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Epigenetics is an essential biological frontier linking genetics to the environment, where
DNA methylation is one of the most studied epigenetic events. In recent years, through the
epigenome-wide association study (EWAS), researchers have identified thousands of
phenotype-related methylation sites. However, the overlaps of identified phenotype-
related DNA methylation sites between various studies are often quite small, and it
might be due to the fact that methylation remodeling has a certain degree of
randomness within the genome. Thus, the identification of robust gene-phenotype
associations is crucial to interpreting pathogenesis. How to integrate the methylation
values of different sites on the same gene and to mine the DNA methylation at the gene
level remains a challenge. A recent study found that the DNA methylation difference of the
gene body and promoter region has a strong correlation with gene expression. In this
study, we proposed a Statistical difference of DNA Methylation between Promoter and
Other Body Region (SIMPO) algorithm to extract DNA methylation values at the gene level.
First, by choosing to smoke as an environmental exposure factor, our method led to
significant improvements in gene overlaps (from 5 to 17%) between different datasets. In
addition, the biological significance of phenotype-related genes identified by SIMPO
algorithm is comparable to that of the traditional probe-based methods. Then, we
selected two disease contents (e.g., insulin resistance and Parkinson’s disease) to
show that the biological efficiency of disease-related gene identification increased from
15.43 to 44.44% (p-value � 1.20e–28). In summary, our results declare that mining the
selective remodeling of DNAmethylation in promoter regions can identify robust gene-level
associations with phenotype, and the characteristic remodeling of a given gene’s promoter
region can reflect the essence of disease.
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INTRODUCTION

Epigenetics is a branch of genetics that studies the heritable
changes in gene expression without changing the nucleotide
sequence of a gene (Fraga et al., 2005), including DNA
methylation, histone modification, and regulation of
noncoding RNA, among which DNA methylation is one of
the focuses in epigenetics (Dahl and Guldberg, 2003). Several
studies have shown that the regulation of genes by DNA
methylation is associated with the occurrence and
development of various diseases, such as cancer (Jones, 2012;
Akhavan-Niaki and Samadani, 2013; Mikeska and Craig, 2014),
cardiovascular and cerebrovascular diseases (Kim et al., 2010;
Peng et al., 2014; Wise and Charchar, 2016), and metabolic
diseases (Cooper and El-Osta, 2010; Simar et al., 2014).

Similar to GWAS (genome-wide association study), EWAS
can compare variations between patients and healthy people at
the DNA methylation level and associate epigenetic variations
with complex diseases as well as interpret the pathogenesis of
complex diseases at the epigenetic level (Flanagan, 2015). EWAS
open the door to study complex diseases, allowing researchers to
find several previously undiscovered disease-related methylation
sites, providing more epigenetic mechanisms for the pathogenesis
of complex diseases (Li et al., 2019b; Liu et al., 2019). Since 2009,
when the first EWAS was published, EWAS research has grown
exponentially in recent years, reaching 618 publications in 2019
(Li et al., 2019b). Due to the availability of whole blood DNA
methylation data, the experimental materials of most current
EWAS studies are focused on whole blood tissues (Li et al.,
2019b).

In the detection of clinical samples, the human DNA
methylation chip is a common method for high-throughput
EWAS analysis. The current widely used methylation chip is
the Illumina 450 K BeadChip (Flanagan, 2015; Li et al., 2019b; Liu
et al., 2019). However, multiple methylation probes are
distributed in the same functional region of the same gene in
the 450 K BeadChip, and different probes will be detected with
different methylation values. In addition, because the methylation
modification has a certain degree of randomness on the genome,
the results of similar EWAS studies are often inconsistent (Xu
et al., 2018). For example, there are several EWASs that focus on
smoking-related phenotypes and identify tens of thousands of
significantly different probes (Zeilinger et al., 2013; Dogan et al.,
2014; Guida et al., 2015; Joehanes et al., 2016; Lee et al., 2016;
Jenkins et al., 2017; Marabita et al., 2017; Zhang et al., 2018). We
found that starting from these different probes, each independent
EWAS can correspond to 101∼6,180 differential genes, and these
EWAS publications predicted a total of 7,340 genes. However,
only 1,334 (18.17%) of these genes were present in two or more
independent EWASs. In addition, four diabetes-related EWAS
projects had predicted 493 (Kang et al., 2017), 565 (Yang et al.,
2018), 1,179 (Alexander et al., 2018), and 3,186 (Weng et al.,
2018) diabetes-related genes, respectively. However, only 7.82%
(392 of 5,012 genes) of these genes were simultaneously identified
in multiple EWASs.

