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Retroviral vectors have shown their curative potential in
clinical trials correcting monogenetic disorders. However,
therapeutic benefits were compromised due to vector-induced
dysregulation of cellular genes and leukemia development in
a subset of patients. Bromodomain and extraterminal domain
(BET) proteins act as cellular cofactors that tether the murine
leukemia virus (MLV) pre-integration complex to host chro-
matin via interaction with the MLV integrase (IN) and thereby
define the typical gammaretroviral integration distribution.
We engineered next-generation BET-independent (Bin) MLV
vectors to retarget their integration to regions where they are
less likely to dysregulate nearby genes. We mutated MLV IN
to uncouple BET protein interaction and fused it with chro-
matin-binding peptides. The addition of the CBX1 chromodo-
main to MLV INW390A efficiently targeted integration away
from gene regulatory elements. The retargeted vector produced
at high titers and efficiently transduced CD34+ hematopoietic
stem cells, while fewer colonies were detected in a serial col-
ony-forming assay, a surrogate test for genotoxicity. Our find-
ings underscore the potential of the engineered vectors to
reduce the risk of insertional mutagenesis without compro-
mising transduction efficiency. Ultimately, combined with
other safety features in vector design, next-generation BinMLV
vectors can improve the safety of gammaretroviral vectors for
gene therapy.
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INTRODUCTION
Stable integration of retroviral vectors encompassing a therapeutic
transgene enables gene correction of severe blood and immune disor-
ders. Over the past 25 years, murine leukemia virus (MLV)-based
vectors have shown therapeutic benefit in gene therapy studies
for primary immunodeficiencies (PIDs), such as X-linked severe
combined immunodeficiency (SCID-X1), adenosine deaminase
deficiency-severe combined immunodeficiency (ADA-SCID), and
Wiskott-Aldrich syndrome (WAS).1–4 MLV-based vectors were suc-
cessfully used in the first clinical trials for ADA-SCID.5–7 This led to
the recent European approval of a retrovirus-based gene therapy
product (Strimvelis; GSK GlaxoSmithKline Pharmaceuticals) to treat
patients that lack a suitable human leukocyte antigen (HLA)-matched
Molecu
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related stem cell donor.8,9 However, in clinical trials for other PIDs,
several patients developed leukemia or myelodysplasia, raising con-
cerns about the safety of gene therapy.10–14 These side effects have
been directly attributed to the integration pattern and vector design.
Insertional mutagenesis occurred as a consequence of vector integra-
tion preference in proximity of proto-oncogenes and activation by
strong viral promoter and enhancer elements in the long terminal
repeat (LTR) of retroviral vectors. To prevent insertional mutagen-
esis, self-inactivating (SIN) vectors with deleted enhancer sequences
were designed. The lack of promoter/enhancer activity is compen-
sated by weak heterologous promoters to drive transgene expression,
such as the elongation factor 1 a short (EFS) and phosphoglycerate
kinase (PGK) promoters.15,16 Additionally, introduction of genetic
insulator sequences has improved the safety of viral vectors.17–22

The efficacy of these modified vectors was confirmed in pre-clinical
studies and they are now in phase I/II clinical trials for several
PIDs.19,23–27

A complementary approach to improve the safety of gene therapy
is to alter the integration pattern, directing integration away from
potentially unsafe regions. Gammaretroviral integration is not
random, but rather is dictated by host cellular cofactors, such as the
bromodomain and extraterminal domain (BET)-containing family
of proteins (BRD2, BRD3, and BRD4) that serve as anchors on
the host chromatin.28,29 A motif in the unstructured C-terminal
tail of MLV integrase (IN) interacts with the extraterminal (ET)
domain of BRDs, where the latter tethers the retroviral pre-
integration complex (PIC) to chromatin regions enriched in BET pro-
teins and thereby defines the integration profile.28–30 Deletion of
the C-terminal domain (D23 amino acids [aa], IN1–380) or a single
substitution (INW390A) uncouples the BET interaction, resulting in
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BET-independent (Bin) MLV vectors that transduce target cells at
wild-type (WT) efficiency but with diminished integration in the vi-
cinity of retroviral integration markers.31

Here, we developed next-generation BinMLV vectors with a poten-
tially safer integration profile and lower propensity to activate nearby
genes in an effort to alleviate the risk of insertional mutagenesis by
interfering with the chromatin-tethering process. We linked chro-
matin binding peptide sequences to the C-terminal end of BinMLV
IN and demonstrated that fusion of these peptides to BinMLV IN
generates vectors that produce at high titers and transduce cells at
wild-type efficiency. The addition of the chromodomain of CBX1
to MLVIN_W390A efficiently retargeted integration away from gene
regulatory elements. More importantly, the retargeted vector trans-
duced human CD34+ hematopoietic stem cells (HSCs) at wild-type
efficiency, while genotoxicity assays revealed reduced transformation
potential.

RESULTS
Efficient Transduction and Integration of Next-Generation

BinMLV Vectors

To direct BinMLV integration away from potentially unsafe chromo-
somal regions, we tailored the chromatin-tethering process by fusing
tethering peptides (between 16 and 61 aa long) to the C-terminal end
of INW390A in the MLV packaging plasmid. We opted for peptides
that bind histone markers that are widely spread across the chromatin
(Figure 1A; Table 1). On one hand, we used peptides derived from
cellular proteins that bind specific epigenetic histone modifications,
such as the chromodomain of heterochromatin-binding protein 1b
(CBX1, aa 20–73) and the chromodomain of Y-like protein (CDYL;
aa 1–60),32,33 giving rise to INW390A-CBX and INW390A-CDYL, respec-
tively. Alternatively, we fused virus-derived peptides, such as the
tethering domain of the human papilloma virus (HPV8) E2 protein
(aa 240–255)34 and the N-terminal end of Kaposi sarcoma’s latency
associated nuclear antigen (LANA; aa 1–31), which bind to core
histone 2A and 2B,35 resulting in INW390A-E2 and INW390A-LANA,
respectively.

