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ABSTRACT
Allergic rhinitis (AR) is a common allergic disease characterized by disruption of
nasal epithelial barrier. In this study, we investigated the mRNA expression of zonula
occludens-1 (ZO-1), ZO-2 and ZO-3 and histone deacetylase 1 (HDAC1) and HDAC2
in AR patients compared to healthy controls. RNA samples were extracted from
nasal epithelial cells of house dust mites (HDMs)-sensitized AR patients and healthy
controls (n = 28 in each group). The RNAs were reverse transcribed into cDNAs
for measurement of ZO-1, ZO-2, ZO-3, HDAC1 and HDAC2 expression levels by
quantitative PCR. The mRNA expression of ZO-1 was significantly decreased in AR
patients compared to healthy controls (p = 0.010). No significant difference was
observed in the expression levels of ZO-2, ZO-3, HDAC1 and HDAC2 in AR patients
compared to healthy controls. We found significant associations of higher HDAC2
levels inARpatientswith lower frequency of changing bedsheet (p= 0.043) andwithAR
patients sensitized toDermatophagoides farinae (p= 0.041). Higher expression of ZO-2
was observed in AR patients who had pets (p= 0.007). In conclusion, our data indicated
that ZO-1 expression was lower in AR patients contributing to decreased integrity of
nasal epithelial barrier integrity, and HDAC2 may be involved in the pathogenesis of
the disease.

Subjects Biochemistry, Cell Biology, Molecular Biology
Keywords Allergic rhinitis, Zonula occludens, Histone deacetylase, House dust mites, ZO-1,
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INTRODUCTION
Allergic rhinitis (AR) is an IgE-mediated inflammation disorder of the nasal mucosa
caused by infiltration of allergens (Varshney & Varshney, 2015). This leads to imbalanced
immunological reaction resulting in clinical manifestations of the disease including
sneezing, nasal obstruction, nasal pruritus, rhinorrhoea or conjunctivitis (Sin & Togias,
2011; Wheatley & Togias, 2015; Brozek et al., 2017; Siti Sarah et al., 2020). AR is a common
disease affecting 10% to 30% of adults and up to 40% of children (Mims, 2014). AR is
classified into four groups based on the Allergic Rhinitis and its Impact on Asthma (ARIA)
guidelines, which are mild intermittent, mild persistent, moderate-severe intermittent and
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moderate-severe persistent (Klimek et al., 2019). Exposure to allergens such as grass, tree
pollen, house dust mites (HDMs), animal dander, foods, insect venoms and medicines
induce the production of IgE that subsequently triggers allergic reaction (Galli, Tsai &
Piliponsky, 2008;Ong & Chew, 2009; Yang et al., 2018; Fassio & Guagnini, 2018;Wang et al.,
2018b). HDMs and pollen allergens have protease activity that contribute to the disruption
of nasal epithelial barrier (Wan et al., 1999; Roche et al., 2000; Okano, 2009; Matsumura,
2012). The decreased of epithelial barrier integrity will result in an increased in allergen
invasion and contribute to the pathogenesis of AR (Steelant et al., 2016;Wang et al., 2020a;
Wang et al., 2020b). Thus, the decrease of ZO-1 level is responsible for symptoms of AR.
Pollen-derived proteases have been shown to degrade occludin, and facilitate the allergen
delivery through epithelia by disrupting the epithelial tight junction (TJ) components
(Matsumura, 2012). Dermatophagoides pteronyssinus (D. pteronyssinus) delivers cysteine
proteases that increases the epithelial permeability by disrupting claudin-1, occludin and
ZO-1 molecules (Baker et al., 2003;Matsumura, 2012; Henriquez et al., 2013).

Nasal airways are exposed to the environmental allergens caused by the breakdown
of the nasal epithelial barrier that blocks the passage to allergens. The gap between the
epithelial cells are closed by TJ molecules and form a complex structure to protect the
body from infiltration of external allergens (Beutel et al., 2019). TJ molecules consist of
transmembrane proteins (e.g., occludin, claudins and tricellulin) and junctional adhesion
molecules (Steelant et al., 2016; Heinemann & Schuetz, 2019). The scaffold adaptor protein
zonula occludens (ZO) forms a TJ assembly attached to actin cytoskeleton and TJmolecules
(Beutel et al., 2019). ZO proteins are expressed in epithelial cells throughout the airway
where they remain localized to the cell borders (Smith, Koval & Levy, 2020).

ZOproteins are from theMAGUK familymembers including ZO-1, ZO-2 andZO-3, and
they are crucial in maintaining the epithelial barrier integrity (Itoh et al., 1999; Chelakkot,
Ghim & Ryu, 2018). Decreased expression of ZO-1 occur in the nasal epithelium cells of
AR patients (Lee et al., 2016). ZO-1 and ZO-2 expression were also reduced in patients
with chronic rhinosinusitis (CRS) without nasal polyps (Soyka et al., 2012). Defects of these
ZO proteins may contribute to the opening of the gap between epithelium cells and the
dysfunction of nasal epithelial barrier.