Another example is the identification of Parkinson’s
disease–related DNA methylation probes based on three

independent EWASs, corresponding to 194 genes (Moore
et al., 2014; Chuang et al., 2017; Kaut et al., 2017).
Unfortunately, the intersection of only one gene, STK38L,
existed in these three studies. Therefore, traditional probe-
based EWASs have some limitations in identifying phenotype-
related genes based on differential probes. Moreover, how to
integrate DNAmethylation values of different probes on the same
gene and characterize the DNA methylation degree at the gene
level has become a challenge to traditional EWASs.

Because methylation remodeling has a certain degree of
randomness and complexity on the genome, there is no
significant correlation to only consider the remodeling of
DNA methylation in promoter regions or to only consider the
remodeling of DNA methylation in body regions with gene
expression (Figure 1). Therefore, this study proposed that, by
combining the DNA methylation remodeling of promoter
regions and body regions, we could identify robust
methylation associations with the phenotype at gene level
(Figure 1). According to a recent study, there is a significant
positive correlation between the methylation of gene body
difference to promoter (MeGDP) and gene expression of
FPKM (Fragments Per Kilobase of exon per Million fragments
mapped) in variety of cell lines, which was detected by whole-
genome DNA methylation method of Guide Positioning
Sequencing (GPS) (Li et al., 2019a). In liver and hepatoma cell
line 97L, the correlation coefficient is as high as 0.67 (p-value <
2.2e–16) (Li et al., 2019a). This result is consistent with our
conjecture and suggests that DNA methylation differences
between the gene promoter and body regions can be used as a
DNA methylation index to predict gene expression (Figure 1).

Based on the above correlation, this study proposed the
statistical difference of DNA Methylation between Promoter
and Other Body Region (SIMPO) algorithm to mine gene-
level DNA methylation associations with phenotype. It showed
the robustness of SIMPO-identified differential genes in the same
dataset and between different datasets through three smoking
phenotype-related DNA methylation datasets. The results also
showed that the biological efficacy of SIMPO-identified
differential genes is comparable to those predicted by
traditional probe-based methods. In addition, we further
applied the SIMPO algorithm to predict insulin resistance
(IR)– and Parkinson’s disease (PD)–associated genes and
revealed the biological significance of corresponding genes.

MATERIALS AND METHODS

Collection of DNA Methylation and
Transcription Data
First, this study collected transcription and DNA methylation
data from the MESA (Multi-Ethnic Study of Atherosclerosis)
Epigenomics and Transcriptomics Study. This study has been
launched to investigate potential gene expression regulatory
methylation sites in humans by examining the association
between CpG methylation and gene expression in purified
human monocytes from 1,202 individuals (ranging
44∼83 years of age) and proved that blood monocyte
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transcriptome and epigenome can reveal loci associated with
human age (Reynolds et al., 2014). We downloaded the above
data from the NCBI GEO (Gene Expression Omnibus) database
(GEO accession: GSE56045 and GSE56046).

Next, we used three smoking phenotype-related DNA
methylation datasets to test the robustness of the SIMPO
algorithm. Previous studies have found that smoking is
associated with a variety of diseases by affecting DNA
methylation and causing abnormal gene expression (Dogan
et al., 2014; Tsaprouni et al., 2014; Su et al., 2016). For
example, based on peripheral blood DNA methylation data
of 464 individuals who were current, former, and never
smokers (GEO accession: GSE50660), researchers have
identified 15 methylation sites associated with smoking
(Tsaprouni et al., 2014). In addition, the GSE53045 dataset
contains DNA methylation data extracted from the
peripheral mononuclear cell of 50 smokers and 61
nonsmokers. Moreover, 910 significant loci have been
predicted after Benjamini-Hochberg correction based on
this dataset (Dogan et al., 2014). The third smoking
phenotype-related DNA methylation dataset was collected
from GSE85210. This dataset included DNA methylation
data of blood cells from 172 smokers and 81 nonsmokers
and revealed that 738 CpGs were significantly associated with
current smoking (Su et al., 2016).

Data of IR-related DNA methylation BeadChip analyzed in
this study were also downloaded from the NCBI GEO database
(GEO accession: GSE115278). This dataset uses Illumina
HumanMethylation450 BeadChip’s GPL16304 platform and
contains DNA methylation data of peripheral white blood cells
collected from 74 HOMA-IR (i.e., homeostasis model assessment
of insulin resistance) >3, and 258 HOMA-IR ≤ 3 individuals.

Furthermore, based on this data, a rigorous statistical analysis
revealed that 478 CpGs showed a differential methylation pattern
between individuals with HOMA-IR ≤ 3 and >3 (Arpón et al.,
2019).