The respective packaging plasmids were subsequently used to
produce vesicular stomatitis virus glycoprotein G (VSV-G) pseu-
dotyped MLV-based vectors encoding an LTR-driven EGFP re-
porter (MLVIN_W390A-CBX, MLVIN_W390A-CDYL, MLVIN_W390A-E2,
and MLVIN_W390A-LANA; Figure 1A). In line with previous results,31

transduction efficiencies in SupT1 cells were at similar levels for
MLVIN_W390A and MLVIN_WT (Figure 1B). The addition of peptide
sequences to the C-terminal end of MLVIN_W390A resulted in
BinMLV vectors that transduced as efficiently as MLVIN_WT at
different MOIs (Figure 1B) and resulted in comparable expression
levels (measured as mean fluorescence intensities [MFIs] at day 3;
Figure 1C). Transduction efficiencies and MFIs were corroborated
at 10 days post-transduction, underscoring stable expression for the
respective integrated vectors (Figures S1A and S1B). Similar data
were obtained following transduction of HeLa cells (data not shown).
Collectively, these results indicate that the addition of peptide se-
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quences at the C-terminal end of MLVIN_W390A does not impair vec-
tor integrity nor transduction efficiency compared to MLVIN_WT and
MLVIN_W390A.

MLVIN_W390A-Peptide Fusions Redistribute Bin Vector

Integration

Next, we set out to investigate whether the respective IN chimeras
redistribute MLV vector integration. Integration sites were amplified
and sequenced, yielding a total of 43,676 unique sites and their
computationally generated matched random control (MRC) sites.
Initially, we evaluated integration frequencies relative to transcription
start sites (TSSs), CpG islands (typically enriched in/near house-
keeping gene promoters), and DNase hypersensitive sites (DHSs),
both surrogate markers for open areas of active chromatin. In
accordance with our previous work,31 MLVIN_W390A integration
near TSSs and CpG islands decreased �2-fold (Figure 2A; Table
S1A). Whereas integration frequencies for MLVIN_W390A-CDYL and
MLVIN_W390A-E2 did not differ from MLVIN_W390A near TSSs or
CpG islands, the integration frequencies for both MLVIN_W390A-CBX

and MLVIN_W390A-LANA were �4-fold and �2-fold lower when
compared to MLVIN_WT and MLVIN_W390A, respectively (Figure 2A;
Table S1A; p < 0.001, compared to MLVIN_W390A). The detargeting
effect of MLVIN_W390A-CBX and MLVIN_W390A-LANA was also evident
near DHSs. 33% of MLVIN_W390A integrations occurred in a 2-kb
window around DHSs (�13% less than MLVIN_WT), whereas only
25.66% and 27.84% of MLVIN_W390A-CBX and MLVIN_W390A-LANA

integrations occurred in this window (Figure 2A; Table S1A).
For comparison, integration datasets of prototype foamy viral
vectors (FVs36) and HIV-derived lentiviral vectors (LVs37) were
juxtaposed (Figure 2A). FVs are known to have a lower tendency
to integrate near promoter regions compared to MLV vectors.36

MLVIN_W390A integration near TSSs was comparable to that of
FVs (10.17% and 10.3%, respectively), whereas MLVIN_W390A-CBX

and MLVIN_W390A-LANA integration occurred �2-fold less near
TSSs (Figure 2A; Table S1A) yet more frequently than LVs.37

Similar results were obtained for larger window sizes (4-kb window,
data not shown). Together, the data confirm that fusion of the
CBX1 chromodomain and LANA peptide to MLV IN shifts vector
integration away from the traditional markers associated with MLV
integration.

In a next step, we analyzed integration preferences relative to a wider
set of genomic features to evaluate overall vector integration (repre-
sented by heatmaps, Figure 2B). The tile color depicts the correlation
for an integration dataset with the respective genomic feature (left)
relative to the MRC, as quantified by the area under the receiver
operating characteristic (ROC) curve. Asterisks indicate statistical
significance of the integration site distributions of the respective
vectors relative to that of MLVIN_W390A. MLVIN_W390A-CDYL

and MLVIN_W390A-E2 integration profiles were similar to that
of MLVIN_W390A (Figure 2B), whereas MLVIN_W390A-CBX and
MLVIN_W390A-LANA showed significant differences. The addition of
CBX1 chromodomain to MLV IN_W390A (MLVIN_W390A-CBX) signifi-
cantly shifted integration for most of the genomic features (p < 0.001,
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Figure 1. Transduction Efficiencies of Next-Generation BinMLV Vectors

(A) Schematic representation of MLV-based vector production. Structure of INWT, INW390A, and the peptides fused to INW390A are highlighted. The N-terminal HHCC zinc

binding domain, the catalytic core domain (CCD), and the C-terminal domain (CTD) are indicated. Red arrowheads indicate the position of the W390A point mutation. The

size of the fused peptides is proportionally represented. (B) FACS analysis of SupT1 cells transduced with equal RTUs of the indicated vectors at different MOIs. Three days

post-transduction, the percentage of EGFP-positive cells was determined. Average values and standard deviations of triplicate measurements are shown. Data represent

measurements from a representative experiment. (C) Mean fluorescence intensity of SupT1 cells transduced with the indicated next-generation BinMLV vectors 3 days post-

transduction. Average values and standard deviations of triplicate measurements are shown. Data represent measurements from a representative experiment. c, packaging

signal; CMV, cytomegalovirus promoter; GAG, group-specific antigen; IN, integrase; LTR, long terminal repeat; PolyA, polyadenylation signal; Pol, polymerase; PR, protease;