Histone deacetylase (HDAC) is a group of enzymes that can repress the transcription
of gene through deacetylation of histone molecules. HDAC acts by removing an acetyl
group from lysine on histones (Jiang et al., 2015). HDACs regulate expression of genes
involved inmultiple cellular activities including inflammatory responses leading to allergies
(Bhavsar, Ahmad & Adcock, 2008; Barnes, 2013). A study using a mouse model with AR
fed with HDAC inhibitor (HDACi) sodium butyrate (NaB), showed positive effects to
treat AR by decreasing the expression of HDAC1 and HDAC8 (Wang et al., 2020a; Wang
et al., 2020b). Higher expression of HDAC1 can cause further defects of ZOs expression
(Lei et al., 2010; Zhou et al., 2015). HDAC1 has been found to suppress Trek1 and the
exposure to the signature T helper 2 (Th2) cytokine, interleukin (IL)-4, upregulated the
expression of HDAC1 resulting in significantly suppressed expression of Trek1 in the
nasal mucosa (Jiang et al., 2015). These findings highlighted the importance of HDAC1 as
a central player in the mechanism regulating the outcome of epithelial barrier function,
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and HDAC1 is a potential target for inhibition to ameliorate nasal epithelial barrier
dysfunction for better outcome in AR. HDAC1 inhibition had been shown to increase the
TJ expression while decreasing epithelial barrier integrity defects (Wawrzyniak et al., 2017).
ZO-1 mRNA expression level was found to be lower in AML-12 murine hepatocyte cells
with the presence of overexpressed HDAC1 (Lei et al., 2010). HDAC2 inhibited claudin-1
expression in malignant epithelial cells (Krishnan et al., 2010) and HDACs are known to
suppress TJs expression in other disease contexts (Sin & Togias, 2011; Brozek et al., 2017).
Human lens epithelial cells treated with Trichostatin-A (TSA), a HDACi decreased HDAC2
and increased the mRNA expression of ZO-1 (Ganatra et al., 2018). In addition, treatment
of NCM460 cells with CAY 10683, a HDAC2 inhibitor increased ZO-1 mRNA and protein
levels (Wang et al., 2018a).

Past studies have focused on the association of ZO-1 and HDAC1 gene expressions
in moderate/severe HDM-induced AR patients; these HDMs include Dermatophagoides
farinae (D. farinae), D. pteronyssinus and Blomia tropicalis (B. tropicalis), which are the
most common aeroallergens affecting AR population inMalaysia (Mohd Ashari et al., 2014;
Lim et al., 2015; Azid et al., 2019; Sani et al., 2019; Nur Husna et al., 2021). There is lack of
literature in association of ZO-2, ZO-3 andHDAC2 inmoderate /severe HDM-induced AR
patients. Moreover, data associating ZO and HDAC to environmental or lifestyle factors
such as having pets remain scarce.

Our gene expression studies and their associations with clinico-demographical and
environmental parameters in AR patients are divided into two parts. The first part of this
study focused on ZO proteins and HDACs, while the second part focused on occludin,
claudins and desmogleins. In this study, we aimed to investigate the mRNA expression of
ZOs (ZO-1, ZO-2 and ZO-3) and HDACs (HDAC1 andHDAC2) in AR patients compared
to healthy controls in subjects recruited from Hospital Universiti Sains Malaysia, Kelantan,
Malaysia. The associations of the expression levels of ZOs and HDACs with the clinico-
demographical parameters of AR patients and healthy controls, as well as patients’ lifestyle
were measured.

MATERIALS & METHODS
Subjects recruitment
Participants were recruited from Otorhinolaryngology-Head & Neck Surgery (ORL-HNS)
clinic, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan, Malaysia. A total of 28
moderate-severe persistent and intermittent AR patients were recruited, and classification
of AR patients was based on the ARIA guidelines (Klimek et al., 2019). Healthy control
subjects (n= 28) were volunteers and they were staffs or students within the Health
Campus, USM. Only adults of 18 years and above were chosen to participate in this
study, and they were legally competent to fill in the written consent. The Human Research
Ethics Committee of Universiti Sains Malaysia (JEPeM) authorized the study’s protocols
(approved ethics code: USM/JEPeM/18060273).

Sample sizewas calculated according to the difference ofmeans between two independent
groups using the software Power and Sample Size (PS) version 3.1.9.3 (Vanderbilt
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University, Nashville, Tennessee, USA; 2011) based on previous qPCR studies of nasal
mucosa tissue samples (Kamekura et al., 2009; Steelant et al., 2016; Steelant et al., 2018;
Zhao et al., 2018). A two-tailed hypothesis with 0.05 α-error probability, 0.8 power (1-β
error probability), 0.75 effect size, one allocation ratio (N2/N1) and 5% dropout rate. This
resulted in a total sample size of 56 subjects divided evenly between AR patients and healthy
controls groups (n= 28 in each group).

During the recruitment process, all participants were given detailed information about
the study. The written consents were obtained from the participants for the investigators to
proceed with the recruitment, performing SPT, taking participants’ nasal epithelial samples
via nasal brushing for experiments and publish the results. All samples were labelled
anonymously, and handling of all data was conducted anonymously where none of the
participant’s private information such as name was disclosed. All experimental procedures
were carried out in accordance with the institutional guidelines and regulations.

Allergen Skin Prick Test (SPT)
Allergen SPT was performed to the subjects prior to collection of nasal epithelial cells
samples. Saline was used as the negative control, histamine as the positive control and
allergen extracts were applied to the skin. Allergen extracts consisted of three types of
HDMs i.e., D. pteronyssinus, D. farinae and B. tropicalis. Sterile lancets (ALK-Abelló A/S,
Hørsholm, Denmark) were used to prick the skin gently through the drops of allergen. The
reactions were observed after 15 to 30 min. The formation of wheal indicated the presence
of antibodies against the allergen. Patients with wheal size of ≥4 mm for HDM allergens
and not for saline were considered positive for sensitization and they were recruited to
participate in this study. Healthy controls were recruited if they did not show any reaction
towards all the allergen extracts.

