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Abstract

Unlike mammals, teleost fish mount a robust regenerative response to retinal injury that 

culminates in restoration of visual function1, 2. This regenerative response relies on Müller glia 

(MG) dedifferentiation into a cycling population of progenitor cells. However, the mechanism 

underlying this dedifferentiation is unknown. Here we report that genes encoding pluripotency 

factors are induced following retinal injury. Interestingly, the proneural transcription factor Ascl1a 

and the pluripotency factor Lin-28 are induced in MG within 6 hrs following retinal injury and are 

necessary for MG dedifferentiation. We demonstrate that Ascl1a is necessary for lin-28 expression 

and that Lin-28 suppresses let-7 miRNA expression. Furthermore we show that let-7 represses 

expression of regeneration-associated genes like, ascl1a, hspd1, lin-28, oct4, pax6b and c-myc. 

Interestingly, hspd1, oct4 and c-myca exhibit basal expression in the uninjured retina and let-7 

may inhibit this expression to prevent premature MG dedifferentiation. The opposing actions of 

Lin-28 and let-7 miRNAs on MG differentiation/dedifferentiation are similar to that of embryonic 

stem cells3 and suggest novel targets for stimulating MG dedifferentiation and retina regeneration 

in mammals.

Despite structural and functional similarities between the teleost and mammalian retina, 

disease or injury of the mammalian retina leads to irreparable vision loss, while the injured 

teleost retina mounts a regenerative response that restores lost sight1, 2. Key to successful 

regeneration are MG, which dedifferentiate and assume progenitor properties following 

retinal injury4–7. In mammals, MG generally respond to injury by reactive gliosis that is 

accompanied by hypertrophy; rarely do these cells re-enter the cell cycle and regenerate new 

neurons8–11. These data suggest that a key difference between the regenerative responses of 

fish and mammals is the ability of MG to dedifferentiate in response to retinal injury. 

Because zebrafish mount a robust regenerative response following retinal injury, they 
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provide a useful model system for uncovering the underlying mechanisms of MG 

dedifferentiation. These mechanisms are likely to suggest novel strategies for improving 

MG dedifferentiation and retina regeneration in mammals.

We recently reported that the proneural basic-helix-loop-helix transcription factor Ascl1a is 

necessary for MG dedifferentiation and retina regeneration12. However, the mechanism by 

which Ascl1a mediates its effects remained unknown. We reasoned that MG 

dedifferentiation may share some aspects with reprogramming of somatic cells by 

pluripotency factors13, 14. Therefore we investigated if pluripotency factors were regulated 

during retina regeneration. For this analysis, total RNA was isolated from uninjured and 

injured retinas at 15 hrs post injury (hpi) when MG dedifferentiation is beginning; 2 days 

post injury (dpi) when MG begin proliferating, 4 dpi when MG proliferation is maximal, and 

7 dpi when MG proliferation has stopped and cellular differentiation has begun4, 12. RT-

PCR (Fig. 1a) and Real-time PCR (Fig. 1b) showed pluripotency factors klf4, oct4 and c-

myca were expressed in the uninjured retina and transiently increased around15 hpi. In 

contrast, pluripotency factors lin-28, sox2, nanog and c-mycb were undetectable in the 

uninjured retina and induced either within 15 hpi (lin-28, c-mycb) or by 2 dpi (sox2, nanog). 

We were particularly intrigued by the lack of detectable lin-28 and mycb expression in the 

uninjured retina and their rapid and high induction following retinal injury. Here we focused 

on the role lin-28 plays in retina regeneration.

A more detailed RT-PCR analysis showed lin-28 induction within 6 hrs post retinal injury, 

which paralleled that of ascl1a (Fig. 1c). In situ hybridization was used to visualize lin-28 

RNA expression, and immunofluorescence was used to identify glutamine synthetase (GS)-

expressing MG at different time points following retinal injury in wild-type and 1016 

tuba1a:gfp transgenic fish. These latter fish express GFP and incorporate BrdU in MG-

derived progenitors located at the injury site4 (Supplementary Information, Fig. S1). Since 

BrdU is only metabolically available for the first 4 hrs following intraperitoneal injection15, 

our observation that BrdU injection at 4 dpi identified an expanding population of cells at 5–

7 dpi (Supplementary Information, Fig. S1) suggests that BrdU-labeled cells are 

proliferating. In situ hybridization showed lin-28 expression is restricted to MG and MG-

derived GFP+ progenitors at 1and 4 dpi, respectively, that are located at the injury site (Fig. 

1d; Supplementary Information, Fig. S2). Although lin-28 and ascl1a gene expression was 

first detected at 6 hpi, this expression peaked around 3–4 dpi. At this latter time point, 

ascl1a and lin-28 were co-expressed in proliferating MG-derived progenitors (Fig. 1e). 