Two PD-related DNA methylation datasets were downloaded
from the NCBI GEO database (GEO accession: GSE72774 and
GSE111629). These dataset use Illumina HumanMethylation450
BeadChip’s GPL13534 platform. GSE72774 contains DNA
methylation data of whole blood collected from 289
individuals with PD and 219 control samples; then, these
researchers obtained 82 genome-wide significant CpGs of PD
(Chuang et al., 2017). Whole blood DNA methylation data of
GSE111629 were collected from 335 PD individuals and 237
controls.

Prediction of Phenotype-Associated Genes
Based on SIMPO Algorithm
Previous research found that the DNA methylation difference
between the promoter region and the body region is highly
related to the expression level of the gene (Zeilinger et al.,
2013). The input data of the SIMPO algorithm are the DNA
methylation beta value of cg probes that are located in the
promoter regions (including TSS200 or/and TSS1500) and the
other regions (including gene body, 3′UTR, 5′UTR, and 1stExon)
(Table 1). The statistical difference method t-test is used in
SIMPO, and the degree of difference (SIMPO score) is used to
characterize the DNA methylation remodeling of corresponding
genes:

SimPo score � x − y

Sw
������������(1/m) + (1/n)√ ∼ t(m + n − 2),

FIGURE 1 |Correlations of DNAmethylation remodeling in promoter and body regions with gene expression. Dark blue lines represent the promoter regions of the
gene, and light blue lines represent the body regions of the gene. Red dots represent DNA methylation sites on the genome.
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where

S2w � 1
m + n − 2

[(m − 1)S21 + (n − 1)S22].

Here, x is the average DNAmethylation value of all probes that
are located in the other region (including gene body, 3′UTR,
5′UTR, 1stExon); y is the average DNA methylation value of all
probes that are located in the promoter region; m is the number of

FIGURE 2 | Pipeline comparison of probe-based method and SIMPO algorithm.
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probes that are located in the other region (including gene body,
3′UTR, 5′UTR, 1stExon); n is the number of probes that are
located in the promoter region; S21 is the variance of DNA
methylation values of probes that are located in the other
region (including gene body, 3′UTR, 5′UTR, 1stExon); S22 is
the variance of DNA methylation values of probes that are
located in the promoter region. In addition, since SIMPO
algorithm is derived from t-test and the SIMPO score relates
to the number of probes, in order to ensure the reliability of the
SIMPO score, we only selected genes with other region-located
and promoter region-located probes greater than or equal to five
for further calculation.

Based on the SIMPO algorithm, this study separately
calculated the SIMPO score of each gene in the above seven
DNA methylation data (GSE56046, GSE50660, GSE53045,
GSE85210, GSE115278, GSE72774, and GSE111629). Next, we
calculated the differences of gene SIMPO scores between the
phenotypic individuals and control groups based on the adjusted
t-test (Figure 2). In this study, we used the commonly accepted
0.05 as the threshold of p-value. When the p-value calculated by
adjusted t-test (between the phenotypic individuals and control
groups) of a certain gene is less than 0.05, we predict that this gene
is significantly associated with the corresponding phenotype
(Figure 2). Through the above calculations, we will obtain
genes that are significantly related to multiple phenotypes
(involving smoking, IR and PD) in terms of DNA methylation.

Collection of Known Disease-Associated
Genes
In this study, known disease-associated genes were collected from
the DisGeNET database (http://www.disgenet.org) and the SCG-
Drug database (http://zhanglab.hzau.edu.cn/scgdrug) (Piñero
et al., 2017; Quan et al., 2019). DisGeNET database integrates
multiple disease gene databases and gene-disease associations
(GADs) reported in a large number of works of literature. Data
sources include UniProt, Comparative Toxicogenomics Database
(CTD), ClinVar, Orphanet, GWAS Catalog, and Genetic
Association Database. The latest version is v5.0, which
contains 561,119 gene-disease pairs involving 17,074 genes and
20,370 diseases. In addition, DisGeNET v5.0 has developed a
gene-disease relationship scoring model with scores between 0
and 1. Higher scores indicate higher confidence in the gene-
disease relationship (Piñero et al., 2017). DisGeNET score for the
gene-disease relationship is supported by multiple pieces of
evidence and has high confidence. The SCG-Drug database
collects gene-disease associations from multiple sources (Quan
et al., 2019). Similar to DisGeNET, SCG-Drug also annotates the
scoring model of gene-disease associations.

Noise Generation
In order to verify the robustness of SIMPO algorithm in the same
dataset, this study added random noise of 0.1–1° to the DNA
methylation beta value of each probe. Firstly, because the range of
normalized DNA methylation beta is −1 to 1, we generated the
random numbers in the range of −1 to 1 through the Python
random module. Next, we multiplied the random number by

0.1–1 and obtained the random noise values of about 0.1–1.
Third, we added random noise values to the original DNA
methylation beta values and received the new beta values. We
further used these new DNAmethylation beta values of probes in
the SIMPO score calculation.