Collection of Nasal Epithelial Cells (NECs)
Cytology brush was used to collect nasal epithelial cells by brushing softly the surface of
nasal inferior turbinate. Inferior turbinate tissue biopsy is an alternative method for the
collection of nasal epithelium and detection of allergen-specific IgE, however tissue biopsy
methodology is invasive and it has recently been shown that nasal mucosal brushing is
comparable with inferior turbinate tissue biopsy for the diagnosis of local AR (Hamizan
et al., 2019). In addition, multiple independent studies have adopted nasal brushing
method for the collection of nasal epithelium for gene expression analysis in AR patients
(Giovannini-Chami et al., 2012; Imoto et al., 2013). The brush was wet with sterile isotonic
solution before using on each nostril, for patients and control subjects. The brush was
rubbed a few times rapidly against the medial and superior side of the inferior nasal
meatus. The brush was immediately placed into a centrifuge tube filled with 350 µl RLT
buffer solution (QIAGEN, Hilden, Germany) to preserve the RNA quality. The tube was
kept in −80◦ before RNA extraction.

RNA extraction
Total RNA was extracted using RNeasy R© Mini Kit (QIAGEN). Cells from nasal brushings
in RLT buffer were pelleted by centrifugation (8,300 rpm, 5 min). One volume of 70%
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Table 1 List of SYBR green primers used for qPCR.

Target
gene

Accession
number

Forward primer (5′-3′) Reverse primer (5′-3′) Amplicon
size (bp)

Primer spans
exon junction

ZO-1 NM_003257.4 TAAAGAGAAAGGTGAAACACTGCTG ATCACAGTGTGGTAAGCGCA 100 Yes-Forward
ZO-2 NM_004817.4 GCTGCTCCAAGAAAATGACAGA GGGGCCTCTTGACCACAATA 128 Yes-Forward
ZO-3 NM_001267560.2 GAGGAGAGACAGCGAAGAGTT GTGTCGTTCAGTGACAGGTTC 162 Yes-Forward
HDAC1 NM_004964.3 CTACGACGGGGATGTTGGAA CAGCATTGGCTTTGTGAGGG 143 Yes-Forward
HDAC2 NM_001527.4 TGCTACTACTACGACGGTGA TGTCATTTCTTCGGCAGTGG 162 Yes-Forward
GAPDH NM_002046.7 TCGGAGTCAACGGATTTGGT TTCCCGTTCTCAGCCTTGAC 181 Yes-Forward

ethanol was added to the lysate and transferred to an RNeasy Mini spin column placed in
a 2 ml collection tube. After the centrifugation, buffer RW1 was added to the column. The
extraction was further continued with DNA digestion by adding DNase I stock solution
mixed with Buffer RDD from RNase-Free DNase Set. The RW1 washing buffer was added
to the column and ethanol was added again to increase the purity of the RNA yield. To
improve the quality of the RNAs, two times of RPE washing buffer were added to the
column. After centrifugation, the spin column was transferred to new collection tube
and then spun once more to remove excess solution. Lastly, RNeasy spin column was
placed into new collection tube and 40 µl RNase-free water was added to elute RNA.
RNA quantity and quality were measured using EpochTM Microplate spectrophotometer
(EpochTM, Biotek, USA).

cDNA synthesis
RNA samples were reverse-transcribed to cDNA using iScriptTM Reverse Transcription
Supermix for RT-qPCR (Bio-Rad, Philadelphia, PA, USA). The RNA samples were
synthesized to cDNA using the thermocycler GeneAmp R© PCR System 9700 (Applied
Biosystems, Waltham, USA). The PCR condition was set up at 25 ◦C for 5 min at priming,
46 ◦C for 20 min at reverse transcription and RT inactivation for 1 min at 95 ◦C for
1 cycle. The synthesized cDNA samples were measured using EpochTM Microplate
spectrophotometer.

Quantitative PCR (qPCR)
The cDNA samples were diluted 1:5 as template for qPCR conducted using the iTaQ
Universal SYBR Green Super Mix (Bio-Rad, Philadelphia, PA, USA) and designed primers
(ZO-1, ZO-2, ZO-3, HDAC1 and HDAC2) using Mx3005p qPCR thermal cycler (Agilent
Technologies, Santa Clara, CA, USA). The primers (Integrated DNA Technologies,
Singapore) were designed using NCBI Primer-BLAST (Table 1). Each reaction was
performed in triplicate with 1 cycle of DNA denaturation step at 95 ◦C for 25 s, 40
cycles of amplification at 95 ◦C for 5 min, and extension step at 60 ◦C for 25 s. The results
were calculated using the 2−11Ct method and normalized to the control gene GAPDH.

Statistical analysis
All results were analyzed using Mann–Whitney U test in GraphPad Prism v6 (GraphPad
Software, La Jolla, CA, USA). Shapiro–Wilk normality test was used to determine whether
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the data was normally distributed. Associations of the gene expression (median cut-off)
with clinico-demographical and environmental parameters were examined using the
χ2-test or Fisher’s exact test as appropriate. Median is a better measure of central tendency
than mean as it is less affected by the influence of skewed data and outliers, hence median
cut-off was chosen to analyze the associations between the gene expression and the
clinico-demographical and environmental parameters. For all analysis, two-tailed p-values
<0.05 were considered as statistically significant.