Quantification showed that approximately 83% of the ascl1a+ cells also expressed lin-28, 

and 91% of the lin-28+ cells also expressed ascl1a. Of the BrdU+ cell population, 80% 

expressed lin-28, and 82% expressed ascl1a (Supplementary Information, Fig. S3).

Lin-28 is an RNA binding protein whose expression is associated with embryonic stem cells 

and cancer16. In zebrafish, RT-PCR suggests that lin-28 is a transiently expressed zygotic 

transcript whose expression peaks around 5 hours post fertilization (hpf) (Supplementary 

Information, Fig. S4). We were interested in determining if lin-28 expression in the 

developing retina marked proliferating retinal progenitors similar to what we observed in the 

adult regenerating retina. Surprisingly, at 24 hpf in situ hybridization and BrdU labeling 

revealed lin-28 expression in differentiated cells of the hindbrain and spinal cord with 
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undetectable expression in the retina (Supplemental Information, Fig. S4). These results, 

along with our analysis of pluripotency factor gene expression (Fig. 1a), suggests that MG-

derived retinal progenitors are not identical to embryonic retinal progenitors, but rather share 

characteristics with embryonic stem cells and raise the intriguing possibility that MG-

derived progenitors may not be restricted to regeneration of only the retina if placed in the 

appropriate environment.

Because Lin-28 is associated with embryonic stem cells and cancer, we were interested in 

determining if Lin-28 expression was necessary for injury-induced MG dedifferentiation. 

For this analysis we knocked down the expression of Lin-28 in the adult retina using 

electroporated morpholino-modified antisense oligonucleotides (MOs); a well characterized 

approach for suppressing mRNA translation in zebrafish12, 17–19. Because antibodies to 

zebrafish Lin-28 are not available, we confirmed the efficacy of the lin-28-targeting MOs by 

co-injecting a plasmid encoding a lin-28-GFP chimeric transcript into single cell zebrafish 

embryos with and without the lin-28-targeting MO and assaying GFP expression 24 h later 

(Supplementary Information, Fig. S5). We previously demonstrated that a non-specific 

control MO electroporated into the injured fish retina had no appreciable effect on the 

regenerative response, while 2 different MOs targeting ascl1a inhibit Müller glia 

proliferation following retinal injury12. We confirmed these results here and showed that 

MO-mediated knockdown of Lin-28 expression dramatically suppressed 1016 tuba1a:gfp 

transgene expression and MG proliferation (Fig. 2). Quantification indicates that only about 

6% of the lin-28 MO #1 and 9% of the lin-28 MO #2 positive cells were also BrdU+ (Fig. 

2b; Supplementary Information, Table S1). Hence, both ascl1a and lin-28 are necessary for 

MG dedifferentiation and proliferation.

We next investigated if there is any hierarchical regulation or interdependency between 

Ascl1a and Lin-28. Introduction of control MO into injured retinas of 1016 tuba1a:gfp fish 

had little effect on the expression of GFP, ascl1a or lin-28 (Fig. 3a,b), while lin-28-targeting 

MOs specifically suppressed GFP expression when assayed at 4 dpi (Fig. 3a). Interestingly, 

Ascl1a knockdown suppressed both GFP and lin-28 mRNA expression (Fig. 3b). To further 

investigate ascl1a and lin-28 interdependency, we examined their expression in MO-treated 

retinas at 2 dpi, a time correlating with MG dedifferentiation but prior to their reentry into 

the cell cycle4. Similar to the in situ hybridization studies (Fig. 3a,b), whole retina RT-PCR 

showed that ascl1a-targeting MOs suppress lin-28 expression in a concentration-dependent 

manner, while lin-28-targeting MOs had little effect on ascl1a expression (Fig. 3c–f). Real-

time PCR indicates that ascl1a-targeting MOs at 0.1mM and 0.25mM cause about a 40% 

and 99% reduction, respectively, in lin-28 mRNA levels (Fig. 3f).

The above results suggest that Ascl1a is required for injury-dependent lin-28 expression. To 

determine if Ascl1a can directly regulate lin-28 expression, we cloned the zebrafish lin-28 

promoter and generated a lin-28:luciferase expression vector. Transfection of HEK293 cells 

with this vector and either a control or a cmv:ascl1a expression vector showed a 

concentration-dependent regulation of lin-28 promoter activity by Ascl1a (Fig. 3g). 