KEGG Pathway Enrichment
We enriched the KEGG pathway of PD-associated differential
genes through GSEA (Gene Set Enrichment Analysis)
(Subramanian et al., 2005). The rank of differential genes was
derived from p-values of t-test based on SIMPO scores, and
KEGG pathway gene sets were downloaded from the Molecular
Signatures Database (MSigDb, c2.cp.kegg.v6.2.symbols.gmt).
GSEA calculations are performed based on the R packages of
“dplyr” and “GSEABase.” In addition, we performed the KEGG
pathway enrichment analyses for the IR-associated gene sets by
using the Enrichr database (https://amp.pharm.mssm.edu/
Enrichr/).

RESULTS

Correlation Between SIMPO Score and
Transcription Value of Gene
The DNA methylation feature (SIMPO score) of each gene was
extracted based on the SIMPO algorithm, and the Spearman
correlation test was used to test the correlation between the
SIMPO score and mRNA transcription average of each gene
in 1,202 samples (GSE56045 and GSE56046 datasets). In this
study, we used a commonly accepted p-value of 0.05 as the
threshold for determining the significant correlation between
DNA methylation and mRNA transcription. When the p-value
of Spearman correlation test is less than or equal to 0.05, we think
the SIMPO scores of genes are significantly related to the average
mRNA transcription. The results are shown in Supplementary
Figure S1: for the SIMPO-TSS200 algorithm, the SIMPO scores
of 43.44% of the genes are significantly related to the average
mRNA transcription (Supplementary Figure S1G)
(Supplementary Table S1); for the SIMPO-TSS1500
algorithm, the SIMPO scores of 41.22% of the genes are
significantly related to the average mRNA transcription
(Supplementary Figure S1H) (Supplementary Table S2); for
the SIMPO-TSS200&TSS1500 algorithm, the SIMPO scores of
41.18% genes are significantly correlated with the average mRNA
transcription (Supplementary Figure S1I) (Supplementary
Table S3). The above results are similar to the significant
correlation ratio of probes based on DNA methylation beta
value (Supplementary Figures S1A–F). It is indicated that the
SIMPO score of the gene has a good correlation with the average
mRNA transcription, and the SIMPO score can contain the
original DNA methylation information of the gene.

Robustness Verification of SIMPO
Algorithm
Based on the SIMPO algorithm and traditional probe-based
algorithm, DNA methylation features of different genes of
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smokers and healthy people were obtained. Then, the
significantly associated probes/genes of smoking were
predicted through differential analysis (calculated by t-test).
The numbers of differential genes (p-value ≤ 0.05) obtained
from these three smoking DNA methylation datasets are
shown in Supplementary Figure S2 (Supplementary Tables
S4–S8).

For a particular gene, multiple probes contained in it will get
different p-values. We selected the max p-value and the min
p-value of the probe to represent the correlation between this
gene and the smoking phenotype and then obtained the ranking
of these genes, respectively. We compared the intersection of the
top N genes to show the robustness of traditional EWAS, which
often focus only on the DNA methylation level of the probes for
the same dataset. The results are shown in Supplementary Figure
S3. For the probe-focused study, the robustness in the same
dataset is weak, and only about 8% of the genes have intersections.

Next, in order to test the robustness of the SIMPO algorithm in
the same dataset, this study added random noise of 0.1–1° to the
three DNA methylation data related to the smoking phenotype.
Moreover, the intersections of top N smoking-associated genes
identified by the original data and after adding noise-data
between the traditional probe-based methods (DMPs and
DMGs) and the SIMPO algorithm were compared. The results
are shown in Supplementary Figures S4,S5. For the GSE50660
and GSE85210 datasets, when different levels of noise are added,
the gene intersections obtained by the SIMPO algorithm were
more significant than probe-based methods. Hence, the
robustness of SIMPO is better than the traditional probe-based
method for the same dataset.

For traditional probe-based methods, because the same gene
often contains multiple methylation probes, the same gene will
get multiple smoking-related p-values. For the same gene, this
study intended to select the average, the max, and the min p-value
to represent the correlation between this gene and the smoking
phenotype. The intersections of top N genes between dataset pairs
were then used to show the robustness of the traditional method
between different datasets. The results are shown in Figure 3. The
min p-value probe-selected method is the most robust among

different datasets. However, the proportion of intersections is
relatively small at only about 5%.