RESULTS
Characteristics of the recruited subjects
The demographic data of the subjects are shown in Table 2. A total of 56 subjects (28
healthy controls and 28 moderate-severe AR patients) were enrolled in this study. Of the
28 healthy controls, nine were male (32.1%) and 19 were female (67.9%). The number
of participants with persistent AR was higher than intermittent AR [n= 21 (75%) versus
n= 7 (25%)]. Themost commonly reported comorbidities bymoderate-severe AR patients
were sinusitis (n= 26; 92.9%), and conjunctivitis (n= 21; 75%). Other comorbidities
include pharyngitis (n= 15; 53.6%), asthma (n= 11; 39.3%), otitis media (n= 5; 17.9%)
and lymphoid hypertrophy or obstructive sleep apnea (n= 2; 7.14%). The number of
participants exposed to secondhand cigarette smoke was higher in moderate-severe AR
patients (n= 19; 67.9%) than in healthy controls (n= 13; 49.4%). There was no difference
in home location (urban or rural) or living in an industrial area between healthy controls
and moderate-severe AR patients.

Expression profile of ZOs and HDACs in AR patients compared to
healthy controls
To address potential role of TJ molecules in maintaining the epithelial barrier integrity,
ZO-1, ZO-2, ZO-3, HDAC1 and HDAC2 mRNA expression were measured in NECs
of AR patients and healthy controls. Shapiro–Wilk normality test showed that the data
were not normally distributed. Thus, Mann–Whitney U test was used. ZO-1 expression
was significantly lower in AR patients (p= 0.010) compared to controls (Fig. 1A). No
difference was found in the expression of ZO-2 (p= 0.868) and ZO-3 (p= 0.351) in AR
patients compared to controls (Figs. 1B and 1C).

In terms of HDACs expression, no significant difference in the expression of HDAC1
(p= 0.748) andHDAC2 (p= 0.693) in AR patients compared to healthy controls (Figs. 1D
and 1E).

Association of ZOs and HDACs expression with demographical and
clinical parameters of AR patients and healthy controls
The expression of each gene (median cut-off) was examined in terms of their association
with demographical parameters of AR patients and healthy controls. Higher HDAC2
expression was significantly associated with lower frequency of changing bedsheet
(p= 0.043) (Table 3) and sensitization to HDM (D. farinae) (n= 14/23; p= 0.041)
(Table 4) in patients with AR. There was no significant differences between gender, age,
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Table 2 Characteristics of the healthy controls and HDM-sensitized AR patients.

Characteristics Healthy controls
(n= 28)

Moderate-severe AR
(n= 28)

Mean age (years)± SD 30.82± 7.9 30.07± 8.9
Gender

Male 9 (32.1) 9 (32.1)
Female 19 (67.9) 19 (67.9)

Mean BMI (kg/m2)± SD 24.42± 4.8 26.92± 4.9
Immediate family history of allergy NA 23 (82.1)
Classification

Intermittent NA 7 (25.0)
Persistent NA 21 (75.0)

Comorbidities
Conjunctivitis NA 21 (75.0)
Pharyngitis NA 15 (53.6)
Sinusitis NA 26 (92.9)
Asthma NA 11 (39.3)
Otitis media NA 5 (17.9)
Lymphoid hypertrophy/obstructive sleep apnea NA 2 (7.14)
Speech impairment NA NA

Exposure to secondhand smoke 13 (46.4) 19 (67.9)
Home location

Rural 14 (50.0) 13 (46.4)
Urban 14 (50.0) 15 (53.6)

Living in an industrial area 3 (10.7) 1 (3.6)
Having pet 17 (60.7) 16 (57.1)
Frequency of changing bedsheet

Weekly 13 (46.4) 12 (42.9)
2-Monthly 2 (7.2) 4 (14.2)
Monthly 13 (46.4) 12 (42.9)

Frequency of performing housekeeping
Daily 13 (46.4) 10 (35.7)
Alternate day NA 7 (25.0)
Weekly 14 (50.0) 10 (35.7)
Monthly 1 (3.6) 1 (3.6)

Notes.
Abbreviations: AR, allergic rhinitis; NA, not applicable; BMI, body mass index; SD, standard deviation.

BMI, home location, having pet, frequency of changing bedsheet and doing housekeeping
with each gene expression (ZO-1, ZO-2, ZO-3, HDAC1 and HDAC2) (Table 3). Family
history of allergies, classification of persistent and intermittent AR patients, comorbidities
(conjunctivitis, pharyngitis, sinusitis, asthma, otitis media, obstructive sleep apnea) and
sensitivity to D. pteronyssinus and B. tropicalis were also not showed significant differences
with each gene expression (ZO-1, ZO-2, ZO-3, HDAC1 and HDAC2) of AR patients
(Table 4).
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Figure 1 Relative ZOs andHDACs expression of AR patients and healthy controls. (A) Relative ZO-1
expression of AR patients and healthy controls. (B) Relative ZO-2 expression of AR patients and healthy
controls. (C) Relative ZO-3 expression of AR patients and healthy controls. (D) Relative HDAC1 expres-
sion of AR patients and healthy controls. (E) Relative HDAC2 expression of AR patients and healthy con-
trols.

Full-size DOI: 10.7717/peerj.13314/fig-1

In healthy controls, ZO-2 expression was significantly higher in those with pets at
home (n= 12/17; p= 0.007) (Table 5). Other parameters (gender, age, BMI, exposure to
cigarette smoke, home location, frequency of housekeeping and changing bedding) had no
significant differences with the expression of each gene’s expression (ZO-1, ZO-2, ZO-3,
HDAC1 and HDAC2) (Table 5).
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Table 3 Association of each gene’s expression (ZO-1, ZO-2, ZO-3,HDAC1 andHDAC2) with demographical parameters of AR patients (n= 28). p< 0.05 shown in
bold.

