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Summary

With the increase in quality of life standards and the
awareness of environmental issues, the remediation
of polluted sites has become a priority for society.
Because of the high economic cost of physico-
chemical strategies for remediation, the use of bio-
logical tools for cleaning-up contaminated sites is a
very attractive option. Rhizoremediation, the use of
rhizospheric microorganisms in the bioremediation of
contaminants, is the biotechnological approach that
we explore in this minireview. We focus our attention
on bacterial interactions with the plant surface,
responses towards root exudates, and how plants
and microbes communicate. We analyse certain strat-
egies that may improve rhizoremediation, including
the utilization of endophytes, and finally we discuss
several rhizoremediation strategies that have opened
ways to improve biodegradation.

Introduction

Microbial–plant interactions were extensively studied
during the second half of the last century; however, these
studies focused mainly on plant–pathogen interactions or
the well-known plant–saprophytic interactions. In the last
decade, the ecology of microbes in the rhizosphere,
defined by Hiltner (1904) as the area influenced by the
root system, has provided new insights in microbial com-

munication and their dialogue with plants (Kiely et al.,
2006; Shaw et al., 2006; Danhorn and Fuqua, 2007). It
has been well documented that rhizospheric microorgan-
isms can promote plant growth by many different mecha-
nisms, including nitrogen fixation, nutrient mobilization
(i.e. phosphorous), or even by the production of plant
growth regulators. Beneficial microbial interactions also
include the inhibition of pathogen growth by nutrient com-
petition, as well as the production of antibiotics and toxins.
Furthermore, certain non-pathogenic bacteria can induce
plant defence mechanisms (Handelsman and Stabb,
1996; Sticher et al., 1997; Bender et al., 1999; Lugten-
berg et al., 2002; Haas and Défago, 2005; Morgan et al.,
2005; Tian et al., 2007).

The classical enrichment culture techniques, together
with new ‘-omics’ technologies, have been used to dem-
onstrate that the number of microbes in the rhizosphere is
larger than in the bulk soil and that they are also meta-
bolically more active (Campbell and Greaves, 1990;
Ramos et al., 2000a,b; Kent and Triplett, 2002). This is the
so-called rhizosphere effect, which consists of the plant
excreting a number of compounds that can be used as
carbon, nitrogen, sulfur, or phosphorous sources by
microbes to proliferate and reach high cell densities in the
area surrounding the plant’s root (Rovira, 1965; Merckx
et al., 1986; Smalla et al., 2001; Walker et al., 2003;
Morgan et al., 2005). Plant roots provide a large surface
on which microbes can proliferate, can be transported
through the soil in terms of both spreading and depth and,
as mentioned above, the root provides nutrients and
through its soil penetration, facilitates oxygen exchange
allowing the proliferation of aerobic microorganisms. In
addition, root exudates contain different phenolic com-
pounds, which can act as inducers of different contami-
nant catabolic pathways (Fletcher and Hedge, 1995;
Shurtliff et al., 1996). Despite the general rhizosphere
effect, an increasing number of reports have indicated
that the bacterial composition in the rhizosphere is
affected by complex interactions, including soil type, plant
species and root zone localization (Marschner et al.,
2001; Chen et al., 2006).

In this minireview, we focus on the behaviour of bacteria
with bioremediation potential in the roots of plants.
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Although fungi also have the potential to proliferate and
remove pollutants present in the rhizosphere, they are not
the subject of this minireview.

Advantages of phytorhizoremediation

Remediation options using physico-chemical treatments
are expensive and, in general, are environmentally inva-
sive. Their high cost sometimes makes them prohibitive,
especially for the treatment of large areas with medium/
low levels of contamination (Cunningham and Ow, 1996).
In these cases, biological treatments are a good alterna-
tive (Cunningham et al., 1996; Doty, 2008). The biological
treatments used in recent years have had different
degrees of success. On-site techniques, such as land-
farming or composting, are promising options, but involve
manipulating soils and sometimes provoke the mobiliza-
tion of the contaminant. In situ techniques, such as the
inoculation of microorganisms with appropriate catalytic
properties, bioaugmentation, and soil fertilization, are
costly and sometimes unsuccessful (Colleran, 1997).