RT, reverse transcriptase; VSV-G, vesicular stomatitis virus glycoprotein G.
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Table 1. Overview of the Tethering Domains Fused to BinMLV Vectors

Protein Accession Number Selected Peptide Binding Site Sequence

CBX1 P83916 CD1 CBX H3K9me2
EYVVEKVLDRRVVKGKVEYLLKWKGFSDEDNT
WEPEENLDCPDLIAEFLQSQKT

H3K9me3

CDYL Q9Y232 CD1 CDYL H3K9me2
LMTFQASHRSAWGKSRKKNWQYEGPTQKLFL
KRNNVSAPDGPSDPSISVSSEQSGAQQPPA

H3K27me2

H3K27me3

HPV8 E2 P06422 E2 H2A/H2B QTETKGRRYGRRPSSR

KSHV LANA E5LC01 LANA H2A/H2B MAPPGMRLRSGRSTGAPLTRGSCRKRNRSPE

Overview of the aa sequences and binding sites of CBX1 and CDYL chromodomains, HPV8 E2, and KSHV LANA used in this study. The aa position of each peptide in the respective
protein is indicated in superscript. Protein sequences were downloaded from the UniProt database.CBX1, chromobox homolog 1; CD, chromodomain; CDYL; chromodomain protein
Y-like; HPV, human papilloma virus; KSHV, Kaposi sarcoma human virus; LANA, latency-associated nuclear antigen.
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compared to MLVIN_W390A), resulting in redistributed integration
with a more random pattern (Figure 2B, compare tile color of
MLVIN_W390A and MLVIN_W390A_CBX; tile colors shift toward gray).
On the other hand, MLVIN_W390A-LANA only showed significant ef-
fects in smaller window sizes for the typical determinants of MLV
vector integration, such as TSSs, CpG islands, and DHSs.

Since some of the peptides recognize specific chromatin marks, we
also analyzed integration preferences near a collection of epigenetic
features (Figure 2C). In line with previous data, uncoupling of BET
interaction (MLVIN_W390A) yields a more random integration pattern
(compare colors between MLVIN_WT and MLVIN_W390A; tile colors
shift toward black).31 Nonetheless, MLVIN_W390A integration still cor-
relates with histone marks associated with open and transcriptionally
active chromatin, such as H3 acetylation, H3K4 mono-, di-, and tri-
methylation, and H3K36 mono- and trimethylation albeit to a lesser
extent (tile colors shift to darker blue; integration is enriched
compared to MRC), while disfavoring transcriptionally silent regions
or heterochromatin, such as di- and trimethylation of H3K9, H3K27,
and H3K7938 (tile colors shift to yellow; integration is depleted
compared to MRC). Fusion of the CBX1 chromodomain and
LANA peptide to INW390A shifted integration away from markers
correlating with transcriptionally active open chromatin (blue
tiles overall shift toward darker blue; p < 0.001, compared to
MLVIN_W390A), whereas the addition of the other peptides had no ef-
fect (MLVIN_W390A-CDYL and MLVIN_W390A-E2, Figure 2C). CBX1 is
known to bind H3K9me2/3 epigenetic marks via its chromodo-
main.32 Interestingly, MLVIN_W390A-CBX shifts integration more
into transcriptionally silent heterochromatin regions, which is gener-
ally disfavored for integration, marked by di- and/or tri-methylation
of H3K9 and H3K27 (p < 0.001, compared to MLVIN_W390A; yellow
tiles are darker). Together, these data show that the fusion of peptide
tethers to the C-terminal end of MLV INW390A effectively retargets
integration. As integration is shifted away from traditional MLV inte-
gration markers, known to associate with insertional mutagenesis in
gene therapeutic trials,39 a potentially safer integration site profile
might be obtained.
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Addition of Small Peptides to MLVIN_1–380 Rescues Its

Transduction Defect

Apart from W390A substitution, deletion of the C-terminal tail
of MLV IN (D23 aa, IN1–380) similarly detargeted MLV inte-
gration, but with a transduction efficiency for MLVIN_1–380

that was �3-fold lower than for MLVIN_WT.
31 Therefore, we

fused the respective peptides as an alternative C-terminal tail
to IN1–380 to assess whether transduction efficiency could be
improved (MLVIN_1–380-CBX, MLVIN_1–380-CDYL, MLVIN_1–380-E2,
and MLVIN_1–380-LANA; Figure 3A). Indeed, the addition of all pep-
tides improved transduction efficiency to near wild-type levels at
different MOIs (Figures 3B and S1C) and resulted in similar expres-
sion levels (Figures 3C and S1D), underscoring the importance of
the C-terminal tail.

Next, we amplified 28,607 unique integration sites (Table S1B)
to evaluate whether these IN chimeras also redistributed vector inte-
gration. In line with earlier data, MLVIN_1–380 integration was
decreased near TSSs, CpG islands, and DHSs compared to
MLVIN_WT

31 (Figure S2A; Table S1B). Fusion of CDYL or E2
peptides to MLVIN_1–380 did not alter integration site distri-
bution, whereas fusion of the CBX1 chromodomain and LANA
peptide redistributed integration sites in a similar fashion as for
the MLVIN_W390A fusions (compare Figures 2A and S2A; compare
Tables S1A and S1B). Additionally, MLVIN_1–380-CBX integration
redistributed similar to MLVIN_W390A-CBX for a wide range of
genomic features (Figure S2B) and histone modifications (Fig-
ure S2C), highlighting the specificity of the detargeting effects
achieved by fusion of the CBX1 chromodomain or the LANA peptide
to MLVIN_W390A and MLVIN_1–380.