Characteristics ZO-1 expression ZO-2 expression ZO-3 expression HDAC1 expression HDAC2 expression

<Median,
n (%)

≥Median,
n (%)

p-value <Median,
n (%)

≥Median,
n (%)

p-value <Median,
n (%)

≥Median,
n (%)

p-value <Median,
n (%)

≥Median,
n (%)

p-value <Median,
n (%)

≥Median,
n (%)

p-value

Gender

Male 6 (21) 3 (11) 5 (18) 4 (14) 3 (11) 6 (21) 5 (18) 4 (14) 3 (11) 6 (21)

Female 7 (25) 12 (43)

0.228
(F)

8 (29) 11 (39)

0.689
(F)

11 (39) 8 (29)

0.420
(F)

9 (32) 10 (36)

1.000
(F)

11 (39) 8 (29)

0.420
(F)

Age (years)

<28 5 (18) 9 (32) 7 (25) 7 (25) 5 (18) 9 (32) 5 (18) 9 (32) 5 (18) 9 (32)

≥28 8 (29) 6 (21)
0.256

6 (21) 8 (29)
0.704

9 (32) 5 (18)
0.131

9 (32) 5 (18)
0.131

9 (32) 5 (18)
0.131

BMI

<23.31 7 (25) 7 (25) 5 (18) 9 (32) 5 (18) 9 (32) 6 (21) 8 (29) 6 (21) 8 (29)

≥23.31 6 (21) 8 (29)
0.704

8 (29) 6 (21)
0.256

9 (32) 5 (18)
0.131

8 (29) 6 (21)
0.450

8 (29) 6 (21)
0.450

Exposure to second-
hand smoke

No 3 (11) 6 (21) 6 (21) 3 (11) 6 (21) 3 (11) 6 (21) 3 (11) 6 (21) 3 (11)

Yes 10 (36) 9 (32)

0.435
(F)

7 (25) 12 (43)

0.228
(F)

8 (29) 11 (39)

0.420
(F)

8 (29) 11 (39)

0.420
(F)

8 (29) 11 (39)

0.420
(F)

Home Location

Rural 7 (25) 6 (21) 8 (29) 5 (18) 8 (29) 5 (18) 6 (21) 7 (25) 7 (25) 6 (21)

Urban 6 (21) 9 (32)
0.464

5 (18) 10 (36)
0.136

6 (21) 9 (32)
0.256

8 (29) 7 (25)
0.704

7 (25) 8 (29)
0.704

Living in an industrial
area

No 12 15 13 14 14 13 14 13 14 13

Yes 1 NIL

0.464
(F)

NIL 1

1.000
(F)

NIL 1

1.000
(F)

NIL 1

1.000
(F)

NIL 1

1.000
(F)

Having pet

No 6 (21) 6 (21) 7 (25) 5 (18) 7 (25) 5 (18) 5 (18) 7 (25) 7 (25) 5 (18)

Yes 7 (25) 9 (32)
0.742

6 (21) 10 (36)
0.274

7 (25) 9 (32)
0.445

9 (32) 7 (25)
0.445

7 (25) 9 (32)
0.445

Frequency of changing
bedsheet

Weekly 7 (25) 5 (18) 4 (14) 8 (29) 6 (21) 6 (21) 6 (21) 6 (21) 9 (32) 3 (11)

2-Monthly 2 (7) 2 (7) 2 (7) 2 (7) 1 (4) 3 (11) 2 (7) 2 (7) 2 (7) 2 (7)

Monthly 4 (14) 8 (29)

0.473
(F)

7 (25) 5 (18)

0.473
(F)

7 (25) 5 (18)

0.685
(F)

6 (21) 6 (21)

1.000
(F)

3 (11) 9 (32)

0.043
(F)

Frequency of doing
housekeeping

Daily 5 (18) 6 (21) 5 (18) 6 (21) 9 (32) 2 (7) 7 (25) 4 (14) 7 (25) 4 (14)

Alternate day 2 (7) 4 (14) 4 (14) 2 (7) 2 (7) 4 (14) 2 (7) 4 (14) 3 (11) 3 (11)

Weekly 6 (21) 4 (14) 3 (11) 7 (25) 3 (11) 7 (25) 5 (18) 5 (18) 4 (14) 6 (21)

Monthly NIL 1 (4)

0.567
(F)

1 (4) NIL

0.357
(F)

NIL 1 (4)

0.052
(F)

NIL 1 (4)

0.478
(F)

NIL 1 (4)

0.528
(F)
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Table 4 Association of each gene’s expression (ZO-1, ZO-2, ZO-3,HDAC1 andHDAC2) with clinical parameters of AR patients (n= 28). p< 0.05 shown in bold.

Characteristics ZO-1 expression ZO-2 expression ZO-3 expression HDAC1 expression HDAC2 expression

<Median,
n (%)

≥Median,
n (%)

p-value <Median,
n (%)

≥Median,
n (%)

p-value <Median,
n (%)

≥Median,
n (%)

p-value <Median,
n (%)

≥Median,
n (%)

p-value <Median,
n (%)

≥Median,
n (%)

p-value

Immediate family history of allergy

No 2 3 2 3 2 3 3 (11) 2 (7) 4 (14) 1 (4)

Yes 11 12

1.000
(F)

11 12

1.000
(F)

12 11

1.000
(F)

11 (39) 12 (43)

1.000
(F)

10 (36) 13 (46)

0.326
(F)

Classification

Intermittent 4 (14) 3 (11) 2 (7) 5 (18) 3 (11) 4 (14) 4 (14) 3 (11) 3 (11) 4 (14)

Persistent 9 (32) 12 (43)

0.670
(F)

11 (39) 10 (36)

0.396
(F)

11 (39) 10 (36)

1.000
(F)

10 (36) 11 (39)

1.000
(F)

11 (39) 10 (36)

1.000
(F)

Comorbidity (Conjunctivitis)