Despite the fact that there are an impressive number of
publications reporting the isolation of microbes with the
capacity to degrade contaminants (Cerniglia, 1993;
Urbance et al., 2003; Parales and Haddock, 2004), most
attempts to re-introduce these microorganisms into soils
to remove pollutants have been unsuccessful. This is
probably due to the lack of knowledge regarding the
behaviour of these microbes in the environment. Factors,
such as soil type, soil moisture, temperature, limitations in
microbial reactions to environmental stress conditions (i.e.
the toxicity of the contaminant and the scarcity of nutri-
ents), predators, and the inability of inoculated microbes
to compete with autochthonous microflora, have been
reported to influence the performance of microbes during
bioremediation (Goldstein et al., 1985; van Veen et al.,
1997; Head, 1998).

As an alternative to the failures in the field of bioaug-
mentation, phytoremediation has been proposed as an
attractive strategy to achieve the efficient removal of pol-
lutants. Plants are easy to monitor, they can be used to
eliminate a wide range of pollutants, and agriculture tech-
niques are available to minimize the costs of the
treatment. Phytoremediation strategies include: phytosta-
bilization, where plants, either physically or by the action
of the root exudates, help sequester the contaminant in
the soil making it less bioavailable; phytovolatilization,
where the plants take up the contaminant from the soil
and transform it into a volatile compound that is released
into the atmosphere for dispersal; phytoextraction, which
involves the accumulation of toxic compounds in the har-
vestable part of a plant; rhizoremediation, involving the
elimination of the contaminant by the microbes in the
rhizosphere; and phytoremediation, a term which refers to

the transformation of the contaminant by the plant
metabolism (Cunningham et al., 1996; Salt et al., 1998;
Susarla et al., 2002). A priori, the easiest way to design
a phytoremediation protocol would be to use a single
‘degradative organism’; unfortunately, plants, in general,
do not mineralize contaminants, so their potential use in
phytoremediation is limited. Therefore, a combination of
plants and microbes seems to be a better approach.

Although phytoremediation is a promising option, it also
has drawbacks. Pollutants above a certain level can be
toxic to both the plants and the associated microorgan-
isms (van Dillewijn et al., 2008), plant metabolism can
transform the contaminant (at least temporarily) into a
more toxic chemical (Trenck and Sandermann, 1980;
Hughes et al., 1997) or the plant can mobilize the con-
taminant from the soil to an aerial part where it can be
introduced into the food chain.

Transgenic plants with enhanced potential for phy-
toremediation have been constructed. These trans-
genic plants have been provided with eukaryotic
(i.e. cytochrome P450 monooxygenases, glutathione
S-transferases and metallothionein) or bacterial genes
(i.e. pentaerythritol tetranitrate redutase, mercuric ion
reductase, and organomercurial lyase) and they repre-
sent good alternatives for phytoremediation. However, the
release of genetically modified organisms still has legal
restrictions in many countries, which is a drawback for the
use of transgenic plants. The use of transgenic plants for
phytoremediation was recently reviewed (Doty, 2008; Van
Aken, 2008) and will not be discussed further in this
article.

Life in the rhizosphere

To design a successful rhizoremediation strategy there
are at least two basic requirements that should be fulfilled.
First, microbes must be able to proliferate in the root
system, a process which multiplies their catalytic potential
(Salt et al., 1998). Second, catabolic pathways must be
operative (Böltner et al., 2008).

Root colonization

Bacterial attachment to plant roots is an early step in plant
root colonization. Initial approaches for identifying and
studying genes involved in root colonization were based
on the use of random or directed mutagenesis to isolate
mutants impaired for colonization. Bacterial attachment
has been extensively studied in rhizobacteria and
although the molecular basis is still not completely under-
stood, the general mechanism seems to be mediated by
surface proteins, capsular polysaccharides, flagella and
chemotaxis (de Weger et al., 1987; Broek et al., 1998;
Dekkers et al., 1998a; Palumbo et al., 1998; de Weert
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et al., 2002; Capdevila et al., 2004; Rodríguez-Navarro
et al., 2007). Interestingly, the rhizosphere can select
mutants in which functions, such as motility, are improved
(Sánchez-Contreras et al., 2002; Martínez-Granero et al.,
2006). Functions involved in root colonization are often
evident in competition experiments where colonization of
the wild-type versus mutants is assayed. This can be
linked to general physiological deficiencies due to defects
in the synthesis of amino acids and vitamin B1, the ability
to grow on organic acids, or mutations in respiratory chain
genes (reviewed by Lugtenberg and Dekkers, 1999).
Others functions that were previously determined to be
specific of certain bacteria (i.e. efflux pump genes in
Agrobacterium) (Palumbo et al., 1998), have now been
revealed to be widespread mechanisms for survival in the
rhizosphere (see below).