Addition of Peptide Tethers Does Not Alter the Local MLV

Integration Site Sequence

Retroviral INs show weak but discernable target sequence preferences
surrounding the site of integration. This local integration site
sequence is mainly determined by IN contacts with the (nucleosomal)
DNA template.40,41 To assess whether the addition of alternative
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Figure 2. Integration Site Distribution of Next-Generation BinMLV Vectors

(A) Murine leukemia virus (MLV)-based vector integration sites obtained from SupT1 cells and their genomic distribution. Integration percentages in 2-kb windows around

TSSs, CpG islandmidpoints, and DHSs are listed. For comparison, integration of computer-generatedmatch random controls (MRCs) for MLVIN_W390A, prototype foamy vira

vectors (FVs), and HIV-derived lentiviral vectors (LVs) were included. P values show significant departures (***p < 0.001, pairwise Fisher test) from MLVIN_W390A. (B and C

Heatmaps summarizing the relation between vector integration site frequency and different genomic (B) or epigenetic features within a10-kb interval (C) in SupT1 cells

Evaluated vectors are indicated above the columns. Features analyzed are shown to the left of the corresponding row of the heatmap. Tile colors indicate whether a particula

feature is favored or disfavored for integration of the respective datasets relative to their MRCs, as detailed in the colored ROC area scale at the bottom of the panel. Number o

integration sites is indicated below each column for the respective vector. P values show the significance of departures from MLVIN_W390A integration sites in SupT1 cells

(***p < 0.001, Wald statistics referred to c2 distribution). CpG, CpG-rich island; DHS, DNase I-hypersensitive site; TSS, transcription start site.
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Figure 3. Effects of Fusing the Chromatin Binding Peptides in MLVIN_1–380 Backbone

(A) Schematic representation of INWT, IN1–380, and peptides fused to IN1–380. The N-terminal HHCC zinc binding domain, the catalytic core domain (CCD), and the C-terminal

domain (CTD) are indicated. The size of the fused peptides is proportionally represented. (B and C) TE (B) and mean fluorescence intensity (C) in SupT1 cells 3 days post-

transduction at different MOIs. Average values and standard deviations of triplicate measurements are shown. Data represent measurements from a representative

experiment.
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peptide tethers to MLVIN_W390A influenced the local integration site
sequence, we constructed sequence logos (Figure S3). Results indicate
that the local integration site sequence preferences remained unaf-
fected.42 Similar results were obtained for MLVIN_1–380 peptide
fusions (data not shown).

Evidence for Safer Integration of Next-Generation

BinMLVIN_W390A-CBX Vector

Comparative integrome analysis identified MLVIN_W390A-CBX and
MLVIN_W390A-LANA as next-generation BinMLV vectors with sub-
stantial detargeting from traditional MLV markers without compro-
mising transduction efficiency. Initially, we sought to assess whether
the altered integration profiles of next-generation BinMLV vectors
236 Molecular Therapy: Nucleic Acids Vol. 7 June 2017
are potentially safer. We determined integration frequencies near a
set of previously defined genomic regions43,44 that should be avoided
to prevent cellular transformation, such as regions proximal to TSSs
(<50 kb TSS), cancer-related oncogenes (<300 kb AllOnco), and
microRNA (miRNA) coding regions (<300 kb miRNA), or within
transcription units (TUs) and ultraconserved regions (UCRs). For
each integrome dataset, the percentage of integrations near these
features was determined (Table S2). When assessing the individual
safe harbor criteria, MLVIN_W390A-CBX integrated less frequently
near each of these features when compared to MLVIN_WT,
MLVIN_W390A, and LV integration. Taken together, this computa-
tional analysis suggests an overall safer integration profile that is
less likely to disturb nearby genes.
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Therapeutic Potential of Next-Generation BinMLV Vectors

An essential factor in engineering new viral vectors includes evalu-
ating their therapeutic potential to transduce clinically relevant cells.
Therefore, we challenged primary human CD4+ T cells and CD34+

HSCs with MLVIN_WT, MLVIN_W390A, MLVIN_W390A-CBX, and
MLVIN_W390A-LANA vectors carrying a more relevant SIN gammare-
troviral vector genome (MLV.SIN) driving reporter gene expression
from a spleen focus-forming virus (SF) enhancer/promoter,21,45

referred to as MLV.SIN.SFIN_WT, MLV.SIN.SFIN_W390A, MLV.SIN.
SFIN_W390A-CBX, and MLV.SIN.SFIN_W390A-LANA, respectively (Fig-
ure S4A) and monitored transduction efficiency (percentage of
eGFP+ cells) over time (MOI of 4.5, Figures 4A and 4B, respectively).
MLV.SIN.SFIN_W390A-CBX and MLV.SIN.SFIN_W390A-LANA trans-
duced CD4+ T cells and CD34+ HSCs to the same extent as
MLV.SIN.SFIN_WT and MLV.SIN.SFIN_W390A and this was sustained
over time (fluorescence-activated cell sorting [FACS] plots, Fig-
ures 4A and 4B, respectively; compare transduction efficiency (TE)
and MFI at day 3 and day 10), indicating the absence of silencing
effects due to the retargeted integration preference of next-generation
BinMLV vectors. Additionally, we performed colony-forming unit
(CFU) assays for CD34+ HSCs harvested from three different
donors to determine whether the retargeted next-generation
BinMLV vectors efficiently transduced hematopoietic progenitor
cells (Figure 4C). After 14 days in culture, the number of colonies
derived from CD34+ HSCs transduced with MLV.SIN.SFIN_W390A,
MLV.SIN.SFIN_W390A-CBX, and MLV.SIN.SFIN_W390A-LANA was in
line with MLV.SIN.SFIN_WT, indicating that BinMLV vectors do
not affect the functionality of CD34+ HSCs (Figure 4C). FACS anal-
ysis of the respective pooled transduced CFUs revealed comparable
percentages of EGFP-positive cells (Figure 4D) and no difference in
MFIs could be observed (Table S3) for the different BinMLV vectors,
confirming the lack of increased transgene silencing.