Comparing the intersection ratio of differential genes/probes
derived from at least two smoking-related datasets identified by
DMGs and SIMPO showed that the robustness of the SIMPO
algorithm (including SIMPO-TSS200, SIMPO-TSS1500, SIMPO-
TSS200, and TSS1500) was significantly due to traditional EWAS
(Figure 4). In the analysis of the Top N smoking phenotype-
related genes, the SIMPO algorithm also obtained better results
than the traditional probe-based method (DMPs) as the number
of genes increased (Figure 5). In other words, the intersection
ratios of smoking-associated genes identified by SIMPO in the
two datasets were significantly higher than the DMPs.

Biological Significance Verification of
SIMPO Algorithm
In this study, we verified the biological significance of the SIMPO
algorithm by comparing the intersection of known tobacco use

FIGURE 3 | Intersection ratios of top N differential genes derived from different probes between different datasets (between the average, max, and min p-value of
probes). The blue bars represent top N genes derived from the average p-value of probes, the yellow bars represent top N genes derived from max p-value of probes,
and the red bars represent top N genes derived from min p-value of probes. (A) Between GSE50660 and GSE53045 dataset. (B) Between GSE50660 and GSE85210
dataset. (C) Between GSE53045 and GSE85210 dataset.

FIGURE 4 | The comparison of the intersection ratio of differential genes/
probes derived from at least two smoking-related datasets identified by
different methods. The p-values were calculated by chi-square test.
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disorder-related genes (obtained from SCG-Drug database) with
smoking phenotype-related genes that were identified by the
traditional probe-based method (DMGs) and the SIMPO
algorithm. The results are shown in Table 2. For example, for
the GSE50660 dataset, the SIMPO-TSS200 algorithm can
calculate the association degrees of 4,782 genes and smoking

phenotypes. If these 4,782 genes are used as the background gene
set, SIMPO-TSS200 can identify 827 genes that may be
significantly associated with the smoking phenotype (p-value ≤
0.05). Among them, 168 (20.31%) genes are known tobacco use
disorder-related genes. Based on the same background gene sets
(4,782 genes), DMGs method can identify 4,018 significantly

FIGURE 5 | The intersection ratios of top N differential genes/probes between three smoking-related datasets. The gray, blue, and red lines represent the DMPs,
DMGs, and SIMPO algorithmmethods, respectively. (A) For SIMPO-TSS200 algorithm-identified differential genes between GSE50660 and GSE85210 dataset. (B) For
SIMPO-TSS1500 algorithm-identified differential genes between GSE50660 and GSE85210 dataset. (C) For SIMPO-TSS200&1,500 algorithm-identified differential
genes between GSE50660 and GSE85210 dataset. (D) For SIMPO-TSS200 algorithm-identified differential genes between GSE50660 and GSE53045 dataset.
(E) For SIMPO-TSS1500 algorithm-identified differential genes between GSE50660 and GSE53045 dataset. (F) For SIMPO-TSS200&1,500 algorithm-identified
differential genes between GSE50660 and GSE53045 dataset. (G) For SIMPO-TSS200 algorithm-identified differential genes between GSE53045 and GSE85210
dataset. (H) For SIMPO-TSS1500 algorithm-identified differential genes betweenGSE53045 andGSE85210 dataset. (I) For SIMPO-TSS200&1,500 algorithm-identified
differential genes between GSE53045 and GSE85210 dataset.

TABLE 1 | The description of the SIMPO algorithm and the traditional method.

Abbreviation Description

SIMPO-TSS200 Using the TSS200 probe as the promoter and the other probes as the other regions (including gene body, 3′UTR, 5′UTR,
1stExon, TSS1500)

SIMOP-TSS1500 Using the TSS1500 probe as the promoter region and the other probes as the other regions (including gene body, 3′UTR,
5′UTR, 1stExon, TSS200)

SIMOP-TSS200&TSS1500 Using the TSS200 and TSS1500 probes as promoter regions and the other probes as other regions (including gene body,
3′UTR, 5′UTR, 1stExon)

DMPs The traditional EWAS algorithm calculates differentially methylated positions between the phenotypic group and the control
group through the R package "minfi"

DMGs The traditional EWAS algorithm is based on DMPs mapping to correspond to differentially methylated genes
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associated genes, of which 19.59% (787) are known tobacco use
disorder-related genes, slightly lower than SIMPO-TSS200.
Similarly, based on the same background gene sets of the
corresponding SIMPO algorithm, the proportions of known
tobacco use disorder-related genes obtained by the SIMPO-
TSS200 and TSS1500 (23.37%) algorithms are higher than
DMGs (21.86%) for the GSE50660 dataset; the proportions of
these three SIMPO algorithms (19.51% for SIMPO-TSS200,
23.56% for TSS1500, and 22.16% for TSS200 and 1500) are
higher than DMGs (18.15%, 22.13%, 20.87%, respectively) for
the GSE53045 dataset; the proportions of SIMPO-TSS200
algorithm (19.62%) are higher than DMGs (18.62%) for the
GSE85210 dataset (Supplementary Tables S5–S8). In
summary, the biological significance of phenotype-related
genes identified by SIMPO algorithm is comparable to that of
the traditional probe-based method (DMGs).

