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Introduction

The average prevalence of active epilepsy is between 0.5 
and 1%. So, approximately 65  million people worldwide 
suffer from this condition [1]. Epilepsy is a disease of the 
brain defined by any of the following conditions [2]: (a) at 
least two unprovoked (or reflex) seizures occurring >24 h 
apart; (b) one unprovoked (or reflex) seizure and a prob-
ability of further seizures similar to the general recurrence 
risk (at least 60%) after two unprovoked seizures, occurring 
over the next 10  years; (c) diagnosis of an epilepsy syn-
drome. A seizure is a result of violent bioelectric discharges 
in neurons which activate specific structural and functional 
circuits in the brain and disrupt their functioning. During a 
seizure and shortly thereafter significant changes in heart 
rhythm may occur [3, 4].

One of the diagnostic parameters used in the study 
of epilepsy are heart rate changes. This is an important 
medical problem described in many papers [5–7]. Unfor-
tunately, due to significant physiological abnormalities 
and artifacts associated with muscle contractions, and 
movements of a patient’s body during an epileptic sei-
zure, it is very difficult to register clean ECG signals [8]. 
Electrophysiological recordings (including ECG) regis-
tered during a seizure are often distorted with signals of 
amplitudes as much as several times higher than useable 
signals. In the article by Eggleston et al. [9] a review of 
34 articles that reported the prevalence of ictal tachycar-
dia in patients with epilepsy is conducted. The authors 
report the occurrence of significant increases in heart 
rate associated with ictal events in a large proportion of 
patients with epilepsy (82%). Jansen et  al. analysed the 
ECG signals in the time and frequency domains for 80 
seizures [7] before and after the onset of epileptic sei-
zures on EEG. The algorithm of Leutmezer et  al. was 
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used to find the temporal relationship between the change 
in heart rate and seizure onset. Preictal heart rate changes 
were observed in 70% of the partial seizures. Kato et al. 
showed that HR abruptly increased in all 29 right sei-
zures and in 42 of 48 left seizures [10]. Onset time of HR 
increase in relation to ictal EEG onset was significantly 
earlier in right seizures than in left seizures. Time of 
maximum HR was also significantly earlier in right sei-
zures than in left seizures. In the article [11] the authors 
used a Multivariate Statistical Process Control (MSPC) 
to analyze the HRV. The results produced accurate pre-
dictions (91%) for epileptic seizures. Seizure related car-
diac arrhythmias are also frequently reported and have 
been implicated as potential pathomechanisms of Sudden 
Unexpected Death in Epilepsy (SUDEP) [12]. In particu-
lar, postictal arrhythmias, including asystole, AV block 
and the less prevalent AF and VF, usually occur after a 
convulsive seizure and are frequently associated with 
SUDEP. This study aimed to develop a comprehensive 
system that would enable the measurement of heart rate 
(HR) for strongly disturbed ECG signals registered dur-
ing epileptic seizures.

In the system designed by us, the following preproc-
essing methods were used: IIR filtering and normali-
zation due to skewness and standard deviation. It was 
assumed that it was possible to create a reference QRS 
complex for each ECG recording. In the next stage, cross-
correlation of short, normalized windows of ECG signals 
from the reference QRS complex was performed. Then, 
the correlation maxima were investigated. As a result, 
a complex algorithm was designed to detect R-waves, 
to determine RR interval and consequently, heart rate 
changes. The algorithm was tested with the use of simu-
lations, where noise of an amplitude several times higher 
than the ECG signal standard deviation was added. It was 
found that the algorithm had high detection accuracy, and 
high levels of sensitivity and specificity. The algorithm 
was also tested in clinical practice, where it was used to 
automatically determine HR with ECG signals recorded 
with 58 patients prior to and during epileptic seizures.

Methods of RR interval detection

RR interval measurement is enabled via the localization 
of R-waves in the ECG recording. A typical ECG wave-
form with P, Q, R, S and T waves is presented in Fig.  1. 
The length of the PQ segment is usually constant for a 
patient, i.e. 100–180  ms, the PR section has a length of 
120–200  ms, QRS <120  ms, and QT interval <400  ms, 
while the RR interval is 600–1500 ms.