Reduced Transformation Potential of Next-Generation

BinMLVIN_W390A-CBX Vector

The intrinsic integration preference of MLV-based vectors has been
shown previously to be one of the driving factors of vector-mediated
genotoxicity that occurred when the integrated vector dysregulated
host genes, leading to oncogenic transformation. Therefore, we eval-
uated the genotoxic potential of next-generation BinMLV vectors
carrying a MLV.SIN-vector genome with an internal SF enhancer/
promoter, which is known to trigger insertional transformation
events21,45 (Figure S4A) in the in vitro immortalization assay
(IVIM)46 and the transformational incidence in a murine CFU assay
(Figure S4B).47,48 To ensure the chance of immortalization, at least
55% of cells were transduced, corresponding to a mean vector copy
number (VCN) of > 2.49 Murine hematopoietic lineage-depleted
(lin�) bone marrow cells were transduced with the indicated vectors
Figure 4. Translational Potential of Next-Generation BinMLV Vectors

(A and B) TE of next-generation BinMLV vectors in primary CD4+ T cells (A) and CD3

fluorescence intensities (MFIs) are indicated 3 days and 10 or 13 days post-transduction

representative experiment. (C) Colony-forming unit (CFU) assay of human CD34+ HSCs

of colonies was scored after 14 days. (D) TE (percentage of EGFP-positive cells) of CF
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at different MOIs in six independent transductions in three IVIM as-
says (Figure S4C). Transduction efficiencies and integrated VCNs
were comparable for the different vectors (Figures 5A and 5B). The
IVIM assay revealed immortalization for all MLV vectors carrying
the MLV.SIN.SF vector architecture (Figures 5C and S4C). The
replating frequency is a measure for the fitness of clones, while the
number of positive assays reflects the incidence of immortalization
events. MLV.SIN.SFIN_W390A and MLV.SIN.SFIN_W390A-LANA re-
sulted in replating clone numbers in line with MLV.SIN.SFIN_WT,
whereas a reduction in clone numbers was observed for MLV.SIN.
SFIN_W390A-CBX (mean number of positive wells; mean replating fre-
quency of 2.7 � 10�3, Figure S4C). MLV.SIN.SFIN_W390A-CBX also
displayed a reduced replating frequency/copy number (1.4-fold or
�30% lower) compared to MLV.SIN.SFIN_WT, although it was not
statistically significant (p > 0.05, compared to MLVIN_WT, Mann-
Whitney U test, Figures 5C and S4C).

The serial replating CFU assay is a method used to confirm cellular
anchorage-independent growth in vitro. The assay provides a strin-
gent method for the detection of the tumorigenic potential of trans-
formed murine HSCs in semi-solid medium.47,48 In a parallel
approach, we sought to assess the serial colony-forming capacity of
the transduced lineage marker-negative cells 2 weeks after expansion
in the IVIM assay. We included cells transduced with an LTR-driven
MLV-based vector as an additional positive control.46 Cells were
plated at a density of 5,000 cells/well in semi-solid medium (Fig-
ure S4B). After 10 days in culture (first round, Figures 5D and
S4B), the number of colonies obtained for all MLV.SIN.SF vectors
was not significantly different from that of non-transduced cells
(p > 0.05, compared to negative control, Mann-Whitney U test, Fig-
ure 5D), whereas the number of colonies for the positive control was
significantly higher (p < 0.05, compared to negative control, Mann-
Whitney U test, Figure 5D). After isolating the cells from the colony
assays, 5,000 cells were replated (second round, Figures 5E and
S4B). MLV.SIN.SFIN_WT- and MLV.SIN.SFIN_W390A-transduced cells
formed numbers of colonies comparable to the positive control (p >
0.05, compared to positive control, Mann-Whitney U test, Figure 5E),
whereas the number of colonies from MLV.SIN.SFIN_W390A-CBX

transduced cells was significantly reduced (p < 0.05 compared
to MLV.SIN.SFIN_WT, Mann-Whitney U test, Figure 5E). Taken
together, these data indicate that engineering the MLV vector config-
uration by modifying the IN protein (INW390A-CBX) reduced the
outgrowth of replating clones, indicating a potentially safer profile.

DISCUSSION
Retroviral vector technology offers great potential to treat genetic dis-
orders and is a powerful tool for long-term correction of genetic de-
fects in a variety of severe hematological disorders.1,50,51 Despite the
4+ HSCs (B) at different time points. Percentage of EGFP-positive cells and mean

for CD4+ T cells and CD34+ cells, respectively. Data represent measurements from a

harvested from three donors and transduced with the indicated vectors. The number

U colonies (described in C) at 17 days post-transduction from three donors.
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initial success, a subset of patients developed serious adverse events,
such as leukemia or myelodysplasia, that could be directly related
to the design and characteristics of the viral vector used.10–14

Understanding the mechanisms of retroviral vector genotoxicity is,
therefore, essential to engineer improved viral vectors with reduced
genotoxic potential.

Vector-mediated genotoxicity is defined by (1) the specific integration
profile and (2) the design of the integrating proviral genome. Each
retroviral family displays a specific integration profile. MLV integra-
tion is significantly enriched near TSSs and active enhancer regions38

and thus potentially causes insertional mutagenesis. Significant ef-
forts have been made to develop next generations of retroviral vectors
with reduced genotoxic potential, such as SIN vectors and weaker in-
ternal promoters.19,21,52–58 Nonetheless, their integration is still tar-
geted to gene regulatory regions,38,59 where they have the potential
to disrupt or dysregulate the transcription of nearby genes by other
mechanisms.60 Thus, the development of viral vectors that integrate
away from genes may be safer for clinical applications. One approach
is the development of other viral vector platforms withmore favorable
genomic distributions, like lentiviral, foamy, and alpharetroviral vec-
tors.25,60–62 Alternatively, retroviral vectors can be re-engineered to
obtain a more desirable integration pattern that is detargeted from
its traditional chromosomal locations and ultimately only occurs at
the preferred sites of the host-cell chromosome.