In addition to characterize mutants that are deficient in
root colonization, the identification of genes that are spe-
cifically induced in the presence of roots or root exudates
allows for the investigation of the specific gene expression
programme that microbes must establish to proliferate at
the plant root. The first global approach was based on
‘in vivo expression technology’, which involved selecting
microbial promoters active in the rhizosphere (Rainey and
Preston, 2000; Rediers et al., 2005). This approach
enabled the identification of 20 genes in the saprophytic
bacteria P. fluorescens (Rainey, 1999), 28 genes in the
biodegradative P. putida KT2440 (Ramos-González et al.,
2005), and 29 genes in the nodulating bacteria Rhizobium
leguminosarum (Barr et al., 2008); all of these genes were
induced during rhizosphere colonization. Rhizosphere-
induced fusions in the three bacteria included genes with
probable functions in the cell envelope, chemotaxis, motil-
ity, transport, secretion, DNA metabolism, stress mecha-
nisms, regulation, energy metabolism, detoxification and
protein synthesis. Some of these functions, including the
ColR/ColS two-component system, the flagellar genes
and efflux pumps, have been implicated in root coloniza-
tion by independent laboratories using the mutant analy-
sis approach (Dekkers et al., 1998b; Palumbo et al.,
1998; Lugtenberg and Dekkers, 1999; Capdevila et al.,
2004). With the advent of micro-array technology, more
global approaches are being considered (Kiely et al.,
2006). Three recent papers (Mark et al., 2005; Matilla
et al., 2007; Attila et al., 2008) have revealed that nearly
200 promoters in different strains of Pseudomonas are
specifically induced in the presence of roots exudates or
plant roots (highlighted by van Dillewijn, 2008). The
results of these transcriptional analysis experiments con-
firmed the role of certain genes, such as those involved in
flagella and vitamin B1 biosynthesis, in root colonization
and also the involvement of genes related to specific
nutrient acquisition, the adaptation to adverse conditions,
the efflux of toxic compounds, and many regulatory pro-

teins. The authors also identified genes that were specifi-
cally induced using the system under study. Although
these studies have been done using simple models (one
plant and one bacteria), overall, they reveal that bacterial
fitness in the rhizosphere is a complex phenotype that is
affected by many different traits and environmental
factors.

Successful rhizosphere colonization depends not only
on interactions between the plants and the microorgan-
isms of interest, but also on interactions with other rhizo-
spheric microorganisms and the environment. Molecular
techniques, such as denaturing or temperature gradient
gel electrophoresis have allowed researchers to follow the
modifications in bacterial communities after environmen-
tal perturbations, including the introduction of plants or
biodegradative bacteria, changes in temperature, or the
addition of contaminants (Smit et al., 2001; Kent and Trip-
lett, 2002; de Cárcer et al., 2007; Kielak et al., 2008).
Several techniques to follow seed and root colonization by
bacteria have been developed during the last 15 years,
which mainly include in situ hybridization assays using
fluorescent probes and the visualization of bacteria that
carry the luxAB genes encoding bacterial luciferase
(Fig. 1), the green fluorescent protein, or another reporter
gene (Tombolini et al., 1999; Broek et al., 1998; Ramos
et al., 2000a,b; 2001). These techniques have been used
to illustrate that introduced microorganisms are often
unable to compete with indigenous microorganisms or are
unable to establish high numbers in the rhizosphere
(Rattray et al., 1995; Lübeck et al., 2000). Some bacteria
have developed strategies to out-compete other microor-
ganisms by delivering toxins, using extremely efficient
nutrient utilization systems, or by physical exclusion
(Lugtenberg et al., 1991). However, many other factors
involved in successful colonization, under non-sterile con-
ditions, remain unknown.

Mounting evidence indicates that plants are able to
select the bacteria living in their rhizosphere by different
mechanisms, including root architecture, the modification
of soil conditions, or the exudation of specific compounds.
Each plant exudes specific compounds, which are depen-
dent on the plant’s particular secondary metabolism.
Some plants can promote the growth of bacteria that are
able to degrade certain compounds, while others secrete
toxic compounds that select for tolerant bacteria, and
some plants are able to secrete hydrolases that degrade
acyl homoserine lactones, thus inhibiting bacterial
quorum sensing (reviewed by Hartmann et al., 2009).

We can conclude that the rhizosphere is a highly
dynamic environment, where root exudates, soil tempera-
ture, humidity and other factors are constantly changing.
Moreover, bacteria are sending and receiving signals from
plants, other bacteria, and from the environment. In this
environment, bacteria are competing for limited nutrients
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and are exposed to relatively high levels of putative toxic
compounds from plant exudates, from other rhizospheric
microorganisms, and, if living in contaminated soils, from
the toxicity of the contaminant.