No 4 (14) 3 (11) 2 (7) 5 (18) 3 (11) 4 (14) 4 (14) 3 (11) 2 (7) 5 (18)

Yes 9 (32) 12 (43)

0.670
(F)

11 (39) 10 (36)

0.396
(F)

11 (39) 10 (36)

1.000
(F)

10 (36) 11 (39)

1.000
(F)

12 (43) 9 (32)

0.385
(F)

Comorbidity (Pharyngitis)

No 7 (25) 6 (21) 4 (14) 9 (32) 4 (14) 9 (32) 7 (25) 6 (21) 6 (21) 7 (25)

Yes 6 (21) 9 (32)
0.464

9 (32) 6 (21)
0.122

10 (36) 5 (18)
0.058

7 (25) 8 (29)

0.704
(F)

8 (29) 7 (25)
0.704(F)

Comorbidity (Sinusitis)

No 1 (4) 1 (4) 1 (4) 1 (4) 1 (4) 1 (4) 1 1 1 1

Yes 12 (43) 14 (50)

1.000
(F)

12 (43) 14 (50)

1.000
(F)

13 (46) 13 (46)

1.000
(F)

13 13

1.000
(F)

13 13

1.000
(F)

Comorbidity (Asthma)

No 10 (36) 7 (25) 6 (21) 11 (39) 8 (29) 9 (32) 9 (32) 8 (29) 10 (36) 7 (25)

Yes 3 (11) 8 (29)
0.102

7 (25) 4 (14)
0.142

6 (21) 5 (18)
0.699

5 (18) 6 (21)
0.699

4 (14) 7 (25)
0.246

Comorbidity (Otitis
Media)

No 12 (43) 12 (43) 10 (36) 14 (50) 12 (43) 12 (43) 12 (43) 12 (43) 13 (46) 11 (39)

Yes 1 (4) 3 (11)

0.600
(F)

3 (11) 1 (4)

0.311
(F)

2 (7) 2 (7)

1.000
(F)

2 (7) 2 (7)

1.000
(F)

1 (4) 3 (11)

0.596
(F)

Comorbidity (Obstruc-
tive sleep apnea)

No 13 (46) 13 (46) 12 (43) 14 (40) 13 (46) 13 (46) 13 (46) 13 (46) 13 (46) 13 (46)

Yes NIL 2 (7)

0.484
(F)

1 (4) 1 (4)

1.000
(F)

1 (4) 1 (4)

1.000
(F)

1 (4) 1 (4)

1.000
(F)

1 (4) 1 (4)

1.000
(F)

HDM (D. farinae)

No 3 (11) 2 (7) 3 (11) 2 (7) 2 (7) 3 (11) 3 (11) 2 (7) 5 (18) NIL

Yes 10 (36) 13 (46)

0.639
(F)

10 (36) 13 (46)

0.639
(F)

12 (43) 11 (39)

1.000
(F)

11 (39) 12 (43)

1.000
(F)

9 (32) 14 (50)

0.041
(F)

HDM (D. pteronysin-
nus)

No 4 (14) 6 (21) 4 (14) 5 (18) 6 (21) 4 (14) 6 (21) 4 (14) 6 (21) 4 (14)

Yes 9 (32) 9 (32)

0.705
(F)

9 (32) 10 (36)

1.000
(F)

8 (29) 10 (36)
0.430

8 (29) 10 (36)
0.430

8 (29) 10 (36)
0.430

(continued on next page)
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Table 4 (continued)
Characteristics ZO-1 expression ZO-2 expression ZO-3 expression HDAC1 expression HDAC2 expression

<Median,
n (%)

≥Median,
n (%)

p-value <Median,
n (%)

≥Median,
n (%)

p-value <Median,
n (%)

≥Median,
n (%)

p-value <Median,
n (%)

≥Median,
n (%)

p-value <Median,
n (%)

≥Median,
n (%)

p-value

HDM (B. tropicalis)

No 6 (21) 3 (11) 3 (11) 6 (21) 4 (14) 5 (18) 4 (14) 5 (18) 7 (25) 2 (7)

Yes 7 (25) 12 (43)

0.228
(F)

10 (36) 9 (32)

0.435
(F)

10 (36) 9 (32)

1.000
(F)

10 (36) 9 (32)

1.000
(F)

7 (25) 12 (43)

0.103
(F)
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Table 5 Association of each gene’s expression (ZO-1, ZO-2, ZO-3,HDAC1 andHDAC2) with demographical parameters of healthy controls (n = 28). p < 0.05
shown in bold.

ZO-1 expression ZO-2 expression ZO-3 expression HDAC1 expression HDAC2 expression
Characteristics

<Median,
n (%)

≥Median,
n (%)

p-value <Median,
n (%)

≥Median,
n (%)

p-value <Median,
n (%)

≥Median,
n (%)

p-value <Median,
n (%)

≥Median,
n (%)

p-value <Median,
n (%)

≥Median,
n (%)

p-value

Gender

Male 5 (18) 4 (14) 4 (14) 8 (29) 3 (11) 6 (21) 2 (7) 7 (25) 3 (11) 6 (21)

Female 9 (32) 10 (36)

1.000
(F)

10 (36) 6 (21)
0.127

11 (39) 8 (29)

0.420
(F)

12 (43) 7 (25)

0.103
(F)

11 (39) 8 (29)

0.420
(F)

Age (years)

<28 6 (21) 7 (25) 6 (21) 7 (25) 9 (32) 4 (14) 6 (21) 7 (25) 7 (25) 6 (21)