Retroviral integration site selection is dictated by the interaction be-
tween the viral IN as part of the PIC and cellular cofactors. Previously,
we re-engineered the MLV- and HIV-cellular tethering cofactors
(BET and LEDGF/p75, respectively) and demonstrated efficient
redistribution of retroviral integration without compromising trans-
gene expression.29,63–65 However, this approach requires the intro-
duction (at least transient) of artificial anchors in target cells prior
to application of the therapeutic vectors,63,64 which is not always
desirable in a clinical setting. A more straightforward strategy is to
directly engineer vector particles to contain proteins with adapted
or unique binding domains to direct integration. Other groups at-
tempted to redistribute MLV integration through modifications of
the MLV Gag protein by fusion of tethering peptides to rescue a
mutated MLV p12 protein.66,67 However, integration site distribution
of the engineered MLV p12 chimeras was not altered,66,67 suggesting
that the primary role of MLV p12 is tethering the virus/vector to the
condensed host-cell chromatin rather than targeting the genomic
integration (reviewed in Rein68). Analysis of MLV IN-BET interac-
tion29 enabled us to generate Bin MLV vectors.31 Interaction with
Figure 5. Assessment of Genotoxicity Profile of Next-Generation BinMLV Vect

(A and B) TE at day 4 (A) and mean vector copy number at day 5 post-transduction (B) o

(lin�) bone marrow cells at increasing MOIs. MOI 20 was performed only once. (C) Repl

mass cultures at day 5; horizontal lines indicate the median for a given vector design

methylcellulose is shown. Each dot represents the number of colonies formed for an ind

cells, while a positive control represents lin� cells transduced with an LTR-SFFV-driven

cells from positive assays were harvested and re-seeded at 5,000 cells for second ro

experimental setup is shown in Figure S4B. VCN, vector copy number.
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BET proteins was uncoupled either by deletion of the C-terminal
tail of MLV IN (MLVIN_1–380) or by a single point mutation
(MLVIN_W390A).

Here, we successfully modified the MLV integration profile by fusing
alternative chromatin binding peptides to BinMLV IN, resulting in a
significantly different integration site pattern (Figure 2). The addition
of the CBX1 chromodomain or LANA peptide redistributed MLV
integration to the same extent relative to the typical MLV markers
(TSSs, DHSs, and CpG islands), with a more than 3-fold reduction
in integration frequency near TSSs and CpG islands compared
to wild-type MLV (Figures 2A and S2A; Table S1). Comparative
integrome analysis near a range of genomic and epigenetic fea-
tures corroborated that INLANA vectors (MLVIN_W390A-LANA and
MLVIN_1–380-LANA) and INCBX vectors (MLVIN_W390A-CBX and
MLVIN_1–380-CBX) redistribute along the chromatin, although the ef-
fect was much more pronounced for INCBX vectors (Figures 2B and
2C and S2B and S2C). A similar strategy was employed by Hocum
et al.,69 where the full CBX1 protein was fused to the IN of foamy virus
and additional modifications in the FV Gag protein were required to
achieve significant effects on retargeting FV integration. The newly
generated foamy retroviral vectors (FV) integrated �2-fold less
frequent near genes and proto-oncogenes.69 In the case of MLV,
fusion of a single CBX1 chromodomain to the C-terminal end of
MLV INW390A was sufficient to shift integration toward epigenetic
markers for transcriptionally silent regions (H3K9me2/3 and
H3K27me3), known to be bound by CBX132 (Figure 2C; Table S1).

Next to the retargeting effect, next-generation BinMLV vectors can be
produced at high titers and efficiently transduce clinically relevant
cells such as primary CD4+ T cells and CD34+ HSCs without any
apparent transgene silencing (Figure 4), highlighting the translational
potential of these vectors. Finally, we assessed the newly engineered
Bin MLV vectors (MLVIN_W390A-CBX and MLVIN_W390A-LANA) in
the IVIM assay as well as in a murine serial replating CFU assay to
predict the genotoxic profile (Figure S4B).46 BinMLV and wild-type
MLV-based vectors were produced carrying the same SIN gammare-
troviral vector genome (MLV.SIN.SF) with an internal SF enhancer/
promoter to drive EGFP expression (Figure S4A), a design known to
trigger insertional transformation.21,45 Whereas MLV.SIN.SFIN_WT,
MLV.SIN.SFIN_W390A, and MLV.SIN.SFIN_W390A-LANA displayed a
comparable frequency of IVIM clones, immortalization events were
slightly reduced for MLV.SIN.SFIN_W390A-CBX (Figures 5C and S4C)
but were not significantly different. The results of the IVIM assay
in our experiments confirmed that the strong spleen focus-forming
ors

f next-generation BinMLV vectors in murine hematopoietic lineage marker-negative

ating frequencies corrected for the mean vector copy number, measured in DNA of

. (D and E) Serial CFUs assay. The number of colonies per 5,000 cells plated in

ependently transduced culture. A negative control represents non-transduced lin�

MLV-based vector. After the first round (D), the number of colonies was scored and

und colony formation (E). Colony counts > 200 colonies are shown as 220. The
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virus (SFFV) enhancer/promoter present in all vector genomes
produced replating clones with similar efficiency in all cultures
independent of the IN, while the low replating in two assays of
MLVIN_W390A-CBX may be attributed to the detargeted integration
pattern. Hence, at least for SFFV, promoter strength has a greater
impact on the generation of insertional mutants than integration
site preference in the IVIM assay.

