MASCOT engine (Ma-
trix Science, London, UK; version 2.2) embedded into Proteome Discoverer 1.4 software
for the identification and quantitation analysis. Peak lists were searched against Green
Plants (Viridiplantae) database in Oligo 7 using the following parameters: enzyme, trypsin;
maximum missed cleavage, 2; fixed modification, carbamidomethylating (C); variable mod-
ification, oxidation (M) and TMT (protein N-terminus and K); mass tolerance at 20 ppm;
MS/MS mass tolerance at 0.1 Da; false discovery rate (FDR) < 0.01. Significance was
assessed by ratios of TMT reporter ion intensities in the MS/MS spectra.

2.7. Functional Classification of Proteins

The proteins were annotated to Gene Ontology (GO) using blast2go (https://www.
blast2go.com (accessed on 12 January 2021)). Protein IDs were transformed to UniProt
IDs to match the corresponding GO IDs, and the relative information was obtained. IDs
with no information from UniProt were subjected to InterProScan to obtain predicted GO
functions of the proteins. Fisher’s exact two-terminal test with a significance threshold of
p < 0.05 was used to test the proteins.

2.8. Protein Quantification and Differential Expressed Protein Analysis

For protein quantification, the proteins containing at least two unique peptides were
enumerated for all labeled samples. The quantifiable proteins were listed first, and the
abundance ratio (treated/control) was log2 transformed. The differentially expressed
proteins (DEPs) between treatments were identified with fold change > 1.2 and p < 0.05,
FDR < 0.01.

2.9. Expression Profile of Related Genes based on qRT-PCR

Expression profiles of genes governing differentially expressed proteins were esti-
mated using Real-Time Quantitative Reverse Transcription PCR (qRT-PCR). Genes re-
lated to Al-responsive proteins were identified and selected, and specific primers for
qRT-PCR, corresponding to the identified genes, were designed using Oligo 7 software
(https://www.oligo.net/ (accessed on 12 January 2021)) (Table 1) before qRT-PCR. The
primers of 9 selected genes were synthesized by Sangon Biotech (Shanghai, China). RNA
was extracted from masson pine needles using Tiangen RNAprep Pure Plant kit (Tiangen
Biotech, Beijing, China). A list of primers for the nine genes is presented in Table 1. The
2−44Ct method was used to calculate the relative expression levels [55].

Table 1. Specific forward and reverse primers used for qRT-PCR.

Gene ID Forward Primer Sequence Reverse Primer Sequence E Value (%) R2

TRINITY_DN51949_c0_g2 CCGTCATCGCTCCAGT CACAGTTCGCCCTTCA 93.2 0.94

TRINITY_DN44650_c0_g1 GGAAAGTGGGTGGTCT AGGAGTTCGTGGGATT 91.5 0.86

TRINITY_DN50464_c0_g3 ATTGATAGGAGGCTGA TGAGGGAACTACGAGA 89.6 0.95

TRINITY_DN39799_c0_g2 GAGACAATGTGGTGGC TTTGGCAGTGTAAGCA 94 0.91

TRINITY_DN39005_c0_g1 GCTACACCCTCGCAGT AGCACGACCAGGAAAC 87.6 0.88

TRINITY_DN43045_c0_g9 CCTTGAACCCAAATACA ACGGGCTTACCAGTCT 91.3 0.92

TRINITY_DN43345_c2_g1 AACAAGCCGTTGGACT GGGAACAAAGGATGGG 92.4 0.95

TRINITY_DN47656_c0_g2 CCTGTATTGCCTGATG GACGAGATGGTGGAGT 88.5 0.93

TRINITY_DN47910_c0_g1 TCACCTGCCATACAAA TCCAGCATCAAAGAAA 91 0.93

https://www.blast2go.com
https://www.blast2go.com
https://www.oligo.net/
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3. Results
3.1. Overview of the Proteome Profiling in Masson Pine Needle Samples

Proteome profiling resulted in 79,046 spectra, 18,737 peptides, 16,670 unique peptides,
and 4312 proteins being identified in masson pine. The detailed information on mass
spectrometry collection and identification are shown in Table S1. Most of the peptides
were comprised of 7–20 amino acids, which is within the ranges of proteome quality
requirements [54] (Figure S1).