In the above analyses, we analyzed a set of samples (including
1,202 individuals) that contained both transcriptome and DNA
methylation data and showed that the SIMPO scores of ∼40% of
genes were significantly correlated with mRNA expression values,
proving that SIMPO scores and mRNA expression of genes have
good correlations. Next, we used three smoking-related DNA
methylation datasets to validate the robustness of the SIMPO
algorithm. The results showed that the robustness of the SIMPO
is significantly better than the traditional probe-based methods
for the same datasets and between different datasets. Finally, by
comparing with known tobacco use disorder-associated genes, it
is proved that the biological significance of phenotype-related
genes identified by SIMPO algorithm is comparable to that of the
traditional probe-based methods. Therefore, we will use SIMPO-
TSS1500 as a representative of SIMPO algorithm for the
following analyses. In summary, the SIMPO algorithm has
good robustness and biological efficacy and can be further
applied to phenotype or disease research in the field of
epigenetic biology.

Application of SIMPO Algorithm in Insulin
Resistance–Associated Gene Prediction
In this study, the SIMPO-TSS1500 algorithm was used to mine
gene-level methylation remodeling pattern for IR-related dataset
(GEO accession: GSE115278), and then t-test was applied to

identify differential genes between individuals with HOMA-IR ≤
3 and > 3. As a result, 990 IR-associated genes were predicted by
SIMPO-TSS1500 (Supplementary Table S9). On the other hand,
starting from the same dataset, another study has identified a total
of 478 CpGs based on the traditional method, covering 499
differential genes (Arpón et al., 2019). Because IR is a
pathological condition in which cells fail to respond
appropriately to insulin, and it is a hallmark of type 2 diabetes
(Schinner et al., 2005; Arpón et al., 2019), we speculated that the
above IR-related differential genes are associated with diabetes.
By querying the known diabetes-associated genes recorded in the
SCG-Drug database, it was found that only 77 genes of the 499
genes (15.43%) identified by traditional methods were known as
diabetes-associated genes. For the 990 genes identified by the
SIMPO-TSS1500 algorithm, the ratio is 44.44% (440 of 990
genes) (Supplementary Table S9), which is significantly
higher than the traditional method (p-value � 1.20e–28, based
on chi-square test).

Then, according to the p-values of the differential genes
obtained by the t-test, from small p-value (most significant) to
large p-value (least significant), we obtained the top 100 ∼ top
1,000 gene sets related to IR. Similarly, through the probe-based
method, we also obtained the top 100 ∼ top 1,000 gene sets. It is
worth reminding that when a gene corresponds to multiple
probes, we use the probe with the smallest p-value to
represent this gene and to rank. Based on the KEGG pathway
enrichment of the Enrichr database, the results showed that
multiple top N gene sets identified by SIMPO-TSS1500 were
enriched in diabetes-related KEGG pathways (Table 3), while the
top N gene sets identified by probe-based methods were not
enriched in corresponding pathways.

In addition, we also conducted disease enrichment for the
IR-associated gene sets predicted by SIMPO-TSS1500 and
DMGs-based methods. The results are shown in Figure 6.
SIMPO-TSS1500-predicted top N gene sets were enriched to a
variety of diabetes-related diseases through Enrichr database,
including non-insulin-dependent diabetes mellitus,
permanent neonatal diabetes mellitus, maturity onset
diabetes mellitus in young, and neonatal diabetes mellitus,
and obtained 15 gene sets–disease associations. However,
DMGs-predicted top N gene sets only obtained nine such
associations. In summary, the results show that the

TABLE 2 | Ratios of known tobacco use disorder-related genes.

Dataset SIMPO algorithm Background gene number Ratio (DMGs-identified genes)a Ratio (SIMPO-identified genes)b

GSE50660 TSS200 4,782 19.59% (787/4,018) 20.31% (168/827)
TSS1500 4,640 23.07% (955/4,139) 22.13% (156/705)
TSS200 and 1500 10,893 21.86% (2,050/9,379) 23.37% (383/1,639)

GSE53045 TSS200 4,868 18.15% (868/4783) 19.51% (454/2,327)
TSS1500 4,697 22.13% (1,027/4,640) 23.56% (551/2,339)
TSS200 and 1500 10,974 20.87% (2,244/10,752) 22.16% (1,208/5,451)

GSE85210 TSS200 5,794 18.62% (999/5,364) 19.62% (155/790)
TSS1500 5,368 22.67% (1,153/5086) 22.26% (225/1,011)
TSS200 and 1500 12,066 20.95% (2,348/1,1206) 20.41% (405/1,984)

aRatios of DMGs-identified smoking phenotype-related genes (p-value ≤ 0.05).
bRatios of SIMPO-identified smoking phenotype-related genes (p-value ≤ 0.05).
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biological significance of IR-associated genes predicted by
SIMPO-TSS1500 is better than those predicted by DMGs-
based methods.

