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Abstract
Error-driven learning algorithms, which iteratively adjust expectations based on prediction error, are the basis for a vast
array of computational models in the brain and cognitive sciences that often differ widely in their precise form and
application: they range from simple models in psychology and cybernetics to current complex deep learning models
dominating discussions in machine learning and artificial intelligence. However, despite the ubiquity of this mechanism,
detailed analyses of its basic workings uninfluenced by existing theories or specific research goals are rare in the literature.
To address this, we present an exposition of error-driven learning – focusing on its simplest form for clarity – and relate this
to the historical development of error-driven learning models in the cognitive sciences. Although historically error-driven
models have been thought of as associative, such that learning is thought to combine preexisting elemental representations,
our analysis will highlight the discriminative nature of learning in these models and the implications of this for the way how
learning is conceptualized. We complement our theoretical introduction to error-driven learning with a practical guide to
the application of simple error-driven learning models in which we discuss a number of example simulations, that are also
presented in detail in an accompanying tutorial.

Keywords Error-driven learning · Discriminative learning · Computational simulations · Cognitive modeling ·
Neural network models

Introduction

Error-driven learning models have been widely used in the
fields of animal and human learning for several decades
(see, e.g., Carpenter & Grossberg, 1987; McClelland
& Rumelhart, 1981; Pearce & Hall, 1980; Rumelhart
et al., 1986; Rescorla & Wagner, 1972; Rosenblatt, 1962;
Rumelhart, Hinton, & Williams, 1986; Sutton & Barto,
1998; Widrow & Hoff, 1960). They have also become
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the dominant approach in machine learning research, with
error-driven learning mechanisms forming the core of
today’s most popular AI applications based on artificial
neural networks (such as, e.g., OCR reading, LeCun,
Bottou, Bengio, & Haffner, 1998; machine translation, Wu
et al., 2016; or autonomous driving, Pomerleau, 1988).
However, given the high complexity of most of these latter
models, theoretical discussions of applications of error-
driven learning mostly focus on the further optimization of
network architectures, while the core learning mechanisms
receive little attention, being largely taken for granted.
As a result, despite their omnipresence, error-driven
learning mechanisms are rarely the subject of theoretical
investigation in the domains in which they are applied.

Given the fundamental role of error-driven mechanisms
in cognitive science, and, as we describe below, the
somewhat haphazard way in which this role has emerged,
we suggest that there is much to be gained from taking
a step back and revisiting the core mechanism, its
workings and their relation to theories of cognition in
more detail. Although an understanding of the basic error-
driven mechanism should be a critical prerequisite to the
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application and generation of learning models on any
level of complexity, it is clear (see Ramscar, Yarlett, Dye,
Denny, & Thorpe, 2010) that many misapprehensions about
error-driven learning — for example, that it is a form
of associative learning (as it is conceptualized by, e.g.,
Rescorla & Wagner, 1972) — persist in the literature.

Note that model simplification is perhaps easily stated
as a general solution; it is still important to acknowledge
that while error-driven learning mechanisms are deceptively
simple, models based on these mechanisms only tend to be
useful in the context of complex architectures. This is an
old theoretical issue. While complex models often provide
a higher degree of performance, interpretability is usually
lost with increasing model complexity (Bonini’s paradox;
Dutton & Starbuck, 1971). Accordingly, much of our focus
here will be on the basics of the simple mechanism at the
heart of these models, rather than on complex architectures.

A further issue complicating the understanding of error-
driven learning mechanisms is that information about them
tends to be scattered over the literature of different fields
and appears in many different theoretical contexts. The
fact that error-driven learning models have been integrated
in many different theories makes it especially difficult to
differentiate between theory- or application-specific parts
of model specifications and parts that are in fact essential
to the basic error-driven learning mechanism (which is
a known problem in modeling, Cooper & Guest, 2014;
McCloskey, 1991). Proposed error-driven models differ
widely, not only in their network architecture, but also in
their specific implementation of the learning mechanism,
in the way model responses are interpreted and, last
but foremost, in how they define a learning problem in
terms of the input and output representations given to the
model. Accordingly, we will describe how understandings
of basic error-driven learning have been diluted by varying
specifications in countless applications, which has often
led to the potential of simple architectures being ignored.
Yet, as we will show, many recent investigations have
been successful in generating theoretical predictions and
explanations employing only the simplest error-driven
learning architectures, underlining the importance of careful
theoretical analysis in this domain.

In what follows, we present a critical theoretical
review of the basic error-driven learning mechanism and
its relation to human cognition. Our aim will not be
to offer an extensive literature review, but rather to
present a theoretical characterization of the core error-
driven learning mechanism, based on which we will
then provide an overview of the scope of this learning
mechanism. To this end, we will seek to contrast historical
use and interpretation of simple error-driven learning
models with recent advances, highlighting the way that
current explorations of the basic dynamics of the learning

mechanism have informed new theoretical insights about
learning.

An important point that we will emphasize in presenting
this model is that it — and all error-driven learning models
that enforce cue and outcome competition (discussed
in more detail in Sections “Network architecture and
learning mechanism” and “Learning dynamics”) — belong
to the class of discriminative models and implement a
discriminative learning mechanism. As a preliminary, it
will be important to clarify some historical ambiguities
regarding the definition of discriminative learning.

• The term discrimination learning was initially used in
the literature on animal learning and behavior (refer
to, e.g., Hilgard & Bower, 1975). Consistent with the
behaviorist principles that dominated theory in the
earlier parts of the twentieth century, it was used in
an externally grounded, mechanism-neutral way, to
describe the requirement for animals and humans to be
able to learn different responses to different stimuli.