3.2. Differentially Expressed Proteins Analysis and Functional Annotations

The differentially-expressed proteins (DEPs) were screened by a standard screening
criterion [54]: fold change > 1.2-fold (up-regulated by more than 1.2-fold or down-regulated
by less than 0.83-fold) and p-value < 0.05. The comparison of CK-04 vs. CK-0 group (effect
of Al stress on masson pine seedlings without inoculation) showed 215 DEPs, including
137 up-regulated and 78 down-regulated proteins in CK-04 (Table S2). These DEPs were
subjected to a gene ontology (GO) enrichment analysis. The GO enrichment (Figure 1a)
showed that these DEPs were mainly involved in small molecule metabolic process, cat-
alytic activity, and ion binding. The functions of these proteins were identified as catalytic
activity, binding, structural molecule activity, transporter activity, and antioxidant activity.

Under Al-stress condition, the comparison of LB-04 vs. CK-04 groups (combined
effects of Al stress and S. luteus inoculation on masson pine seedlings) showed 96 DEPs
with 50 up-regulated and 46 down-regulated proteins in LB-04 (Table S3). GO annotation
(Figure 1b) for these DEPs revealed that the proteins were associated with response to an
organic substance, response to abiotic stimulus, and unfolded protein binding.

Similarly, when comparing LB-04 vs. LB-0 groups (effect of Al stress on S. luteus-
inoculated masson pine seedlings), we identified 210 DEPs, including 82 up-regulated and
128 down-regulated proteins in LB-04 (Table S4). GO annotations (Figure 1c) identified the
main functions of these DEPs as metabolic process, organic substance metabolic process,
cellular metabolic process, and primary metabolic process. These DEPs were involved in
response to a stimulus, cellular component organization or biology, and localization.

3.3. Identification and Analysis of the Core Al Responsive Proteins

The core Al responsive proteins were identified by comparing DEPs between Al stress
and control conditions, independently of SL-inoculation. These comparisons include LB-04
vs. LB-0 and CK-04 vs. CK-0. Venn diagram analysis revealed only 12 conserved DEPs
among the two groups (Figure 2 and Table S5). This indicates that the DEPs in LB-04 vs.
LB-0 group were different from CK-04 vs. CK-0 group, depicting a differential pattern of
expression under the inoculation of S. luteus.

Among the core Al responsive proteins, three proteins, TRINITY_DN51434_c0_g1;
chaperonin CPN60-2, TRINITY_DN52787_c0_g1; phosphoglycerate kinase 1, and TRINITY-
DN50533-c0-g8; unknown protein, were up-regulated under CK-04 vs. CK-0, while their
expression was down-regulated in LB-04 vs. LB-0. The other proteins showed a similar
regulation pattern in both groups, demonstrating the conserved roles of these proteins
under Al-stress conditions independently of SL inoculation.
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processes MF = molecular Functions CC = cellular components. The number on each column represents the corresponding
rich factor.
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represented as columns.

3.4. Identification and Analysis of Specific Proteins involved in Al Response under S. luteus
Inoculation in Masson Pine Seedlings

The main goal of this study was to understand how S. luteus helps masson pine
seedlings to tolerate Al stress. So, the specific DEPs identified in LB-04 vs. LB-0 are
crucial components of this mechanism. In total, we identified 198 DEPs specific to LB-04
vs. LB-0 group (Table S4). Among these 198 proteins, 79 proteins were up-regulated,
and 119 proteins showed a down-regulated expression pattern in LB-04 group. A total
of 136 proteins were unknown function, providing interesting novel protein resources
to further investigate Al-stress response in plants. The major GO terms associated with
these proteins were: biological process (gene regulation, metabolic process, oxidation
and reduction process, binding process, and response to oxidative stress), molecular
functions (hydrolyze activity, peptide activity, catalytic activity, and binding), and cellular
components (cytosol, membrane, plastids, mitochondrion, and chloroplast).

Among the 62 proteins with known functions, 43 proteins were up-regulated, while
the remaining 19 proteins showed down-regulation in LB-04 (Table S4). We further ex-
plored the known DEPs for their associated functions and GO terms and identified 17 pro-
teins potentially associated with response to stress-induced conditions. These differ-
ential proteins were identified as chlorophyll a-b binding protein (TRINITY_DN46586_
c4_g5), endoglucanase (TRINITY_DN51146_c0_g2), putative spermidine synthase (TRIN-
ITY_DN44650_c0_g1), NADH dehydrogenase (TRINITY_DN48436_c0_g5), glutathione-
S-transferase (TRINITY_DN47449_c0_g1), LRR receptor-like protein kinase (TRINITY_
DN41128_c0_g2), aspartic proteinase (TRINITY_DN40732_c0_g1), soluble starch synthase
1 (TRINITY_DN43704_c3_g3), T-complex protein 1 (TRINITY_DN42434_c0_g1 and TRIN-
ITY_DN42941_c2_g2), purple acid phosphatase 1 (TRINITY_DN52089_c0_g2), NHL re-
peat (TRINITY_DN47063_c0_g1), glyceraldehyde-3-phosphate dehydrogenase (TRINITY_
DN50857_c0_g6), SCF ubiquitin ligase (TRINITY_DN43846_c0_g1), ankyrin repeat domain-
containing protein 2B (TRINITY_DN44530_c4_g9), HYL1 (TRINITY_DN38298_c0_g1), and
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AMP-dependent synthetase (TRINITY_DN43346_c0_g2). Identification of diverse proteins
as DEPs suggests that SL-inoculation facilitates the regulation of an array of biological and
molecular functions to enable masson pine to tolerate the induced Al stress.