Inspection of the lin-28 promoter sequence identified 14 E-boxes (CANNTG) of which 6 

appeared similar (CACCTG, CAGGTG, CAGCTG, CACGTG) to previously reported Ascl1 

binding sites (CAGCTG and CAGGTG)20, 21 (Fig. 3h). Two of these sites are clustered in 
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the distal promoter region (region 1 flanked by arrows in Fig. 3h) and 3 of these sites are 

clustered in a more proximal promoter region (region 2 flanked by arrows in Fig. 3h). To 

determine if Ascl1a can bind to regions 1 and 2, we performed a ChIP experiment where we 

injected mRNA encoding either Myc or Myc-Ascl1a into single cell zebrafish embryos and 

30 hrs later immunoprecipitated Myc:DNA and Myc-Ascl1a:DNA complexes with an anti-

Myc antibody. This ChIP experiment showed that Ascl1a can bind to lin-28 promoter 

regions 1 and 2, consistent with the idea that Ascl1a directly regulates lin-28 promoter 

activity (Fig. 3h).

Lin-28 inhibits let-7 miRNA formation and stimulates its degradation22–24. Interestingly, 

Lin-28 is associated with cell proliferation, while let-7 miRNAs are associated with cellular 

differentiation3, 16, 22. Therefore, it seemed reasonable to hypothesize that injury-

dependent lin-28 induction would lead to let-7 miRNA suppression in dedifferentiated MG. 

Indeed, these RNAs were regulated in an opposing fashion in MG purified from uninjured 

and injured retinas (Fig. 4a), with lin-28 mRNA increasing 170-fold and let-7 miRNAs 

decreasing by 85% (Fig. 4b). Consistent with these data, in situ hybridization at 4dpi with an 

LNA-modified oligonucleotide probe targeting mature let-7a miRNA showed a dramatic 

injury-dependent reduction of let-7a expression in MG-derived progenitors that were 

identified by BrdU incorporation (Fig. 4c). Quantification of let-7 miRNA-negative cells 

that co-labeled with BrdU showed that 81 ± 1.52% of the BrdU-positive cells were also 

let-7-negative (n=3). Quantification of injury-dependent let-7 miRNA expression in 

uninjured and injured retinas showed a ~50% reduction at 15 hpi that increased to an ~80% 

at 4 dpi; by 7 dpi, let-7 miRNAs begin to return to control levels (Fig. 4d). Consistent with 

the idea that Ascl1a regulates Lin-28 expression and that Lin-28 controls let-7 miRNA 

levels22–24, Lin-28 or Ascl1a knockdown almost completely abrogated injury-dependent 

let-7 miRNA suppression (Fig. 4e,f).

It is interesting that MG in the uninjured retina express genes associated with retinal 

progenitors25–28 and pluripotency (Fig. 1a,b). Let-7 is associated with cellular 

differentiation and may contribute to maintaining the differentiated state of MG in the 

uninjured retina and promoting redifferentiation of MG-derived progenitors in the injured 

retina by suppressing expression of regeneration and pluripotency-associated genes. Indeed, 

let-7 miRNAs are known to inhibit Myc and Lin-28 expression during cancer progression, 

embryonic stem cell development and neural commitment3, 22, 29. Interestingly, all 6 genes 

known to be necessary for retina regeneration (ascl1a, lin-28, pax6a, pax6b, mps1, and 

hspd1)12, 30, 31 harbor putative let-7 binding sites32 (Supplemental Information, Table 

S2). Although let-7 binding sites in the corresponding mouse genes are predicted; in general 

their sequences are not conserved between zebrafish and mouse. Of the genes necessary for 

regeneration, ascl1a, lin-28 (Fig. 1) and mps130 are undetectable in the uninjured retina, 

while pax6a expression4, 31, 33 is restricted to amacrine and ganglion cells. Basal hspd1 

expression has been reported in the uninjured retina30 but cell-type specificity remains 

uncharacterized; likewise pax6b expression is not well characterized. We found that injury-

dependent induction of hspd1, pax6a, and pax6b lagged behind that of ascl1a, lin-28 and c-

mycb, with hspd1 increasing ~3.5-fold, pax6a increasing ~ 4.5-fold and pax6b increased 

~11-fold at 4 dpi (Fig. 5c and Supplementary Information, Fig. S6). Interestingly, of all 
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these regeneration-associated genes, only hspd1 exhibits significant basal expression in GS+ 

MG of the uninjured retina (Fig. 5a,b). Therefore, hspd1 may represent a let-7 target whose 

basal expression and injury-dependent induction are suppressed in a let-7-dependent 

manner.

To determine if let-7 can regulate the expression of proteins that are essential for 

regeneration we appended a sequence encoding a Myc or Flag-tag to the 5’ end of the 

ascl1a, hspd1, lin-28 and pax6b coding sequence and cloned them into the pCS2expression 

vector. Transfection of HEK 293 cells with these vectors, ± an expression vector harboring 

the zebrafish let-7a,let-7f pri-miRNA sequence (ubC:let-7a,let-7f ; Fig. 5e), showed a 

concentration- dependent suppression of Ascl1a, Hspd1, Lin-28 and Pax6b protein 

expression (Fig. 5d). We also investigated if let-7 could regulate the expression of 

pluripotency factors Klf4, cMyca, cMycb and Oct4, all of whose transcripts harbor putative 

let-7 binding sites (Supplementary Information, Table S2) and, except for c-mycb, exhibit 

basal expression in the uninjured retina (Fig. 1a). Interestingly, in addition to let-7-

dependent suppression of pluripotency factor Lin-28, we also observed suppression of 

cMyca, cMycb and Oct4 in transfected HEK 293 cells (Fig. 5d). Densitometric 

quantification of Western blots suggests robust suppression of Ascl1a, Hspd1, Lin-28, 

Pax6b, cMyca, and cMycb, while Oct4 is modestly suppressed and Klf4 appears unaffected 

(Supplementary Information, Fig. S7).