For typical short ECG recordings, the signals are of very 
good quality and contain a negligible amount of noise and 
artifacts. Accordingly, the determination of the RR interval 
is not difficult. In such a case, a whole range of algorithms 
for automatic detection of QRS complexes and RR interval 
determination are known. Pan & Tompkins algorithm [13] 
is one of the best known and a reference point for many 
researchers. Generally, signal analyses in time and fre-
quency domains are commonly used. An algorithm which 
uses a wavelet to detect the QRS complex is proposed 
in [14]. This algorithm was tested using the MIT-BIH 
Arrhythmia Database, Third Edition, (May, 1997). The pro-
posed algorithm is characterized by a good detection accu-
racy. However, as the author himself mentioned, in many 
cases it is not sufficiently robust toward noise. A method 
of detecting QRS complexes using Matching Pursuit is pro-
posed in [15]. The authors tested the algorithm on a group 
of 20 people. It is characterized by a high level of detection 
accuracy, i.e. 95.3%. Autocorrelation and discrete cosine 
transform (DCT) coefficients are used for the detection 
and localization of QRS in [16]. This is an approach which 
includes impulsive noise suppression and background nor-
malization of digitized electrocardiogram signals, using 
mathematical morphological operators that incorporate the 
shape information for a signal [17]. A filter which detects 
artifacts by keeping track of the statistical properties of the 
RR-series at three timescales: one global and two local is 
presented in [18]. The resulting filter shows good flexibility 
and adaptability to the changing statistical properties of the 
signal. However most often, the largest signal values (local 
maxima) are used to detect R-waves [19, 20].

Fig. 1   A typical ECG wave-
form with P, Q, R, S and T 
waves
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Materials

Scalp video EEG with simultaneous ECG recordings 
(vEEG) was performed in patients with refractory temporal 
epilepsy for long-term monitoring of epileptic seizures dur-
ing presurgical evaluation. In each case, the ECG activity 
was recorded with electrodes placed on the chest (V1–V2 
derivation). In 56 patients who underwent epilepsy surgery 
in the years 2005–2015, ictal vEEG recordings provided 
localization information and identification of temporal sei-
zure types as well as ECG recordings. After temporal lobe 
surgery, 43 patients (77%) were completely seizure-free or 
almost seizure-free (only auras)—Engel class 1 according 
to the Engel scale [21]—for at least 12 months.

Fifty-eight seizures were recorded on the vEEG with 
simultaneous ECG in 56 patients (27 men). The temporal 
ictal onset zone was localized based on seizure ictal semi-
ology and ictal patterns. Using the Wada test, it was found 
that in 22 patients the seizures started in the hemisphere 
dominant for language functions, and in the remaining 34 
in the hemisphere non-dominant for language functions. 32 
bio-signals were registered (1 ECG channel and 31 EEG 
channels) using an EEG DigiTrack amplifier. The ECG sig-
nal was recorded with the sampling frequency fs = 250 Hz. 
For EEG registration, cup-shaped electrodes were used and 
for ECG registration—precordial disposable electrodes 
located at V1 and V2 positions. During signal registration, 
patients were either sitting or lying, but they could freely 
move their heads and limbs. The registration time was from 
several minutes to several hours.

Algorithm for RR interval detection

The research assumption was that the system had to be 
robust toward disturbances and artifacts that occur during 
epileptic seizures. This requires effective preprocessing 
methods, in particular filtration. The type and parameters 
of the electrodes, the manner of their attachment to the 
chest and QRS complex morphology (which is individual 
for each patient) can lead to significant variation in ECG 
recordings. It was assumed that the QRS complex morphol-
ogy for a patient does not change either before epileptic sei-
zures or during the seizures. Additionally, it was assumed 
that the ECG signal registered before the seizure is free 
from disturbances and that R-wave detection is relatively 
easy. Our algorithm should give the average heart rate in 
short time intervals [22]. The algorithm is designed to work 
in off-line mode.

Examples of ECG and EEG waveforms recorded by us 
immediately prior to and after the beginning of an epileptic 
seizure (vertical line in 4.2  s) are shown in Fig.  2. After 
the beginning of an epileptic seizure muscle activity that 

causes artifacts can be observed. These artifacts are also 
visible in the recorded ECG signal. Synchronization of 
EEG channels characteristic for epileptic seizures and sig-
nificant ECG signal distortion are clearly visible.