The expression of catabolic genes in the rhizosphere

The list of contaminant-degrading bacteria associated
with plant rhizospheres is very extensive. In a recent
survey done in our laboratory, several rhizosphere-
isolated bacteria, belonging to the genera Arthrobacter,
Burkholderia, Mycobacterium, Novosphigobium, Pseu-
domonas and Sphingomonas, have been characterized
by their ability to degrade phenanthrene (S. Rodríguez-
Conde and A. Segura, unpublished). Many other rhizo-
spheric bacteria have previously been described as able
to degrade a wide variety of contaminants (Daane et al.,
2001; Kuiper et al., 2001; Jussila et al., 2006, among
others). For the efficient removal of soil contaminants, not
only do microbes with the appropriate catabolic genes
have to be maintained in the rhizosphere, but the genes
have to be conveniently expressed and be free of the

catabolite repression effect, in which microbes use a
given carbon or nitrogen source preferentially over others
(Burken, 2004). The easiest assays to probe for microbial
activity against pollutants are those where it is possible to
monitor CO2 evolution when the chemical under scrutiny
is available as a labelled compound (Parkin and Shelton,
1992; Levanon, 1993; Bending et al., 2001; Rasmussen
et al., 2004). More sophisticated experiments can be
done if substrates are labelled with a stable isotope to
study the incorporation of a heavier C- or N-source into
cell components (Madsen, 2006). The utilization of
reporter genes to study the expression of catabolic genes
in the rhizosphere is another technique that has proven
useful. The successful expression of bph [genes involved
in the degradation of polychlorinated biphenyls (PCBs)] in
sugar beet using the recombinant strain P. fluorescens
F113pcb was reported by Brazil and colleagues (1995). A
reporter strain that detected 3-chlorobenzoate (3-CB), an
intermediate in PCB-2 degradation, has been used to
monitor the in vivo production of 3-CB on alfalfa roots.
The authors used gfp fused with the meta-pathway
Pm promoter from P. putida (TOL plasmid), which is
strongly induced by 3-CB (Ramos et al., 1986; Boldt et al.,
2004).

Among root exudates, numerous aromatic compounds
(i.e. terpernes, flavonoids or lignin-derived components)
with chemical structures similar to those of the contami-
nants (Fig. 2A) are released and some can act as induc-
ers of contaminant-degradation pathways (Singer et al.,
2003). L-carvone, one of the components of spearmint
root exudates, has been identified as an inducer of the
genes involved in PCB degradation in Arthrobacter sp.
strain B1B (Gilbert and Crowley, 1997). Other secondary
plant metabolites, such as p-cymene, limonene, and the
non-aromatic compound isoprene, can also induce the
PCB-degradation pathway in Arthrobacter. Although the
specific role of flavonoids as inducers of the degradation
of organic pollutants has not been well established, it is
known that several flavonoids sustain the growth of PCB
degraders. Donnelly and colleagues (1994) reported the
growth of Ralstonia eutropha H850 on 11 different fla-
vonoids; Burkholderia cepacia LB400 on maclurin and
myricetin; and Corynebacterium sp. MB1 on naringin,
catechin, coumarin, myricetin, and p-coumarin among
others. Most of these compounds also fostered the deg-
radation of several PCB congeners. The degradation of
flavonoids by rhizospheric bacteria leads to the formation
of intermediates, including resorcinol, phloroglucinol phe-
nylacetic acid, substituted cinnamic acids and protocat-
echuic acid (Pillai and Swarup, 2002; Shaw et al., 2006;
Fig. 2B). These compounds are likely to be mineralized
through the b-ketoadipate pathway (Parke et al., 2000),
which is active in the catabolism of several aromatic
contaminants. Protocatechuate is an intermediate in the

*

+   -
Light Emission

Fig. 1. Light emission of a luxAB-tagged P. putida KT2440
derivative (P. putida strain S1B1) colonizing the root system of
Zea mays. A sterile maize seed (*) was coated with mid-log
phase grown cells of this strain and germinated in vermiculite.
Bioluminescence in the root system of the developing maize plant
was detected 15 days after planting by photon counting using a
CCD camera. Dark-field-exposure (30 s) was processed with Adobe
Photoshop software. The relative intensity of light emission is
indicated by the colour scale.
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degradation of polycyclic aromatic hydrocarbons (PAHs)
in some microorganisms (Kim et al., 2008). Salycilate,
which induces systemic acquired resistance in plants, is a
good inducer of the PAH-degradation pathways (Sham-
suzzaman and Barnsley, 1974; Chen and Aitken, 1999).
Non-aromatic plant compounds, such as linoleic acid,
have also been shown to be responsible of the stimulation
of pyrene and benzo[a]pyrene degradation by Gram posi-
tive bacteria (Yi and Crowley, 2007).