We then focused on the hspd1 mRNA to determine if the predicted let-7 binding site was 

functional. For this analysis single cell zebrafish embryos were injected with increasing 

amounts of ubC:let-7a,let-7f and either insm1a:luciferase-hspd3’UTRwt or 

insm1a:luciferase-hspd3’UTRmut that harbor a wild type or a mutant (4 base change in 

putative let-7 binding site seed sequence) zebrafish hspd1 3’ UTR behind the luciferase 

coding sequence and under control of the zebrafish insm1a promoter (Fig. 5e). This analysis 

showed that the hspd1 3’ UTR conferred let-7-dependent regulation on reporter expression 

and that this regulation was mediated by the let-7 binding sites (Fig. 5f). These data suggest 

that injury-dependent let-7 regulation can have a dramatic impact on gene expression during 

retina regeneration.

In conclusion, our studies have uncovered a mechanism by which Ascl1a contributes to 

retina regeneration and suggests that Ascl1a-dependent regulation of the pluripotency gene 

lin-28 is crucial for stimulating MG dedifferentiation into a cycling population of progenitor 

cells. We propose that Ascl1a-dependent induction of Lin-28 contributes to MG 

dedifferentiation, in part, by decreasing let-7 miRNA levels, thus relieving repression of 

regeneration-associated mRNAs that are essential for MG dedifferentiation (Supplementary 

Information, Fig. S8). Because some pluripotency factors and regeneration-associated genes 

exhibit basal expression in MG of the uninjured retina and are inhibited in a let-7-dependent 

manner, it appears let-7 may also help maintain MG in a differentiated state in the absence 

of retinal injury. Because Lin-28 is an RNA binding protein that can shuttle between the 

nucleus and cytoplasm and may regulate other genes, including those that control the cell 

cycle16, 34, we suspect a much wider role for Lin-28 in retina regeneration. Likewise, 

Ascl1a is likely to have many additional targets in addition to lin-28 and identification of 

these targets should further our understanding of mechanisms underlying MG 
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dedifferentiation and retina regeneration. A distinguishing feature of dedifferentiated MG is 

the expression of lin-28, which is not shared with other adult stem cell populations or with 

retinal progenitors generated during development and suggests MG-derived progenitors may 

share properties with embryonic stem cells. The opposing relationship between Lin-28 

protein and let-7 miRNAs is similar to that reported in embryonic stem cells3 and cancer29, 

and suggests mammalian MG dedifferentiation may be enhanced by manipulating this 

signaling pathway.

Methods

Animals

Zebrafish were kept at 26–28 °C on a 14hr light, 10 dark cycle. Transgenic gfap:GFP 

zebrafish were kindly provided by Dr. David Hyde (University of Notre Dame)35 and 1016 

tuba1a:gfp fish (previously 1016 α1TI:pEGFP) fish were previously described4, 12. 

Embryos for injections were obtained by natural mating of wild type adults.

Plasmid construction

cDNAs and genomic DNAs were amplified by RT-PCR using zebrafish adult retinal mRNA 

and embryonic genomic DNA, respectively. The ascl1a cDNA was amplified using ascl1a-F 

and ascl1a-R primers that harbor an EcoRI and XhoI site, respectively at their 5’ ends 

(Supplementary Information, Table S3) and cloned into pCS2+MT vector (provided by 

David Turner, University of Michigan) to generate cmv:myc-ascl1a. A 3.1 kb lin-28 

promoter, whose 3’ end was just upstream of the translation start site, was amplified using 

lin-28-pro-F and lin-28-pro-R primers harboring an XhoI and ApaI restriction site, 

respectively, at their 5’ ends (Supplementary Information, Table S3) and cloned into a 

luciferase expression vector to create lin-28:luciferase. A 3 kb insm1a promoter, whose 3’ 

end was just upstream of the translation start site, was amplified using insm1a-pro-F and 

insm1a-pro-R primers harboring an XhoI and BamHI site, respectively, at their 5’ ends 

(Supplementary Information, Table S3) and cloned in the the pEL vector (provided by 

Michael Uhler, University of Michigan) that harbors a GFP-luciferase fusion to generate 

insm1a:luciferase. The 3’UTR of hspd1 was amplified using hspd1-UTR-F and hspd1-R 

primers that harbor an EcoRI and NheI site, respectively, at their 5’ ends (Supplementary 

Information, Table S3) and inserted at the 3’ end of the luciferase cDNA in expression 

vector insm1a:luciferase to generate insm1a:luciferase-hspd3’UTR. The pre-let7a and pre-

let-7f miRNAs are encoded on a contiguous 1.5 kb genomic DNA fragment, which was 

amplified using primers Pre-let-7af-F and Pre-let-7af-R harboring an EcoRI and XbaI site, 

respectively, at their 5’ ends (Supplementary Information, Table S3) and cloned into the 

second intron of the UI4-GFP-SIBR vector36 (provided by David Turner).