It should be emphasized that the ECG signals, during 
epileptic seizures, are often affected by the biological and 
environmental factors listed below and these need to be 
considered before detecting actual QRS complexes [23]:

•	 Interferences from the power network 50/60 ± 0.2 Hz,
•	 Temporary loss of skin-electrode contact,
•	 Electrode shifts on the skin,
•	 Electromyographic (EMG) noise (electrical activity due 

to muscle contractions lasting around 50 ms, in the band 
0–10 kHz),

•	 Movements from respiration at frequencies drifting 
between 0.15 and 0.3 Hz,

•	 Artifacts generated by signal processing hardware such 
as signal saturation,

•	 Noise generated by other medical equipment present in 
the patient care environment at frequencies between 100 
and 1 MHz.

The system for determining the RR intervals, proposed 
by us, is presented in Fig. 3. The first element of the system 
is IIR filtration (IIR Filtration). Its purpose is to eliminate 
interfering signals from the power network (50  Hz) and 
low-frequency drifts. Two Butterworth filters were used: 
band-pass (4–80 Hz) and band-stop (48–52 Hz). Next, the 
signal amplitudes were normalized (Skewness, Std nor-
malization). If the skewness is less than zero the signal 
polarity is reversed. The result is a normalized ECG signal 
(standard deviation equal one) with R-waves of a positive 
polarity.

Then, the first 30-s part of the ECG signal for a patient is 
selected (assumed undistorted)—(Clean ECG signal selec-
tion). This fragment of the ECG signal is used to determine 
the reference QRS complex. To calculate this, local signal 
maxima are used for R-wave detection. In our algorithm, 
the minimum value of amplitude was 2.5 and the minimum 
time interval between R “peaks” (RR interval) was 80 sam-
ples (0.32 s).

A raw ECG signal is presented in Fig.  4. Figure  5 
presents the signal from Fig.  4, filtered using bandpass 
(4–80 Hz) and band-stop (48–52 Hz) filters, after normali-
zation on the basis of standard deviation and skewness. 
The red line indicates the threshold level value of 2.5 units 
used to detect of local maxima. The green dots indicate the 
results of the automatic detection of local maxima, associ-
ated with the R-waves in the QRS complex.

Then, the ECG signal fragments containing QRS com-
plexes were averaged. The averaged ECG fragments con-
tained a section of 70 samples (0.28 s) before the R-wave 
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and 100 samples (0.4  s) after the R-wave (Reference 
QRS). A reference QRS complex (labeled ΨQRS) for a 
specific ECG waveform calculated in this manner is pre-
sented in Fig.  6. Based on the authors’ assumption, the 
QRS morphology remains unchanged for a patient. Such 

Fig. 2   A typical ECG and EEG 
signals immediately prior to and 
during epileptic seizure—from 
top: EEG (FP1, F3, P3) and 
ECG

Fig. 3   Diagram of the system for determining the RR intervals

Fig. 4   Raw ECG signal
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an approach allows the identification of a specific pattern 
which best reflects the QRS nature for each person.

In the following step, the ΨQRS time window (171 sam-
ples) was slid along the ECG signal with a large overlap 
of 170 samples (Signal windowing). For each ΨQRS win-
dow position, the correlation of ECG signal covered by 
the window with the ΨQRS signal was determined (Calcu-
lation of correlation). The Pearson correlation coefficient 
was used to calculate this [24]. Thus, a C waveform is cre-
ated, termed simply the correlation. In the next step, the C 
correlation was divided into Cwn windows of a duration of 
500 samples (2 s) overlapping in 150 samples (0.6 s). For 
each Cwn window, the following were performed (MaxPeak 
detection):

1.	 Normalization of signal Cwn = Cwn∕max (Cwn)

2.	 Determination of local maxima for normalized Cwn 
windows.

Determination of the local maxima required a mini-
mum threshold level of 0.7 units and a minimum time 
distance between the peaks of 80 samples (0.32  s). The 
determined maxima corresponded to the location of 
R-waves in the ECG signal. As the windows overlapped, 
the danger of duplication of R-waves occurred. There-
fore, in a further step R-wave duplicates (R-wave determi-
nation) were eliminated. The last step was to determine 
the RR intervals by calculating the distance between R 
waves (measured in number of samples). The instantane-
ous number of heart beats per minute HR was calculated 
from the formula:

where fs sampling rate, IRR the instantaneous value of the 
interval between R-waves, 60 conversion of seconds to 
minutes. As a result, an automated system was created 
which allows the calculation of heart beats per minute for 
any point of time.