Application of SIMPO Algorithm in
Parkinson’s Disease–Associated Gene
Prediction
SIMPO-TSS1500 algorithmwas further used inmining gene-level
methylation remodeling of PD patients and control individuals.
Then, 959 significant differential genes for the GSE72774 dataset
(Supplementary Table S10) and 1,077 significant differential
genes for the GSE111629 dataset related to PD have been
identified by t-test (Supplementary Table S10). In addition,
combining the above two DNA methylation datasets, previous
researchers predicted a total of 82 PD-related significant
difference CpGs based on the traditional EWAS method,

corresponding to 62 genes (Chuang et al., 2017). By querying
the known PD-associated genes in SCG-Drug database, it was
found that only four of 62 genes (6.45%) identified by the
traditional method were known PD-associated genes. For the
SIMPO-TSS1500-identified PD-associated genes, the ratios were
9.19% (for GSE111629) and 9.28% (for GSE72774)
(Supplementary Table S10), which are higher than the
traditional methods.

Then, this study enriched the KEGG pathway for SIMPO-
TSS1500-predicted differential gene sets of PDs through GSEA.
The results are shown in Table 4. These two PD-related gene sets
were enriched to 12 KEGG pathways. By querying the biological
function annotations for the pathways on the KEGG website
(https://www.genome.jp/kegg/pathway.html), it was found that
four pathways are related to nervous system diseases, including
Alzheimer’s disease, Inositol phosphate metabolism,
phosphatidylinositol signaling system, and purine metabolism.

TABLE 3 | The diabetes-related KEGG pathway enrichment of top N gene sets calculated by SIMPO-TSS1500.

Diabetes-related KEGG pathway Enriched gene set

Cell cycle Top900; Top1000
Maturity onset diabetes of the young Top700; Top800; Top900; Top1000
Neurotrophin signaling pathway Top600
P53 signaling pathway Top300; Top400; Top500; Top600; Top700; Top800; Top900; Top1000
Wnt signaling pathway Top100; Top200; Top300; Top400; Top500; Top800; Top900; Top1000

aObtained from Enrichr database (http://amp.pharm.mssm.edu/Enrichr/).

FIGURE 6 | The diabetes-related disease enrichment of DMGs- and SIMPO-TSS1500-predicted top N gene sets. Enrichment analysis was obtained from the
Enrichr database (http://amp.pharm.mssm.edu/Enrichr/). The diabetes-related diseases include alloxan diabetes, experimental diabetes mellitus, non-insulin-
dependent diabetes mellitus, permanent neonatal diabetes mellitus, maturity onset diabetes mellitus in young, neonatal diabetes mellitus, and streptozotocin diabetes.
The blue squares indicate that the DMGs-predicted top N gene set is significantly associated with the corresponding diabetes-associated disease; the red squares
indicate that the SIMPO-TSS1500-predicted top N gene set is significantly associated with the corresponding diabetes-related disease.
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SCG-Drug and DisGeNET databases collected gene-
disease associations from multiple sources, and both
annotated the credibility scores of gene-disease
associations. This study compared SIMPO-TSS1500-
predicted PD-related differential gene sets with the top
10% scored PD pathogenic genes recorded in DisGeNET
and SCG-Drug. The intersections of SIMPO-TSS1500-
predicted gene sets with known PD-causing genes were
significantly higher than the background databases
(Table 5) (Supplementary Table S10). The above results
further proved the reliability of the SIMPO-predicted PD-
associated genes. Moreover, it also reflects the robustness of
mining the statistical difference of DNA methylation between
the promoter and other regions (SIMPO algorithm) to
identify gene-level associations with a given phenotype
from the side.

DISCUSSION

In recent years, through EWAS, researchers have identified
thousands of phenotype-related differential methylation sites.
However, since the same gene may contain hundreds of
methylation sites, the DNA methylation beta values at
different sites vary widely. Furthermore, DNA methylation
remodeling has a certain degree of randomness on the
genome. As a result, for multiple EWASs focused on the same
phenotype, the intersections of identified differential methylation
site are small, which makes it challenging to identify

phenotype-associated genes and analyze epigenetic
mechanisms. Therefore, how to integrate the methylation
values of different sites on the same gene and identify
robust gene-level associations with phenotype becomes a
challenge in the epigenetics field.