Site-directed mutagenesis

We mutated 5 nucleotides in the putative let-7 binding site in the hspd1 3’ UTR using site 

directed mutagenesis. A typical PCR amplification contained approximately 50 ng of 

dsDNA (either insm1a:luciferase-hspd13’UTR), 20 pM of each of the two oligonucleotide 

primers (mut-hspd1-F and mut-hspd1-R; Supplementary Information, Table S3), 2 μl of 10 

mM dNTP mix, 0.2 μl (1 unit) of proofreading thermo polymerase (PCR extender system, 5 
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Prime) and 2.5 μl of 10X reaction buffer in a reaction volume of 25 μl. Amplification 

conditions were: 94 °C for 5 min without enzyme, followed by 2 min on ice; Polymerase 

was then added and 30 cycles of denaturation at 93 °C for 30 sec, annealing at 58 °C for 1 

minute and extension at 68 °C for 10 min was performed. Following PCR, the product was 

treated with DpnI to and mutagenized DNA purified and electroporated into XL1-Blue cells. 

Transformed cells were selected on LB-kanamycin plates and colonies harboring mutant 

sequences were identified by PCR and confirmed by DNA sequencing.

RNA isolation, RT-PCR, Real-time PCR and TaqMan PCR

Total RNA was isolated from control and injured retinas using Trizol (Invitrogen). cDNA 

synthesis was performed using random hexamers and Superscript-II reverse transcriptase 

(Invitrogen). PCR reactions used Taq and gene specific primers (Supplementary 

Information, Table S3) under the following conditions: denaturation at 93 °C for 15 sec, 

annealing at 60 °C for 30 sec and extension at 68 °C for 60 sec. Accession numbers for 

mRNAs assayed by PCR are in Supplementary Information, Table S2. Real-time PCR 

reactions were carried out in triplicate with ABsolute SYBR Green Fluorescein Master Mix 

(ThermoScientific) on an iCycler real-time PCR detection system (BioRad). The Δ ΔCt 

method was used to determine relative expression of mRNAs in control and injured retinas 

and normalized to L-24 or β-actin mRNA expression levels.

miRNA quantification was performed using TaqMan microRNA probes (Applied 

Biosystems) according to the manufacturer’s instructions. Briefly, total RNA was reverse 

transcribed using stem-loop RT primers (Applied Biosystems) and Real-time PCR 

performed with a TaqMan PCR kit on an Applied Biosystems 7300 sequence detection 

system.

Cell culture, transfection and Western blots

HEK293 cells were seeded in a 24 well plate at ~40% confluence and grown in DMEM, 

10% fetal bovine serum, antibiotics and antimycotics at 37 °C incubator with 5% CO2. Cells 

were transfected 24 hrs post plating. For assaying lin-28 promoter activity, cells were 

transfected with lin-28:luciferase and varying amounts of cmv:ascl1a along with an 

SV40:Renilla luciferase normalization vector. Forty-eight hrs later cells were harvested for 

luciferase assays. For examining let-7-dependent regulation of gene expression, cells were 

transfected with 50 ng of pCS2 vector harboring flag-tagged (hspd1, klf4, c-myca, c-mycb) or 

myc-tagged (ascl1a, lin-28, oct4, pax6b) cDNA, along with 0, 50, 200 or 500 ng of the 

ubC:let-7a/let-7f and 50 ng of the β-actin2:mCherry normalization vector. Forty-eight hrs 

post transfection cells were harvested and protein expression assayed on Western blots. 

Western blots were quantified by densitometry using NIH Image J software (Version 1.43). 

Normalization to mCherry expression or endogenous β-actin expression gave similar results.

mRNA synthesis and microinjections

Capped mRNAs encoding Myc and Myc-Ascl1a were synthesized in vitro from linearized 

cmv:myc-ascl1a using the mMESSAGE mMACHINE kit (Ambion) according to 

manufacturer’s directions. Approximately 50 pg of mRNA (1 nl) was injected into single 

cell embryos. Embryos were harvested for ChIP experiments at 30 hpf. ChIP was performed 
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as previously described37. For examining if the hspd1 3’ UTR confers let-7-dependent 

regulation in zebrafish, we injected single cell zebrafish embryos with approximately 200 pl 

of a stock solution containing 0.1 ng/μl of Renilla luciferase mRNA (for normalization), 20 

ng/μl of insm1a:luciferase-hspd13’UTRwt or insm1a:luciferase-hspd13’UTRmut and 0, 1, 5 

or 20 ng/μl of ubC:let-7a/let-7f. Embryos were harvested at 24 hpf for dual luciferase 

reporter assays (Promega). Graph shows average of experiment performed in triplicate. 