Next, the corresponding genes of some up-regulated proteins were identified, and their
expression profiles were compared between LB-04 and LB-0 (Figure 3). All assayed genes
were up-regulated under LB-04, supporting the expression pattern of their related proteins.
In particular, the genes governing putative spermidine synthase (TRINITY_DN44650_c0_g1)
and chlorophyll a-b binding protein (TRINITY_DN46586_c4_g5) proteins showed signifi-
cantly higher expression in LB-04 than LB-0. These results emphasize that the identified
genes and their corresponding proteins have a positive regulatory role in Al stress response
when masson pine is inoculated with S. luteus.
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4. Discussion

Soil acidification with an increased Aluminum (Al) toxicity level is a major reason
for forest dieback [15,16]. Based on previous reports, there are two main mechanisms, viz.
the exclusion mechanism and tolerance mechanism, proposed for Al stress resistance in
plants. The exclusion mechanism mainly minimizes the occurrence of harmful interaction
in the apoplast by hindering the entry of Al into the cytosol [56]. The symbiotic role of ecto-
mycorrhizal fungi in Pinus species is also well known to naturally cope with the different
biotic and abiotic stresses and increase immune response towards Al toxicity [5,44,57–60].
S. luteus, an ectomycorrhizal fungus, is well-known for its growth habit in adverse soil
conditions, i.e., saline soils, drought, and metal toxicity [27,44,61–65]. S. luteus has been
previously described to actively stimulate resistance towards high concentrations of Al by
facilitating plant growth through reduced reactive oxygen species and accumulation of
antioxidants [66–71]. This study aimed at uncovering the role of S. luteus in developing
resistance towards Al toxicity in P. massoniana at the proteome level.

As a result of differential expression analysis, we identified 12 core Al responsive
proteins viz. chaperonin CPN60-2, Cu-Zn-superoxide dismutase precursor, drought re-
sponse protein, phosphoglycerate kinase 1, and 8 unknown proteins. Abiotic stress causes
enhanced protein misfolding. However, chaperones are reputed for their function in assist-
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ing protein folding under stress conditions [72–74]. Efficient protein repair systems and
protein stability enable organisms to survive in stress conditions [75]. A study by Aremu
et al. [76] described the substantial effects of chaperons on protein folding, as an adaptive
strategy under Al stress. Thus, we speculated that chaperonin CPN60-2 is an important Al-
responsive protein in masson pine. Another core Al-responsive protein, phosphoglycerate
kinase-1, has been reported with its significant impact on plant and regulation of metabolic
processes under different abiotic stress conditions [77,78]. Furthermore, Cu-Zn-superoxide
dismutase precursor (CSD) gene is regulated under oxidative stress conditions [79,80] due
to the downregulation of miRNA. CSD protein was up-regulated under induced Al stress
conditions in this study. The antioxidant system controls oxidative cellular damage under
abiotic stress conditions, specifically under Al-stress conditions [81]. Many studies have
emphasized the positive regulation of oxidative stress by Al-induced genes in different
plants [81–84].