Although there are several reports about enhanced
PAH degradation by rhizobacteria (Aprill and Sims, 1990;
Miya and Firestone, 2001, Rentz et al., 2004) reported
that the phenanthrene-degrading activity of P. putida
ATCC 17484 was repressed after incubation with root

extracts from six different plants. Catabolite repression
was the most probable cause for this repression; analysis
of the root extracts indicated a minor proportion of phe-
nolic compounds relative to other easily degradable sub-
strates (acetate, amino acids and glucose). The apparent
discrepancies between the enhanced PAH biodegrada-
tion in the rhizosphere and the inhibition of PAH degrading
activity by root exudates can be explained because the
rhizosphere can sustain greater numbers of degradative
strains than bulk soil.

These data have led to the conclusion that for the
efficient biodegradation of contaminants, the correct plant–
microbe pairs must be selected, because the interactions
between them are more specific than previously thought.
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Fig. 2. A. Structural similarities among contaminants and plant products (in grey boxes).
B. The chemical structures of several intermediates in the degradation of aromatic compounds in plants and the inducers of
contaminant-degradation pathways in bacteria.
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Improving rhizoremediation

Although the biodegradative abilities of the bacteria, and
the expression and maintenance of bacterial genes in the
rhizosphere are extremely important for the effective
removal of contaminants in phytorhizoremediation,
several other aspects can improve the effectiveness of
the process.

The selection of the best plant–bacteria combination

As mentioned previously, the root exudate composition
changes with the developmental stage of the plant and
depends on plant species; these variations obviously
exert different effects on the rhizospheric community
(Smalla et al., 2001; Berg et al., 2002; Garbeva et al.,
2004). Salix sp. plants are used in many phytorhizoreme-
diation experiments because they produce salicylic acid
and related compounds that induce the degradation of
PAHs and PCBs (de Cárcer et al., 2007). Flavonoids are
produced by plants as a defence mechanism against
pathogens. However, plants with a higher content of fla-
vonoids will be efficiently colonized by tolerant bacteria
(Palumbo et al., 1998). The root exudate composition will
also favour proliferation of bacteria that will degrade them
efficiently. Pseudomonas putida PML2 can grow using
plant flavonoids (it is also a PCB degrader) and it has
been demonstrated that it colonizes the rhizosphere of
wild-type Arabidopsis thaliana (or a mutant that overpro-
duces flavonoids) better than the rhizosphere of a mutant
that does not produce flavonoids (Narasimhan et al.,
2003).

It is also known that the quantity and quality of the root
exudates varies with stress. Nutrient or water stress
induced an increase in root hair density, while phospho-
rous deficiency increased the release of exudates due to
a reduction in the integrity of the membranes. These
stresses, in turn, lead to an increase in the number of
bacteria in the rhizosphere (Chaudhry et al., 2005). The
presence of contaminants in soils represents a stress for
the plant and it could enhance the contaminant biodegra-
dation. Root exudates can also increase the bioavailability
of some contaminants. However, contaminants can also
reduce biodegradation if they affect the growth of the
roots. Therefore, bacteria with the capacity to promote
growth (plant growth-promoting rhizobacteria) are receiv-
ing increased attention by the rhizoremediation field. This
field has recently been reviewed by Arshad and col-
leagues (2007) and Zhuang and colleagues (2007) and so
we will address the reader to these reviews for more
information.

Rhizospheric communities also change the plant envi-
ronment, i.e. the microbial degradation of contaminants
provides a clean environment by decreasing the pollut-
ant concentration in the area near the roots favouring

plant growth and site restoration. The presence of patho-
gens in the soil induces the plant defence response and
increases the number of phenolic compounds in the
rhizosphere.

Siciliano and colleagues (2002) demonstrated that the
presence of the alkane monooxygenase genes were
more prevalent in endophytic and rhizospheric microbial
communities than in bacteria present in bulk soil contami-
nated with hydrocarbons. However, the results obtained
when they studied the prevalence of the xylene monooxy-
genase or naphthalene dioxygenase genes were the
opposite; their presence was higher in bulk soil microbial
communities than those near or inside the plant. This
suggested that rhizospheric effects on the bacterial com-
munity also depend on the contaminant and led to the
hypothesis that the effectiveness of rhizoremediation
strategies correlates with the selection of the best plant–
bacterium pair in each specific case (Siciliano et al.,
2003).