Error bars are standard error of the mean.

Retinal injury, BrdU labeling, FACS and MO-mediated gene knockdown

Eye lesions have been previously described4, 12, 38. Briefly, fish were anesthetized and 

under microscopic visualization, the right eye was pulled from its socket and stabbed 4–8 

times through the sclera with a 30g needle inserted to the length of the bevel. Lissamine-

tagged MOs (Gene Tools, LLC) (~0.5 μl of a 0.1–0.5 mM) were delivered at the time of 

injury using a Hamilton syringe attached to the needle. MO delivery to cells was facilitated 

by electroporation as previously described12. The control and 2 different ascl1a-targeting 

MOs were previously described12. lin-28-targeting MOs were: MO #1 

TGAGATGCGGATTTGCCGGGGGCAT and MO #2 

ACTAGGCCATACAATTAACTGCTTT. Because antibodies that recognize zebrafish 

Lin-28 are not available, we used an indirect method to confirm the efficacy of the lin-28-

targeting MO. For this analysis we appended the MO target sequence to the amino terminus 

of EGFP in the cmv:egfp expression vector and injected zebrafish embryos with this 

expression vector along with either lissamine-tagged control or lin-28-targeting MOs. EGFP 

expression, 24 h later, was used to assay MO efficacy (Supplementary Information, Fig. S6). 

For BrdU labeling, adult fish received a 20 μl injection of BrdU (20 mM) 3 hrs prior to 

sacrifice; embryos were immersed in 20 mM BrdU, 4% DMSO for 3 hrs prior to harvesting. 

FACS sorting of GFP+ MG was performed by dissecting uninjured retinas from 2 gfap:gfp 

transgenic fish or 4 days post injured retinas (10 needle pokes/retina) from 10 1016 

tuba1a:gfp transgenic fish. Retinas were collected in 0.5 ml Leibovitz’s L15 media, treated 

for 15 min with 1mg/ml hyaluronidase at room temp and then dissociated in 0.01% trypsin 

for an additional 10 min with frequent trituration. A single cell suspension was confirmed by 

microscopy and cells were washed in L15 medium before sorting on a BC Biosciences 

FACSViDa 3 laser high-speed cell sorter. A total of approximately 90,000 GFP+ cells were 

obtained from 12 injured retinas and 235,000 GFP+ cells were obtained from 2 uninjured 

retinas.

Tissue preparation, immunohistochemistry and in situ hybridization

Adult fish were overdosed with tricaine methane sulfonate and eyes were enucleated, 

followed by removal of the lens and then immersion in fresh 4% paraformaldehyde in 0.1M 

phosphate buffer, pH 7.4 for ~16 hrs. After fixation, samples were cryoprotected in 

phosphate-buffered 20% sucrose before embedding with Tissue-Tek O.C.T. compound 

(Sakura, Finetek). Embedded samples were kept frozen at −80 °C until sectioned to 8 

microns on a CM3050S cryostat (Leica). Sections were collected on Superfrost/Plus slides 

(Fisher Scientific), dried and stored at −80 °C. Immunohistochemistry was performed as 

previously described4, 38 using the following primary antibodies: rat anti-BrdU (dividing 

cell marker, 1:400; Abcam); rabbit anti-GFP (1:1000; Invitrogen); mouse anti-glutamine 
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synthetase (GS) (Müller glia marker, 1:500; Chemicon/Millipore). Secondary antibodies 

were conjugated to Alexa Fluor 488 and used at the following dilutions: 1:500 for anti-

mouse, 1:250 for anti-rat and 1:1000 for anti-rabbit. For BrdU staining, sections were 

pretreated with 2N HCl for 20 min at 37 °C and then soaked in 100 mM sodium borate for 

10 min. Following immunhistochemical staining, slides were rinsed with water and allowed 

to dry in the dark prior to cover-slipping with 2.5% PVA (PVA-polyvinyl alcohol)/DABCO 

(1,4 diazabicyclo [2.2.2]octane). Slides were examined in a Zeiss Axiophot fluorescence 

microscope equipped with a digital camera or an Olympus FluoView FV1000 confocal 

imaging system.