Proteomics insights into induced Al stress under SL-inoculation identified 198 specific
differentially expressed proteins (DEPs). GO term classified these proteins as BP: response
to stress stimulus, polyamine metabolic process, cellulose catabolic process, MF: metal ion
binding, chlorophyll-binding, metabolic process, and hydrolase activity, CC: photosystem
I & II, and integral component of membrane. In Plants, the first steps of tolerance under
stress conditions are the ability to promptly sense the stress and trigger appropriate biolog-
ical responses [85]. Furthermore, stress signals and intercellular communication are vital
to withstand the stress and activate the stress-related genes [85,86]. The identified DEPs
include some well-known abiotic stress-responsive proteins such as chlorophyll a-b binding
protein, laccase, endoglucanase, and spermidine synthase [87–90]. Differential regulation of
chlorophyll a-b binding protein (TRINITY_DN46586_c4_g5) under LB-04 vs. LB-0 suggests
its significant role in developing resistance in SL-inoculated Pinus against Al stress. Another
protein, endoglucanase (TRINITY_DN51146_c0_g2), was also up-regulated under LB-04
vs. LB-0. Endoglucanase promotes cell wall development via carbohydrate binding and
cellulase activity [91,92]. Remodeling of the cell wall in response to stress has been exten-
sively studied [93–96]. The cell wall provides structural integrity, supports cell division and
acts as the first defense line against stressful conditions such as Al stress [97,98]. Putative
spermidine synthase protein was also identified as specific DEPs in LB-04 vs. LB0. Sang
et al. [99] reported a positive effect of exogenous spermidine in tomato seedlings under
abiotic stress conditions. Another report by Chen et al. [100] also suggested the involve-
ment of spermidine in the tolerance towards abiotic stress conditions. Furthermore, NADH
dehydrogenase [101,102], glutathione-S-transferase [103,104], LRR receptor-like protein
kinase [105], aspartic proteinase [106,107], soluble starch synthase 1 [108,109], T-complex
protein [73], purple acid phosphatase 1 [110,111], NHL repeat [112], glyceraldehyde-3-
phosphate dehydrogenase [113,114], SCF ubiquitin ligase [115], ankyrin repeat domain-
containing protein 2B [116], and HYL1 [117] were also identified as specific DEPs in
response to Al stress under SL-inoculation in this study. These proteins have been reported
for their direct or indirect regulatory roles in plant responses towards biotic and abiotic
stress conditions, including Al stress. Interestingly, the expression of some of the DEPs
identified in this study (i.e., chlorophyll a-b binding protein, glucanase, purple acid phos-
phatase) has been found regulated by methyl-jasmonate treatment in rice [118]. Likewise,
Wang et al. [119] described jasmonate and aluminum crosstalk in tomato. Hence, Al sens-
ing under S. luteus inoculation in masson pine might induce the activation of JA pathway.
Further study is required to understand the relationship between Al stress and jasmonic
acid pathways under SL inoculation in masson pine.

The up-regulation of several DEPs emphasized a network of regulatory processes
to cope with the Al stress in SL-inoculated masson pine. Furthermore, the expression
patterns of genes governing some of the above-mentioned proteins also confirmed the
positive regulatory roles of these proteins. Our results are consistent with the various
studies reporting the involvement of these genes in abiotic stress responses conditions
in different plants [120–126]. However, we also identified several proteins, including
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ABI3-interacting protein 2, Tyrosine-tRNA ligase, water deficit stress-inducible protein
LP3-2, serine/threonine-protein phosphatase 5, tripeptidyl-peptidase 2 isoform X1, and
xyloglucan endotrans- glucosylase/hydrolase 1, which were down-regulated in LB-04 vs.
LB-0. In contrast to our results, previous reports showed elevated expression of these
proteins under abiotic stress conditions [17,127–131]. We suspect that a down-regulation of
these proteins might be attributed to SL-inoculation.

5. Conclusions

We reported the proteomic profile changes in P. massoniana attributed to Al stress and
examined the effect of S. luteus. As a result, we identified 12 core Al responsive proteins
differentially expressed between different sets of treatments. Furthermore, we identified 198
specific proteins differentially expressed under SL-inoculated Al stress conditions. Further
molecular characterizations of these proteins and their corresponding genes can provide
deeper insights into the mechanisms underlying Al-stress resistance in P. massoniana under
S. luteus inoculation.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-1
729/11/2/177/s1, Figure S1: Proteome profiling of masson pine (a) Protein sequence coverage
distribution (b) Peptide Ion score distribution (c) Protein ratio distribution for CK-04 vs. CK-0
(d) Protein ratio distribution for LB-04 vs. LB-0, Table S1: List of identified proteins and their
quantification, Table S2: Differential protein expressed in CK-04 Vs CK-0 with corresponding GO
annotations, Table S3: Differential protein expressed in LB-04 Vs CK-04 with corresponding GO
annotations, Table S4: Differential protein expressed in LB-04 Vs LB-0 with corresponding GO
annotations and KEGG pathways, Table S5: Differentially expressed proteins (DEPs) conserved
between CK-04 vs. CK-0 and LB-04 vs. LB-0.
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