In this study, by analyzing a set of individual samples
containing both transcriptome and DNA methylome data, it
was found that the SIMPO scores of ∼40% genes were
significantly correlated with transcription of mRNA,
demonstrating that the SIMPO scores of genes have a
reasonable correlation with gene expression. Then, three DNA
methylation datasets related to the smoking phenotype were used
to test the robustness of SIMPO algorithm. The results showed
that the robustness of the SIMPO algorithm in the same dataset
and between different datasets was significantly better than the
traditional EWAS method. Finally, through comparing with
known tobacco use disorder pathogenic genes, it is proved
that the biological significance of phenotype-related genes
identified by SIMPO algorithm is comparable to that of the
traditional probe-based methods. Next, we further applied the
SIMPO-TSS1500 algorithm to predict IR- and PD-associated
genes and proved the biological significance of corresponding
genes. On the other hand, our research group previously applied
the SIMPO algorithm to the prediction of disease-related
biomarkers. As a result, these studies successfully identified
several DNA methylation biomarkers related to the onset of
type 2 diabetes and colorectal cancer and were supported by
clinical trials (Quan et al., 2020a; Liang et al., 2020). In summary,
SIMPO-TSS1500 algorithm has good robustness and biological

TABLE 5 | The known PD-associated gene enrichment of SIMPO-TSS1500-calculated genes.

Dataset Known PD gene source SIMPO-TSS1500-derived ratio Background ratio p-valuea

GSE111629 SCG-Drugb 9.19% (99/1,077) 7.21% (351/4,868) 3.26E-03
DisGeNETc 7.15% (77/1,077) 5.88% (286/4,868) 2.79E-02

GSE72774 SCG-Drugb 9.28% (89/959) 7.21% (351/4,868) 4.27E-03
DisGeNETc 7.40% (71/959) 5.88% (286/4,868) 1.68E-02

aCalculated by Hypergeometric test.
bKnown PD-associated genes were collected from SCG-Drug (http://zhanglab.hzau.edu.cn/scgdrug).
cKnown PD-associated genes were collected from DisGeNET (http://www.disgenet.org).

TABLE 4 | The KEGG pathway enrichment of PD-associated genes calculated by SIMPO-TSS1500.

Dataset KEGG pathway Annotation

GSE72774 Alzheimer’s disease Nervous system diseases
GSE72774 Cysteine and methionine metabolism \
GSE72774, GSE111629 Cytokine cytokine receptor interaction \
GSE111629 Glycolysis gluconeogenesis \
GSE72774, GSE111629 Gnrh signaling pathway \
GSE72774, GSE111629 Inositol phosphate metabolism Nervous system diseases
GSE72774 Jak stat signaling pathway \
GSE111629 Lysosome \
GSE111629 Phosphatidylinositol signaling system Nervous system diseases
GSE72774 Purine metabolism Nervous system diseases
GSE72774 Snare interactions in vesicular transport \
GSE111629 Viral myocarditis \

1Calculated by GSEA (Gene Set Enrichment Analysis).
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significance. Therefore, we recommend that SIMPO-TSS1500
algorithm, which uses the TSS1500 probe as the promoter
region and the other probes as the other region (including
gene body, 3′UTR, 5′UTR, 1stExon, TSS200), can be further
applied to identifying significantly phenotype-related genes in the
field of epibiology.

However, the SIMPO algorithm still has some shortcomings.
In order to ensure the stability of the SIMPO algorithm, it
requires that the promoter region and other regions of a gene
contain five or more probes to obtain a SIMPO score. Therefore, a
large number of genes containing a small number of probes will
be lost. At present, the number of genes that can be calculated by
SIMPO-TSS200 and SIMPO-TSS1500 is only about 5,000, and
the number of genes that can be calculated by SIMPO-TSS200
and 1500 is only about 10,000. It is much smaller than the number
of genes contained in the human genome. As a result, some
critical functional genes have been missed for the current SIMPO
algorithm. Fortunately, with the popularity of the Illumina 850K
BeadChip in EWAS, which contains more than 850,000 probes,
the number of genes that the SIMPO algorithm can calculate will
increase significantly. In addition, the effectiveness of the SIMPO
algorithm is only verified in DNA methylation data of human at
this stage, excluding other common model animals (such as
mouse, rat, and drosophila). Therefore, the exploration of the
effectiveness of the SIMPO algorithm in other species will be the
focus of our future research. As a supplement of the traditional
methods, SIMPO algorithm provides a new insight for assessing
the degree of gene methylation. The different analysis methods of
methylation chip can help us better understand the gene-level
methylation associations with phenotype, providing a different
perspective in exploring the biological issues. We believe that the
combination of these methods can help us understand the
regulation mechanism of gene methylation more deeply and
solve scientific problems more effectively.
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