Combined in situ hybridization and antibody staining were performed on retinal sections as 

described previously39. Double in situ hybridizations were done according to 

manufacturer’s instructions (Perkin Elmer). Sense control probes were generated and 

showed no signal above background (data not shown). In situ hybridization for let-7a 

miRNA expression was performed using a zebrafish let-7a LNA probe (Exiqon). The probe 

was diluted to 1 μM in prehybridization buffer and hybridization and wash conditions were 

as previously described40.

Statistical Analyses

Data were analyzed by analysis of variance followed by a post-hoc Fisher’s PLSD t-test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
ascl1a and lin-28 mRNAs are rapidly induced in dedifferentiating MG following retinal 

injury. (a) RT-PCR shows induction of pluripotency factor mRNAs following retinal injury. 

(b) Real-time PCR quantification of pluripotency factor mRNA levels during retina 

regeneration. Data represent means ± s.d. (n=3 individual fish; compared to uninjured retina, 

P=0.0001 or less for lin28, c-mycb, and ascl1a expression at all time points post retinal 

injury; P=0.0001 for klf4 at 15 hpi, and 2 and 4 dpi; P=0.02 for klf4 at 7 dpi; P=0.0001 or 

less for sox2, c-myca and nanog at 2 and 4 dpi; P= 0.0425 for c-myca at 7 dpi; P=0.0178 and 

0.0069 for oct4 at 2 and 4 dpi, respectively). Note Y-axis is fold induction in log scale and 

normalized to 0 hr time point that is assigned a value of 1. (c) RT-PCR shows ascl1a and 

lin-28 are coordinately induced following retinal injury. (d) In situ hybridization and 

immunofluorescence shows lin-28 RNA co-localizes with 1016 tuba1a:gfp transgene 

expression in glutamine synthetase (GS)+ MG at 4 dpi. Scale bar is 10 microns. (e) lin-28 

and ascl1a double fluorescence in situ hybridization and BrdU immunofluorescence show 

lin-28 and ascl1a are co-expressed in proliferating MG-derived progenitors at 4 dpi. Three 

hrs prior to sacrifice, adult fish, whose retina was injured 4 days earlier, received an 

intraperitoneal injection of BrdU. Scale bar is 10 microns. Abbreviations: ONL, outer 

nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer; BrdU, 

bromodeoxyuridine; GS, glutamine synthetase; GFP, green fluorescent protein.
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Figure 2. 
Ascl1a and Lin-28 knockdown inhibit 1016 tuba1a:gfp transgene expression and MG-

derived progenitor proliferation. (a) Control, ascl1a or lin-28 lissamine-tagged MOs were 

electroporated into the retina of 1016 tuba1a:gfp transgenic fish at the time of retinal injury 

and 3 hrs prior to sacrifice, at 4 dpi, fish received an intraperitoneal injection of BrdU. 

Arrows point to cells harboring lissamine-tagged MO. GFP and BrdU immunofluorescence 

show Ascl1a and Lin-28 knockdown suppress 1016 tuba1a:gfp expression and proliferation 

of MG-derived progenitors. (b) Quantification of the total number of MO+ cells that are in S 

phase as indicated by BrdU uptake. Data represent means ± s.d. (n=3 individual fish; 

compared to control MO, lin-28 MO and ascl1a MO P=0.000178 or less). (*) identifies 

autofluorescence in ONL. Scale bar is 10 microns and applies to all photomicrographs.
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Figure 3. 
Ascl1a regulates lin-28 expression. (a, b) Lissamine-labeled control, ascl1a or lin-28-

targeting MOs were electroporated into injured retinas of 1016 tuba1a:gfp transgenic 

zebrafish. At 4 dpi GFP, and ascl1a and lin-28 mRNA expression was detected by 

immunofluorescence and in situ hybridization, respectively. Control MO-treated retinas 

retain GFP, ascl1a and lin-28 expression (arrows), while Lin-28 knockdown suppresses GFP 

expression and knockdown of Ascl1a suppresses both GFP and lin-28 expression. Scale bar 

is 10 microns. (c,d) RT-PCR shows Lin-28 knockdown has no effect on injury-dependent 
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induction of ascl1a mRNA at 2 dpi (c), while Ascl1a knockdown blocks injury-dependent 

induction of lin-28 mRNA at 2 dpi (d). Lane C is control uninjured retina. (e,f) Real-time 

PCR quantification of the effects of Lin-28 (e) or Ascl1a (f) knockdown on lin-28 and 

ascl1a mRNA levels at 2 dpi. Data are normalized to uninjured retinas and represent means 

± s.d. from 3 replicas of a single experiment. (g) Ascl1a regulates lin-28 promoter activity. 

HEK293 cells were transfected with lin-28:luciferase and the indicated amounts of 

cmv:ascl1a along with SV40:Renilla luciferase for normalization. Normalized promoter 

activity is reported as means ± s.d. (n=3; compared to control, P=0.0123 for 50 ng Ascl1a 

expression vector and P=0.0001 for 200 ng of Ascl1a expression vector). (h) Ascl1a binds 

to regions of the lin-28 promoter that harbor multiple E-boxes. ChIP analysis of zebrafish 

embryos (single cell stage) injected with either myc-RNA or myc-ascl1a mRNA. 