Rhizospheric bacteria can be better equipped to colo-
nize the rhizosphere and are the best option for degrada-
tion. Shim and colleagues (2000) introduced the toluene
o-monooxygenase genes (TOM) from B. cepacia G4 into
several bacteria isolated from the poplar rhizosphere. The
authors showed that when they introduced recombinant
strains to coat poplar tree roots in non-sterile soil, recom-
binants that were derived from the plant rhizosphere were
able to thrive, while non-rhizospheric recombinant strains
were not maintained in the rhizosphere. These strains
were also able to express the TOM and degrade trichlo-
roethylene (TCE).

Endophytic bacteria

Because of the complex plant–rhizobacteria interactions,
the use of endophytic bacteria for biodegradation has
been extensively explored in the last years (reviewed by
Doty, 2008; Ryan et al., 2008). Endophytic bacteria that
colonize the internal tissues of the plant without causing a
negative effect (Schulz and Boyle, 2006) have less com-
petition for nutrients and are physically protected from
adverse changes in the environment (Reinhold-Hurek and
Hurek, 1998). However, successful remediation by endo-
phytic bacteria requires the transport of the contaminant
to the plants’ internal tissues. Contaminant transport and
its distribution in plants have been reported to depend on
soil and plant properties and on the physicochemical
properties of the contaminants (Sung et al., 2001), a
priori, it is clear that not all pollutants will be efficiently
transported to the root interior. Xenobiotics with a logKow

(octanol/water partition coefficient) higher than 3.5 are
likely to be absorbed by the root surface; however, plants
can take up compounds with a logKow between 0.5 and
3.5 (Briggs et al., 1982).
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Several delivery methods for introducing endophytic
bacteria into plants have been reported, including seed
inoculation, soil drench, foliar spray and pruned-root dip;
however, the method of choice will largely depend on the
specific plant–endophyte pair to be used (Bressan and
Borges, 2004; Rosenblueth and Martínez-Romero, 2006).

Pseudomonaceae, Burkholderiaceae and Enterobacte-
riaceae are among the most common cultivatable endo-
phytic species isolated from a wide variety of hosts,
including woody trees, herbaceous crops and grass
species (Lodewyckx et al., 2002). Although the biodegra-
dative capacity of the endophytic bacteria has not been
extensively investigated, reports on the ability of several
endophytic bacteria to degrade some pollutants (i.e.
explosives, herbicides or hydrocarbons) have been pub-
lished (Van Aken et al., 2004; Germaine et al., 2006; Phil-
lips et al., 2008). Also, endophytic bacteria resistant to
high concentrations of heavy metals, BTEX (benzene,
toluene, ethyl-benzene and xylenes), TCE or PAHs have
been identified (Moore et al., 2006; Doty, 2008). As men-
tioned above, Siciliano and colleagues (2002) demon-
strated that some plants can accumulate bacterial
endophytic genotypes for the degradation of contami-
nants. In any case, the advantages of using rhizobacteria
or endophytic bacteria will depend on the type of contami-
nant and the degradation abilities of each type of bacteria.

Seed colonization

One of the least expensive techniques that can be used to
introduce microorganisms into soil is to cover the seeds
with the appropriate bacteria. Similarly, the introduction of
endophytes can be done following similar procedures. For
this, microbes need to adhere well to the seeds (Colleran,
1997). Adhesion to seeds has been studied using classi-
cal counts of viable cells, and more recently by taking
advantage of reporter genes, such as the gfp or lux
genes. These assays are frequently coupled to micros-
copy techniques in order to facilitate the identification of
target microbes. Scanning electron microscopy has also
been used to track bacteria adhered to seeds. The
mechanisms for the attachment of bacteria to seeds seem
to be common for most biotic surfaces, including roots,
and have been discussed above (i.e. flagellar and chemo-
taxis proteins) (Yaryura et al., 2008). One of the most
original approaches for studying the adhesion of bacteria
to seeds was developed by Espinosa-Urgel and col-
leagues (2000) who designed a strategy based on the
selection of mutants unable to adhere to seeds. To this
end, the model microorganism P. putida KT2440 was
mutagenized randomly with mini-Tn5. The pool of KmR

mutants was mixed with corn seeds placed in a syringe.
Following incubation, the seeds were washed to remove
bacteria that failed to adhere or which adhered loosely. By

repeating the process, the authors ended up with a
number of ‘enriched’ mutants with limited adherence to
seeds. Some of the mutants were defective in the attach-
ment to abiotic and biotic surfaces, while others were only
defective in attaching to biotic surfaces, suggesting that
biofilm formation proceeds through two different mecha-
nisms depending on whether the surface can be a source
of nutrients or not (Watnick et al., 1999). Motility and
chemotaxis proteins were not detected during this screen,
probably because under the conditions used (shaking) the
bacteria do not need to move towards the seeds. In this
work, as in others before, several outer membrane pro-
teins were shown to be involved in seed adhesion (Smit
et al., 1992; Dörr et al., 1998; Yousef-Coronado et al.,
2008) and this is in agreement with the fact that outer
surfaces are the first contact point between a bacterium
and the seed.