To further address whether detargeted BinMLV vectors may be less
genotoxic, we employed serial replating CFU assays of expanded
murine HSCs47,48 to assess vector integration-related genotoxicity.
The murine CFU assays demonstrated that MLV.SIN.SFIN_WT and
MLV.SIN.SFIN_W390A potently transformed murine HSCs, whereas
fusion of the CBX1 chromodomain to MLV INW390A (MLV.SIN.
SFIN_W390A-CBX) resulted in a significantly reduced transformational
incidence (p < 0.05, Figure 5E).

In conclusion, we demonstrate the potential to engineer MLV-based
vectors that detarget from unsafe regions by fusing peptide frag-
ments to the C-terminal end of MLV IN. The mere addition of
the CBX1 chromodomain (and LANA peptide, to a lesser extent)
was sufficient to detarget integration preference away from the
traditional markers of MLV integration. In order to translate these
findings into suitable vectors for the (pre)clinical field, the perfor-
mance of the new Bin MLV should be evaluated in more relevant
pre-clinical safety assays and bone marrow/HSC transplantation as-
says to validate their improved safety profile. Together, our findings
will help achieve better control of MLV-based vector integration
preferences. Combining next-generation BinMLV packaging con-
structs with next-generation SIN gammaretroviral vector architec-
tures that incorporate a weaker physiological promoter less likely
to dysregulate nearby genes19,70 will lead to an additional reduction
in genotoxicity.

MATERIALS AND METHODS
Plasmids

BinMLV IN was cloned as previously described.31 Chromodomians
of CBX and CDYL fusions were cloned with gBlocks (IDT) in PacI-
and NotI-digested pcDNA3.MLV.gp packaging plasmid, a kind gift
from Prof. Axel Schambach.71 HPV8 E2 and LANA peptide fusions
were introduced into the indicated vectors by an oligonucleotide an-
nealing strategy using the same restriction sites. Oligonucleotide se-
quences are listed in Table S4. All enzymes were purchased from
Thermo Fisher Scientific. The integrity of all plasmids was verified
by DNA sequencing.

Cell Culture

SupT1 cells were cultured in RPMI-1640 medium (Gibco-BRL/
Life Technologies) supplemented with 10% heat-inactivated fetal
bovine serum (Gibco-BRL) and gentamicin (50 mg/mL; Gibco-
BRL). HeLa cells were cultured in DMEM (Gibco-BRL) supple-
mented with 8% heat-inactivated fetal bovine serum and genta-
micin. All cells were grown in a humidified atmosphere with 5%
CO2 at 37�C.
Primary Cell Purification

Human peripheral blood mononuclear cells (PBMCs) were purified
from buffy coats of three different donors, obtained from the Red
Cross blood transfusion center, using density-gradient centrifugation
(Lymphoprep; Axis-Shield). Primary CD4+ T cells were selectively
enriched using bi-specific monoclonal antibody (mAb) CD3.8
(0.5 mg/mL, NIH AIDS Reagents Program; https://www.aidsreagent.
org) for 5 days. CD4+ T cells were cultured in RPMI medium supple-
mented with 15% FBS, gentamycin, interleukin (IL)-2 (100 U/mL;
Peprotech), and MEM Non-Essential Amino Acids Solution (MEM
NEAA) (50 mg/mL; Gibco-BRL), referred to as T-cell medium
(TCM). CD34+ HSCs were positively selected with anti-CD34-conju-
gated microbeads according to the manufacturer’s instructions
(MACS; Miltenyi Biotec) and stimulated for 48 hr in StemSpan
SFEMII medium containing CC100 Cytokine Cocktail (STEMCELL
Technologies).

Retroviral Vector Production and Transduction

Viral vectors were produced as previously described.72 Briefly, MLV-
based vectors were produced by a triple polyethylenimine (PEI)-
based or Ca-phosphate transfection of 293T cells with a pVSV-G en-
velope, pcDNA3.MLV.gp packaging plasmids or their derived fusions
(see above), and p450-GFP transfer plasmid (kindly provided by F.D.
Bushman) encoding an LTR-driven EGFP reporter. For the IVIM
assay, the transfer plasmid pSRS11.SF.GFP.pre (referred to here as
MLV.SIN.SF.EGFP.pre) was used, which was kindly provided by
Axel Schambach.71

Produced vectors were concentrated by tangential flow filtration and
normalized based on RT units (RTUs; non-functional titration) by
the SYBR Green I product-enhanced reverse transcriptase assay
(SG-PERT).73 Subsequently, functional transducing titers were deter-
mined in SupT1 cells reaching titers > 107 TU/mL. For transduction
of laboratory cell lines, SupT1 cells (12 � 104/well) and HeLa cells
(2 � 104/well) were seeded in 96-well plates and transduced with a
MOI of 1 and 3 of the respective vectors.

Seventy-two hours post-transduction, 50% of the cells were harvested
for FACS analysis, while the remaining 50% were cultured for 10 days
post-transduction for a second FACS analysis and to perform integra-
tion site sequencing. Prior to primary cell transduction, CD4+ T cells
(25.104/well) and CD34+ HSCs (10.104/well) were pre-stimulated for
5 days in TCM and 2 days in StemSpanmedium enriched with CC100
Cytokine Cocktail, respectively. AnMOI of 4.5 of the different vectors
was applied by spinoculation (2 hr, 1,200 g). Cells were analyzed for
EGFP expression by flow cytometry at the indicated time points.