Immunoprecipitated chromatin was assayed by PCR using primers (arrows) flanking 

putative Ascl1a binding sites 1 and 2 (ethidium bromide stained gel shown). The predicted 

fragments sizes of 287 bp and 323 bp were amplified. The 3.1 kb lin-28 promoter diagramed 

below the gel shows consensus E-box binding sites (ovals). Orange ovals are putative Ascl1 

binding sites.
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Figure 4. 
Lin-28 regulates let-7 miRNA levels in MG-derived progenitors. (a) RT-PCR shows let-7 

miRNA expression is high and lin-28 expression is low in differentiated MG (lane C), while 

let-7 miRNA expression is suppressed and lin-28 expression is highly induced in MG-

derived progenitors at 4 dpi. (b) Real-time PCR quantification of lin-28 mRNA and TaqMan 

PCR quantification of let-7a and let-7f miRNA levels in purified MG and MG-derived 

progenitors at 4 dpi. Data are normalized to uninjured retina and represent means ± s.d. A 

single sample, consisting of MG purified from 2 uninjured fish and MG-derived progenitors 

purified from 10 injured fish, was assayed in triplicate. (c) let-7a in situ hybridization (LNA 

probe) and BrdU immunofluorescence shows a dearth of let-7a miRNA in BrdU+ MG-

derived progenitors of the injured retina at 4dpi. Scale bar is 20 microns. (d) TaqMan PCR 

quantification of let-7 miRNA levels in uninjured and injured retinas at different times after 

injury. Data represent means ± s.d. (n=3 fish; compared to control uninjured retina, 

P=0.0001 or less for let-7a and let-7f at all time points). (e) RT-PCR shows Lin-28 

knockdown with 2 different MOs relieves injury-dependent let-7a and let-7f miRNA 

suppression. Lane C is uninjured retina. (f) Lin-28 or Ascl1a knockdown relieves injury-

dependent let-7 miRNA suppression. TaqMan PCR was used to quantify let-7a and let-7f 

miRNA levels. Data represent means ± s.d. from 3 replicas of a single experiment.
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Figure 5. 
let-7 miRNAs suppress expression of regeneration and pluripotency-associated genes. (a) 

hspd1 in situ hybridization and glutamine synthetase (GS) immunofluorescence shows 

hspd1 RNA co-localizes (arrows) with GS-expressing MG in the uninjured retina. (b) RT-

PCR shows hspd1 mRNA expression in uninjured retina that is increased following retinal 

injury, while pax6b expression is undetectable in the uninjured retina and dramatically 

induced following retinal injury. (c) Real-time PCR quantification of hspd1, pax6a and 

pax6b mRNA levels in uninjured and 4 day post injured retina (injured). Data represent 

means ± s.d. (n=3 fish; compared to uninjured retina, P=0.0001 or less for hspd1, pax6a and 

pax6b, respectively, at 4 dpi. (d) let-7-dependent suppression of zebrafish proteins that are 

necessary for retina regeneration or associated with pluripotency. HEK 293 cells were 
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transfected with flag or myc-tagged regeneration or pluripotency-associated gene expression 

vectors (50 ng) with increasing concentrations (0, 50, 200, 500 ng) ubC:let-7a,let-7f along 

with pCS2:mCherry for normalization. (−) lane indicates untransfected cells. Forty-eight hrs 

later cells were harvested and proteins resolved by denaturing SDS-PAGE. Western blots 

were probed with anti-mCherry, anti-Flag or anti-Myc antibodies. let-7-dependent regulation 

of protein expression was quantified by densitometry (Supplementary Information, Fig. S7). 

Experiments were repeated 3 times with similar results. See Fig. S9 for full scans. (e) 

Constructs used to overexpress let-7 and investigate the function of putative let-7 miRNA 

binding sites in the hspd1 3’ UTR. Mutations in the let-7 binding site seed sequence are 

indicated. (f) The hspd1 3’ UTR let-7 binding site at position 1970 confers let-7-dependent 

regulation on luciferase expression. Luciferase activity from 24 hpf zebrafish embryos that 

were co-injected at the single cell stage with the luciferase reporter and the let-7 miRNA 

expression vector described in (e) along with capped Renilla luciferase mRNA for 

normalization. Data represent means ± s.d. (n=3 fish; compared to wt 3’UTR construct in 

absence of pri-let-7 miRNA or mut 3’ UTR construct with pri-let-7 miRNA, P=0.0001 or 

less for luciferase-wt 3’ UTR activity treated with 1, 5 and 20 ng of ubC:let-7a,let- 7f 

construct.
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