Production of biosurfactants

A problem for soil bioremediation is the bioavailability of
the pollutant. Most organic contaminants are highly hydro-
phobic compounds that dissolve poorly in water and many
can form complexes with soil particles. This lack of bio-
availability often lowers removal efficiencies (Johnsen
et al., 2005). Bacteria use different strategies to promote
the bioavailability of hydrophobic compounds (i.e. PAHs),
including the excretion of biosurfactants, the production of
extracellular polymeric substances and the formation of
biofilms on PAH crystals. Biosurfactants are amphiphilic
molecules that form spherical or lamellar micelles when
the surfactant concentration exceeds a critical micelle
concentration that is specific for each compound. Hydro-
phobic contaminants become solubilized in the hydropho-
bic cores of the micelles, which increases the transfer of
the compounds from a solid to water phase where it
becomes more accessible to bacteria. One important
group of bacterial biosurfactants are the glycolipids of
which rhamnolipids are the major representative. It has
been shown that rhamnolipids are able to enhance the
biodegradation rate of contaminants (Zhang and Miller,
1994; Providenti et al., 1995; Shreve et al., 1995; Mulli-
gan, 2005; Cui et al., 2008). Kuiper and colleagues
(2004a) isolated a P. putida strain from plant roots at a site
polluted with PAHs that produce two lipopeptide bio-
surfactants. These lipopeptides (named putisolvins)
increased the formation of emulsions with toluene.
Searching for rhizobacteria that promote the bioavailabil-
ity of contaminants is therefore of great interest in the
context of bioremediation. This property is also of interest
because a number of biodegradative microbes exhibit
positive chemotaxis towards the pollutants (Parales and
Haddock, 2004). Therefore, the combined action of the
biosurfactant and chemotaxis may contribute to bacterial
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proliferation and microbial spread in polluted soils, leading
to the clearing of more ample zones.

Engineering bacteria for rhizoremediation

The genetic modification of bacteria to improve bioreme-
diation capacity is a classical approach. Reports about the
introduction of catabolic genes into different bacteria, the
construction of ‘hybrid pathways’, and promoter modifica-
tions to increase the expression of genes of interest, are
numerous in the literature (see i.e. Ramos et al., 1994).
The construction of recombinant strains able to combine
different traits, such as the degradation of contaminants
together with the production of biosurfactants, good colo-
nization abilities and the capacity to promote plant growth,
are still desirable.

Barac and colleagues (2004) showed improved toluene
phytoremediation using engineered endophytic bacteria.
The authors transferred the pTOM plasmid, which
encodes the toluene degradation genes, via conjugation
from B. cepacia G4 to B. cepacia L.S.2.4, a natural endo-
phyte of yellow lupine. Although the recombinant strain
was not maintained in the endophytic community, there
was a horizontal gene transfer of the tom (toluene
monooxygenase) operon to different members of the
endogenous endophytic community (Taghavi et al.,
2005), demonstrating new avenues for introducing desir-
able traits into the community.

Still, the release of recombinant organisms in the field is
restricted in many countries and these legal limitations,
together with some well sustained scientific concerns,
may limit the development of this field.

Rhizoremediation studies

One of the classical papers in the field of ‘natural’ rhizore-
mediation is a report by Radwan and colleagues (1995)
showing that plants growing in sand contaminated by oil
spills after the Gulf War exhibited clean roots due to the
removal of aromatic hydrocarbons by microorganisms.
Although there are many reports about rhizoremediation
experiments under laboratory conditions (reviewed by
Zhuang et al., 2007), there are fewer examples in the
scientific literature detailing the successful removal of pol-
lutants from contaminated soils in ‘real’ scenarios via the
concept of ‘designed’ rhizoremediation.

A comprehensive number of rhizoremediation experi-
ments have been previously listed in several reviews
(Kuiper et al., 2004b; Chaudhry et al., 2005; Zhuang
et al., 2007), so we will only present a few examples that
have not been included in these reports and in which
different experimental approaches have been used.