Results

A typical changes of HR value before and during epilep-
tic seizure are shown in Fig.  7. The onset of the clini-
cal seizure (as determined by a physician) occurs at 50 s. 

(1)HR =
60fs

IRR
[bpm]

Fig. 5   A registered ECG signal after band-pass (4–80 Hz) and band-
stop (48–52 Hz) filtering and normalization

Fig. 6   A sample reference QRS complex (ΨQRS)

Fig. 7   A typical changes of HR value before and during epileptic sei-
zure (the vertical blue line shows the beginning of an epileptic sei-
zure)
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There is an increase in heart rate immediately prior to 
and after the clinical seizure. This is consistent with med-
ical knowledge [4, 25].

Figure  8 presents an example of the detection of heart 
rate (location of R-waves). The blue color shows a frag-
ment of noisy ECG signal with artifacts, the red color—the 
C correlation signal. Points represent maxima determined 
for the ECG signal (blue color) and for the C correlation 
(red color).

An incorrectly detected R-wave can be observed in 
the ECG signal (range 1.58–1.60). This false R-wave is 

ignored by our algorithm—a correct result for the analysis 
is achieved. However, there were cases in which our algo-
rithm did not allow the accurate detection of the R-waves. 
In order to evaluate the performance of the developed sys-
tem and compare it with a simple method of direct signal 
maxima detection, the influence of added noise on the 
R-wave detection accuracy was examined. The idea was 
to achieve the effect of the occurrence of muscle artifacts 
(EMG) [26] and other disturbances. For each user a 30-s 
good quality ECG signal was selected and then a noise was 
added to it. The noise level was controlled by a k coeffi-
cient. This coefficient can be interpreted as a measure of 
the ratio between the amplitude of ECG signal, and the 
amplitude of the artifacts. Table  1 presents the relation-
ships between standard deviation (std) and maximum val-
ues (max) for the ECG signals. Figure 9 shows an example 
of ECG waveform, a noise signal of strength k = 1 and the 
ECG signal with added noise (ECG + Noise).

In this way, it was possible to compare the location of 
R-waves obtained by determining the signal maxima for 
raw ECG signals in a direct manner with the results of our 
proposed method for the determination of the maxima. 
Tables  2, 3 and 4 show in sequence: the accuracy, speci-
ficity and sensitivity of R-wave detection for different SNR 
for noisy ECG signals. The results were calculated for 58 
focal seizures in 56 adult patients with intractable temporal 
lobe epilepsy.

Fig. 8   Detection of HR (location of R-waves)

Fig. 9   ECG waveform, a noise signal of strength k and the ECG signal with added noise
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Discussion

During the calculations, the accuracy of the detection of 
the R-waves in noisy ECG signals was considered correct 
if the original R-wave appeared at a distance of no more 
than three samples (0.012 s). Otherwise, it was considered 
that the R-wave was not properly detected. For this assump-
tion, the maximum error for measured heart rate (expressed 
in beats per minute deviation) is presented in Table 5. The 
maximum error increases with the number of beats per 
minute and reaches 3.29 beats for 130 bpm.