≥28 8 (29) 7 (25)
0.704

8 (29) 7 (25)
0.704

5 (18) 10 (36)
0.058

8 (29) 7 (25)
0.704

7 (25) 8 (29)
0.704

BMI

<23.31 7 (25) 7 (25) 9 (32) 5 (18) 7 (25) 7 (25) 6 (21) 8 (29) 7 (25) 7 (25)

≥23.31 7 (25) 7 (25)
1.000

5 (18) 9 (32)
0.131

7 (25) 7 (25)
1.000

8 (29) 6 (21)
0.450

7 (25) 7 (25)
1.000

Exposure to second-
hand smoke

No 8 (29) 7 (25) 8 (29) 7 (25) 9 (32) 6 (21) 10 (36) 5 (18) 9 (32) 6 (21)

Yes 6 (21) 7 (25)
0.704

6 (21) 7 (25)
0.704

5 (18) 8 (29)
0.256

4 (14) 9 (32)
0.058

5 (18) 8 (29)
0.256

Home location

Rural 5 (18) 9 (32) 9 (32) 5 (18) 7 (25) 7 (25) 7 (25) 7 (25) 7 (25) 7 (25)

Urban 9 (32) 5 (18)
0.131

5 (18) 9 (32)
0.131

7 (25) 7 (25)
1.000

7 (25) 7 (25)
1.000

7 (25) 7 (25)
1.000

Living in an industrial
area

No 14 (50) 11 (39) 12 (43) 13 (46) 12 (43) 13 (46) 13 (46) 12 (43) 14 (50) 11 (39)

Yes NIL 3 (11)

0.222
(F)

2 (7) 1 (4)

1.000
(F)

2 (7) 1 (4)

1.000
(F)

1 (4) 2 (7)

1.000
(F)

NIL 3 (11)

0.222
(F)

Having pet

No 4 (14) 7 (25) 9 (32) 2 (7) 7 (25) 4 (14) 7 (25) 4 (14) 7 (25) 4 (14)

Yes 10 (36) 7 (25)
0.246

5 (18) 12 (43)
0.007

7 (25) 10 (36)
0.246

7 (25) 10 (36)
0.246

7 (25) 10 (36)
0.246

Frequency of changing
bedsheet

Weekly 8 (29) 5 (18) 5 (18) 8 (29) 5 (18) 8 (29) 7 (25) 6 (21) 7 (25) 6 (21)

2-Monthly NIL 2 (7) 2 (7) NIL NIL 2 (7) 2 (7) NIL 1 (4) 1 (4)

Monthly 6 (21) 7 (25)

0.394
(F)

7 (25) 6 (21)

0.394
(F)

9 (32) 4 (14)

0.123
(F)

5 (18) 8 (29)

0.394
(F)

6 (21) 7 (25)

1.000
(F)

Frequency of doing
housekeeping

Daily 9 (32) 4 (14) 7 (25) 6 (21) 7 (25) 6 (21) 5 (18) 8 (29) 7 (25) 6 (21)

Weekly 4 (14) 10 (36) 6 (21) 8 (29) 6 (21) 8 (29) 8 (29) 6 (21) 6 (21) 8 (29)

Monthly 1 (4) NIL

0.057
(F)

1 (4) NIL

0.706
(F)

1 (4) NIL

0.706
(F)

1 (4) NIL

0.449
(F)

1 (4) NIL

0.706
(F)
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HDAC2 expression did not differ significantly between healthy controls and AR patients
in terms of one ormultiple types ofHDMs sensitization (Fig. S1A) usingKruskal-Wallis test.
Dunn’s multiple comparison test showed no significance between each group (Fig. S1A).
Other test onHDAC2 expression of healthy controls andARpatients compared to frequency
of changing bedsheets also showed no significance between each group (Fig. S1B).

DISCUSSION
AR is a chronic and prevalent nasal mucosa inflammatory disorder, with the
pathophysiologic mechanisms responsible for the severity of disease being only partially
understood (Wang et al., 2020a; Wang et al., 2020b). Nasal epithelial barrier defects in AR
patients have been hypothesized to result in excessive allergen exposure and activation of
inflammatory cells (Steelant et al., 2018). In this context, the role of the nasal epithelium in
protecting the nasal airway from allergens exposure is still not clearly understood.

In this study, we demonstrated that decreased expression of ZO-1 occurred in HDM-
sensitized moderate-severe AR patients compared to healthy controls. This was in line
with findings of previous studies in AR patients that showed impaired epithelial TJ
function and lower ZO-1 mRNA expression in both nasal epithelial cells and nasal biopsy
specimens (Steelant et al., 2016; Wang et al., 2020a; Wang et al., 2020b). Independent
studies also showed significantly decreased expression of ZO-1 protein in nasal epithelium
of AR patients compared with healthy controls (Wang et al., 2020a; Wang et al., 2020b).
Immunofluorescence staining demonstrated a relatively poor ZO-1 arrangement in biopsy
specimens of HDM-induced AR patients compared to healthy controls (Steelant et al.,
2016). HDMs are known to contain abundant proteases (Reithofer & Jahn-Schmid, 2017),
and protease activity of HDMs increases the permeability of epithelial barrier that promotes
the penetration of allergens into nasal mucosa by targeting TJs (Wan et al., 1999; Roche et
al., 2000;Okano, 2009). Reduced expression of ZO-1 was also observed in patients with CRS
with nasal polyps, asthmatic patients, eosinophilic esophagitis (EoE) and these impaired
epithelial TJ function are considered to be part of the pathophysiology (De Benedetto et
al., 2011; Salim & Söderholm, 2011; Xiao et al., 2011; Soyka et al., 2012; Katzka et al., 2014).
The airway epithelium is known as the first line of defense that acts as a protective barrier
against environmental allergens (Nadeem et al., 2019). Impaired expression of ZO-1 may
thus facilitate the infiltration of allergens into the epithelial barrier of AR patients.