Hexachlorocyclohexane is a highly persistent pollut-
ant; its g-isomer (lindane) has frequently been used as

pesticide and is widespread throughout the biosphere.
Although Sphingomonas UT26 is a well-characterized
lindane-degrading bacterium, it was not able to prolifer-
ate in soil, probably due to its high sensitivity to the low
water content in the soil. Böltner and colleagues (2008)
set up a double enrichment approach (Kuiper et al.,
2001) in which both lindane degradation and root pro-
liferation of bacteria were prerequisites for selection.
This yielded Sphingomonas strains that were now able
to proliferate in the plant root. Greenhouse assays
revealed that up to 30% of lindane in soil can be
removed in a 3-month period.

In the case of TNT removal, over 90% of TNT in the soil
could be removed in field experiments through the com-
bined action of phytoremediation and rhizoremediation. In
these assays, phytoremediation proved more efficient
than rhizoremediation, but bacteria played a key role in
the establishment of plants at the polluted site (van
Dillewijn et al., 2007).

Although several PCB degraders have been identified,
PCB degradation is inefficient (Donnelly et al., 1994).
One of the best inducers of PCB degradation is biphe-
nyl, which obviously cannot be used as a soil amend-
ment to promote PCB elimination. Several attempts to
promote PCBs rhizoremediation via the introduction of
the bph genes under the control of different promoters in
P. fluorescens F113 (a strain with good colonization abili-
ties) have had limited success (Brazil et al., 1995; Villa-
cieros et al., 2005). In a different approach, Narasimhan
and colleagues (2003) used the ability of P. putida PML2
to degrade phenylpropanoid compounds to promote
PCB degradation. In Arabidopsis thaliana, 37% of root
exudates were flavonoids and most of these were phe-
nylpropanoids. They showed that a wild-type strain P.
putida PML2 was able to establish in the rhizosphere of
Arabidopsis plants better that an auxotrophic mutant
that was unable to use phenylpropanoids for growth.
Although both mutant and wild-type strains presented
similar growth on different PCBs in liquid cultures, PCB
elimination was higher when the parental strain was
introduced in gnotobiotic systems with Arabidopsis, than
when the mutant was used. Polychlorinated biphenyl
elimination was inferior if an Arabidopsis mutant unable
to produce phenylpropanoids was used. These experi-
ments showed that rhizoengineering, the modification of
microbial populations in the plant roots for biotechnologi-
cal purposes, is a valuable option to enhance contami-
nant degradation.

Engineering proteins to be expressed at the surface of
the microbial cell is another promising strategy for pollut-
ant removal, especially for the removal of heavy metals.
This strategy has recently been reviewed by Saleem and
colleagues (2008) and we refer the reader to this review
for more information.
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Future prospects

Further studies on improving the expression of catabolic
genes in the rhizosphere and in the selection of the best
plant–microbe combinations will have to be translated
into field strategies that can demonstrate the usefulness
of this approach. The utilization of endophytes in the bio-
degradation of pollutants is an emerging field that has
not been widely explored. Advances in this field will have
to be followed by better knowledge about the absorption
and transport of the toxic chemical by plants. However,
this can pose a problem if the compound is then trans-
located to the shoot where it can become available to
animals. The fate of contaminants should be extensively
studied during phytoremediation processes to avoid
undesired effects if field tests are performed. Exploring
the molecular communication between plants and
microbes, and exploiting this communication to achieve
better results in the elimination of contaminants, is a fas-
cinating area of research. These studies may reveal the
mechanisms underlying microbe–plant interactions and
we predict that this approach will now be adopted to
study the induction of catabolic pathways in polluted
soils undergoing rhizoremediation. The new ‘-omics’
techniques will also allow the monitoring or selection of
catabolic genes to improve remediation strategies (Kiely
et al., 2006). The improvement of metagenomic analysis
will probably reveal new degradative capacities (genes)
that will be worth introducing into strains with other inter-
esting traits (i.e. good root colonization abilities). The
signals that plant and microbes exchange when they
recognize each other will have to be interpreted and the
molecular basis of the specific interactions between
certain plant genotypes with specific bacteria will need
to be dissected. Information that can be derived from
these studies may provide further insights on how to
design a successful rhizoremediation strategy.

Finally, more studies about the impact of using recom-
binant microorganisms over indigenous microbial commu-
nities are needed to meet with safety requirements,
especially with the increasing need for recombinant
microbes to deal with highly toxic chemicals, such as
dioxins and PCBs.
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