Genomic DNA Isolation and qPCR

Genomic DNA (gDNA) isolation and qPCR were performed as pre-
viously described.31 Briefly, 2 million cells were pelleted and genomic
DNAwas extracted using a Mammalian Genomic DNAMiniprep Kit
(Sigma-Aldrich). Samples corresponding to 700 ng genomic DNA
were used for analysis. Each reaction contained 12.5 mL iQ Supermix
(Bio-Rad), 40 nM forward and reverse EGFP primer, and 40 nM
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EGFP probe in a final volume of 25 mL. RNaseP or b-actin was quan-
tified as the endogenous control (TaqMan RNaseP control reagent;
Applied Biosystems). Samples were run in triplicate for 3 min at
95�C followed by 50 cycles of 10 s at 95�C and 30 s at 55�C in a
LightCycler 480 (Roche Applied Science). Analysis was performed us-
ing the LightCycler 480 software supplied by the manufacturer.

Recovery of Integration Sites and Analysis of Integration Site

Distributions

Recovery of integration sites was performed as previously described.29

Briefly, linkers were ligated to restriction enzyme-digested (MseI)
genomic DNA isolated from transduced cells and virus-host DNA
junctions were amplified by nested PCR. Samples were individually
barcoded with the second pair of PCR primers to generate 454 li-
braries. PCR products were purified and sequenced using 454/Roche
pyrosequencing (titanium technology). Reads were quality-filtered by
requiring perfect matches to the LTR linker, barcode, and flanking
LTR and were subsequently mapped to the human/mouse genome.
All sites were required to align to the reference genome within 3 bp
of the LTR edge. To control for possible biases in the datasets due
to the choice of the MseI restriction endonuclease in cloning integra-
tion sites, random control sites were generated computationally and
matched to experimental sites with respect to the distance to the near-
est MseI cleavage site (MRC).74,75 To do so, each experimental inte-
gration site was paired with three random control sites in the genome
with respect to the distance to the nearest MseI cleavage site in the
genome. A more detailed explanation can be found in the supple-
mental guidelines included in Ocwieja et al.76

Analyses were carried out as described in Marshall et al.77 A detailed
account of the statistical methods used and the methods for forming
and analyzing heatmaps using ROC curves can be found in Brady
et al.78 Consensus sequence analysis at the point of integration
was performed using WebLogo3 (http://140.114.98.75/weblogo/).
For association with specific genomic features, the distance of each
integration site (in kilobases) to the respective genomic feature
was calculated (midpoint of the CpG island or DHS, and the X5-
end of genes as a measure for the TSS). Integration sites upstream
of the genomic feature were given negative kilobase values, while
downstream integration sites were calculated as positive. For heat-
maps, comparisons were carried out over three different interval
sizes surrounding each integration site (5 kb, 10 kb, and 50 kb), since
previous studies have shown that the interval sizes chosen for com-
parison can influence the conclusions. In this study, results were in
line for each interval size examined (data not shown). Only the data
for the 10-kb interval are shown. In the heatmap, the distribution of
experimental MLV sites is normalized to that of the MRC sites, as a
control for recovery bias due to cleavage by restriction enzymes (in
our case, MseI).74,75 Results of statistical tests comparing the distri-
butions of integration sites to the reference dataset are summarized
as asterisks on each tile of the heatmap. Datasets used in the safe
harbor analysis were retrieved from the Ensembl and/or UCSC da-
tabases (TxDB knownGenes, miRNA biotype, UCR; hg19) using
BioMart.79 The AllOnco list was used for oncogenes as published
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in Sadelain Analysis was performed according to the parameters
defined in Papapetrou.

CD34+ HSC CFU Assay

For human CD34+ HSCCFU assays, freshly purified cells were seeded
at 5,000 cells/well in human methylcellulose medium (methocult
H4230; STEMCELL Technologies) supplemented with CC100 Cyto-
kine Cocktail. Cells were plated in 35-mm petri dishes and cultured in
a fully humidified atmosphere with 5% CO2 at 37�C for 14 days. The
number of colonies was scored after 14 days. For FACS analysis of the
CFUs, colonies were harvested, washed twice with PBS, and evaluated
for EGFP expression.

IVIM Assay

The IVIM assay was performed as described earlier.46 Briefly, murine
lineage marker-negative bone marrow cells were isolated from the
tibias and femurs of C57BL/6 mice and enriched for stem and
progenitor cells (mouse lineage cell depletion kit; Miltenyi Biotec)
and frozen in aliquots. After thawing and 48 hr of prestimulation,
1 � 105 lin� cells were transduced on 2 consecutive days on
RetroNectin-coated (Takara; Clontech) wells with a MOI of 5, 10,
or 20. TE was analyzed by flow cytometry 4 days thereafter. Cells
were expanded for 2 weeks in IMDM, 10% FCS, 1 mM glutamine,
1% (v/v) penicillin/streptomycin, murine stem cell factor (mSCF)
(50 ng/mL), human FMS-like tyrosine kinase 3 ligand (hFlt3L)
(100 ng/mL), murine IL (mIL)-3 (20 ng/mL), and human IL (hIL)-
11 (100 ng/mL; all cytokines purchased from Peprotech) and diluted
to a cell density of 500,000 cells/mL approximately twice a week.
Cells were the seeded on 96-well suspension plates at a density of
100 cells per well (48 wells seeded from each culture). Replating
clones were detected by microscopic scoring. The replating frequency
(according to Poisson distribution) was calculated with L-calc
(STEMCELL Technologies) and normalized by VCN as determined
5 days post-transduction.

Murine Serial CFU Assay

Murine lineage marker-negative bone marrow (BM) cells were puri-
fied and transduced as in the IVIM assay. After 2 weeks of expansion,
cells were plated (5,000 cells/well) in methylcellulose (HSC006; R&D
Systems) supplemented with 20 ng/mL interleukin-3, and 50 ng/mL
murine stem cell factor. The number of colonies was scored after
10 days. For serial replating, colonies were harvested and replated
in fresh methylcellulose medium at the same density of 5,000 cells/
well for the subsequent round.
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