In contrast to ZO-1, expression levels of ZO-2 and ZO-3 did not significantly differ
between AR patients and controls in our study. Recent study demonstrated that lower
expression of ZO-2 and ZO-3 were observed in nasal biopsy samples of atopic patients
in Turkey (Yılmaz et al., 2019). Epidemiological studies showed that cigarette smoke is
one of a risk factor for asthma and CRS with polyps. Incubation of 16HBE14 cells and
human bronchial epithelial cells (pHBECs) with cigarette smoke extract decreased ZO-2
expression and thus disrupted TJ barrier (Fukuoka & Yoshimoto, 2018). However, there are
still no studies investigating the expression of ZO-2 and ZO-3 molecules in AR patients.

MAGUKs (ZO-1, ZO-2 and ZO-3) are thought to play important roles in producing
and maintaining specialized membrane domains in various types of cells (Inoko et al.,
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2003). Similar to ZO-1, both ZO-2 and ZO-3 are localized at TJs in epithelial cells and
bind directly to the actin filaments (Itoh et al., 1997; Fanning et al., 1998). Nevertheless, the
contribution of both ZO-2 and ZO-3 to the nasal epithelial barrier remains unclear due to
lack of studies on the involvement of both ZO-2 and ZO-3 in AR pathogenesis.

Pertaining to HDACs, we did not observe significant difference in the expression levels
of HDAC1 and HDAC2 in AR patients compared to controls. HDAC1 can suppress
TWIK-related potassium channel-1 (Trek1) in the nasal mucosa essential in preserving
the epithelial barrier function (Bittner et al., 2013; Jiang et al., 2015), establishing HDAC1
as one of the key players in deregulating epithelial barrier. Recent therapeutic research has
demonstrated that HDACi enhance ZO proteins expression, leading to improved epithelial
barrier integrity (Yılmaz et al., 2019). HDACi such as NaB and JNJ-26481585 inhibit the
activity of HDAC1 resulting in enhanced nasal epithelial barrier integrity (Steelant et al.,
2019; Wang et al., 2020a; Wang et al., 2020b). Furthermore, treatment of fetal human lens
epithelial cells with the HDACi TSA increased the expression of ZO-1 and improved the
epithelial barrier integrity (Ganatra et al., 2018). Previous study reported higher levels of
HDAC1 in AR patients compared to healthy controls in China (Wang et al., 2015). This
may be due to prevalence of seasonal allergens in China (e.g., pollens) (Zhang et al., 2009)
but distinct from perennial allergens (e.g., HDMs) in Malaysia.

Interestingly, we observed that higher expression of HDAC2 in AR patients was
significantly associated with lower frequency of changing bedsheet. HDMs mainly come
into contact with human through mattresses and bedsheet (Abu Khweek et al., 2020). A
study in China also showed that high concentration of D. farinae was detected on rhinitis
children’s beddings compared to controls (Huang et al., 2019). Hypersensitivity to HDMs
also contribute to atopic sensitization in 50–85% of asthmatics, and are strong inducers
of causing allergy in worldwide population (Abu Khweek et al., 2020). HDAC activity has
been identified as a key factor of allergic inflammation and TJ dysfunction (Steelant et al.,
2019). Increased production of Th2 cytokines caused by allergic inflammation leads to
increased HDAC activities in epithelial cells that augment mucosal permeability (Steelant
et al., 2018). This is in line with higher expression of HDAC2 which was significantly
associated with our cohort of AR patients sensitized toD. farinae. Collectively, this suggests
that HDACi administration is a potential therapeutic strategy for AR patients sensitized to
D. farinae and this is subject to future investigations.

In this study, we observed that the expression of ZO-2 was higher in healthy controls
who had pets (Table 5). Exposure to pets at early stage may decrease the possibility of
developing allergic sensitization to animal dander or other inhaled allergens (Shargorodsky
et al., 2017). It has been shown that living with cats and dogs was associated with lower
risk of developing atopy during childhood and young adulthood (Päivi & Darryl, 2009).
Frequent exposure to allergens may later protect from sensitization by adapting to transient
increase of Th2 cytokines levels and subclinical responses (Shargorodsky et al., 2017; Steelant
et al., 2018). However the role of Th1 is still not clearly understood (Steelant et al., 2018).

We acknowledge the limitations of the study as follows: (1) We focused on HDM-
sensitized AR patients only without the inclusion of other allergens during SPT. It is
plausible that our cohort of AR patients were also allergic to other allergens which may
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contribute to the TJs disruption; (2) In our study, the gene expression was sufficient to
demonstrate the presence of ZO andHDAC. Although protein expression data is important
to confirm the existence of ZO and HDAC gene, however we could not perform the protein
analysis in this study due to budget constraint. (3) We did not measure specific IgE tests
for all the allergens. In the future, we would like to further investigate more on protein
expression levels, which will help to strengthen our research.

CONCLUSIONS
In summary, our data indicate that ZO-1 is a key TJ molecule whose reduced expression is
associated with defective nasal epithelial barrier integrity in HDM-sensitized AR patients.
These results support development of therapies that restore ZO-1 expression in nasal
epithelial cells of AR patients. The expression profile of ZO-2, ZO-3 and HDAC2 were
demonstrated in AR patients relative to non-allergic subjects for the first time. Collectively,
dysregulated ZO-1 and HDAC2 expression levels may play key roles in the onset of AR
through disruption of nasal epithelial barrier integrity.
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