The results presented in Tables 2, 3 and 4 clearly indi-
cate that the developed system has a much better accuracy, 

specificity and sensitivity of R-wave detection than the 
direct method of detecting local maxima in ECG signals. 
For example, after adding a noise to an ECG with an ampli-
tude three times greater than the standard deviation of the 
ECG signal, very good results were obtained––that is, 
a detection accuracy of 0.89, specificity 0.83 and detec-
tion sensitivity 0.96 compared to an accuracy of 0.25, 

Table 1   Parameters of ECG signal with added noise

Noise ECG + noise

Std (uV) Max (uV) Std (uV) Max (uV)

k = 0 (no noise) – –  58.0  306.9 
k = 1 58.9 215.9 82.6 376.6
k = 2 11.9 431.9 131.3 490.5
k = 3 176.8 647.8 186.0 653.2
k = 4 235.8 863.8 242.7 866.1
k = 5 294.7 1079.7 300.3 1079.0
k = 6 353.6 1295.7 358.3 1291.9
k = 7 412.6 1511.6 416.6 1504.8

Table 2   Accuracy of R wave 
detection

K

0 1 2 3 4 5 6 7

C 0.99 0.98 0.92 0.89 0.72 0.61 0.44 0.39
ECG 0.99 0.8 0.5 0.25 0.20 0.17 0.12 0.14

Table 3   Specificity of R wave 
detection

k

0 1 2 3 4 5 6 7

C 0.98 0.97 0.86 0.83 0.68 0.58 0.44 0.42
ECG 0.98 0.99 0.66 0.33 0.27 0.23 0.17 0.19

Table 4   Sensitivity of R wave 
detection

k

0 1 2 3 4 5 6 7

C 1 1 0.99 0.96 0.75 0.65 0.44 0.37
ECG 1 0.67 0.4 0.19 0.16 0.13 0.1 0.1

Table 5   The maximum error of 
measured heart rate Pulse (bpm) 60 70 80 90 100 110 120 130

Error (bpm) 0.71 0.96 1.25 1.59 1.96 2.36 2.81 3.29

Fig. 10   R-wave detection accuracy, blue color—the direct method, 
red color—the correlation method
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specificity 0.33 and detection sensitivity 0.19 for finding 
maxima directly in the ECG signal.

The comparison of the accuracy of R-waves detection 
for both methods is given in Fig. 10. The blue color shows 
the accuracy of detection for the direct method, while the 
red color depicts the accuracy with the use of the correla-
tion method.

It is difficult to directly compare the created system 
with systems described in other studies, since the major-
ity of examples of the described algorithm have been 
implemented to detect R-waves in ECG signals of good 
quality. The accuracy of R-wave detection for good qual-
ity ECG signal scan be as high as 83–96% [15, 27, 28]. 
Nevertheless we compared our solution with a known 
Pan & Tompkins algorithm [13]. Both our and Pan & 
Tompkins algorithms function properly in the event of 
undistorted ECG signal. Distinct differences were seen 
only during the R-wave detection for ECG signal contain-
ing artifacts. Figure 11 illustrates an exemplary fragment 
of a real ECG signal recorded at the start of epileptic 
seizure. In case of Pan & Tompkins algorithm a redun-
dant R wave detection can be observed. This is due to the 
imposition of muscle artifacts (EMG) on the ECG signal. 
Our algorithm does not revealed at this point a redundant 
R-wave. This situation often repeated.

In Fig.  12 the comparison of the same algorithms 
for the real ECG signal with addition of EMG artifacts, 
simulated in the form of noise with parameter k = 1, is 
presented. Red color indicates undisturbed ECG signal, 
blue—the corresponding one with added noise. It is easy 
to observe redundant detections of R waves in the case of 
the Pan & Tompkins algorithm.

The proposed system was tested in offline mode, but it 
can be easily implemented on-line. However, a limitation 
of the system is the assumption that the first part of the 
ECG signal, appearing before the seizure, does not con-
tain significant artifacts, which may affect the determina-
tion of the reference QRS complex.

Fig. 11   The results of the R-wave detection with the use of Pan & 
Tompkins (asterisk) and our (open circle) algorithms for the real 
ECG signal disturbed by natural muscle artifacts

Fig. 12   The results of the 
R-wave detection with the use 
of Pan & Tompkins (asterisk) 
and our (open circle) algorithms
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Conclusion

The system developed for the detection of heart rate dur-
ing epileptic seizures is characterized by high detection 
accuracy, high specificity and high sensitivity. It allows the 
detection of R-waves in signals with a high level of noise 
and artifacts. After verification in clinical practice, it was 
confirmed that it greatly facilitates diagnosis of heartbeats 
before, after and during epileptic seizures. The system can 
also be used as part of the diagnosis of heart rate variability 
in other heart disorders, not only epilepsy.
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