• Later, in machine learning, the notion of a discrimina-
tive model was introduced to provide a more mathemat-
ical and more concrete conceptualization of discrimi-
nation learning in relation to classification problems.
Unlike generative models — which they are contrasted
with — discriminative models are simply defined in
terms of their capacity to learn to maximize the con-
ditional probabilities of output units given input units
(Ng & Jordan, 2002). Importantly, this definition is
once again neutral with regards to the mechanism, and
while most classification problems in which discrim-
inative models are employed also tend to implement
discriminative algorithms (discussed below) this does
not need to be the case (in fact, discriminative models
are also sometimes referred to as conditional models as
a reflection of this as, for example, in Gudivada, 2018)

• Finally, the mechanism which in most cases is
implemented in discriminative models is some kind of
discriminative learning algorithm, such as the error-
driven learning algorithm we will analyze in this article.
In most learning situations these kinds of learning
mechanisms enforce cue and outcome competition,
which together serve to discriminate against or in favor
of the units that serve as input representations —
by re-weighting the influence of individual units —
which effectively rerepresents them according to how
informative they are about different outputs (Ramscar
et al., 2010).

Note, however, that it follows from all this that a
discriminative learning algorithm is not always necessary to
explain discrimination learning phenomena or to solve the
classification problem stated by a discriminative model. As
we will seek to elaborate in the course of this article, these
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points are highly dependent on the task and task structure in
question. Although these different notions of discriminative
learning have crucial implications for our conceptualization
of the learning process, historically they have been obscured
or ignored when models of “discrimination learning” have
been applied to behavior, leading to a number of confusions
about the strengths and weaknesses of the discriminative
learning algorithms actually implemented in error-driven
learning models.

Importantly, while historical treatments of learning
have often employed error-driven learning mechanisms,
at a theoretical level these treatments (e.g., Rescorla &
Wagner, 1972) have still tended to be framed from an
associative perspective guided by compositional principles,
such that representations given to these models have
been assumed to be combinations of preexisting low-
level input representations (i.e., features, elements, or even
microfeatures). However, as we discuss in detail below,
this directly contradicts the logic of learning in error-driven
learning models which indicates that representations depend
on the learning process, which is guided by principles of
discrimination rather than compositionality. Accordingly,
one goal of this article will be to clarify this point, not
only when examining the learning mechanism but especially
when thinking about the nature of input representations and
how the representations given to a model affect what this
model can learn (Bröker & Ramscar, 2020).

In order to perform this theoretical review, it will
be necessary to thoroughly discuss all of the important
methodological components of simple error-driven learning
models. Accordingly, as well as providing a theoretical
introduction to the topic, this article also serves as a practical
introduction to the method of modeling with minimal
error-driven learning networks, especially together with the
practical tutorial (https://dorohoppe.github.io/tutorials/edl.
html) that we have compiled to accompany the article. Our
aim is thus not just restricted to giving an idea of the
scope of error-driven learning; we also hope to suggest ways
to further explore the many possibilities offered by this
mechanism.

A brief history of error-driven learning

We will begin by briefly reviewing the development and
subsequent use of error-driven learning in the fields of
cognitive modeling and machine learning over the last 60
years.

Error-driven learning mechanisms were first introduced
into cognitive science in order to provide a formalism
which could account for the findings of early experi-
ments in classical conditioning (e.g., Pavlov, 1927; Kamin,
1969; Rescorla, 1968) and discrimination learning (e.g.
Krechevsky, 1932). In particular, one basic principle

informed by experimentation changed the former under-
standing of associative learning and built the base of the
theory behind error-driven learning: learning depends on
how well a stimulus predicts a following response or a sub-
sequent stimulus and not on mere temporal contingency
(Rescorla, 1988). This principle followed directly from the
observation that during learning not only stimuli that occur
together are associated but also stimuli that do not occur
together are dissociated (Rescorla, 1968). Subsequently
developed models implemented these learning dynamics
using a simple feed-forward two-layer1 artificial neural net-
work in which weights between an input and output layer
were updated with a learning mechanism that minimizes
prediction error.

One of the first formulations of this error-minimization
technique that gained widespread attention was the so-
called “delta rule” by Widrow and Hoff (1960). A different
formulation of this idea was subsequently presented by
Rosenblatt (1962) integrated in one of his perceptron
models (γ -perceptron). A decade later, Rescorla and
Wagner (1972) published their model which basically
implements a version of Widrow and Hoff’s (1960)
delta rule with some additional assumptions. While these
three simple models differed in some assumptions and
parameters, they all employed two-layer feed-forward
networks and an error-minimizing learning rule.

Soon, the field of interest of these early models outgrew
animal learning (Miller, Barnet, & Grahame, 1995) and
error-driven learning models were used to investigate
human cognition (Gluck & Bower, 1988; Rumelhart &
McClelland, 1986). From there, the models had been
extended in many directions, among others: the addition
of hidden layers and recurrent connections led to modern
artificial neural networks with a generalized delta rule —
backpropagation (McLaren, 1993; Rumelhart et al., 1986);
representations of input and output units developed from
elemental (low-level perceptions; McLaren & Mackintosh,
2000; Rescorla & Wagner, 1972; Wagner & Brandon,
2001) to configural (combinations of elemental features;
Pearce, 1987; 2002); attention modulation mechanisms
were added to account for more learning phenomena, such
as latent inhibition (Harris, 2006; Mackintosh, 1975; Pearce
& Hall, 1980); furthermore, temporal generalization (Sutton
& Barto, 1987) led to the development of reinforcement
learning (Sutton & Barto, 1998).

1This kind of network architecture is often also referred to as a single-
layer network, following a convention of not counting the layer of
input units in order to contrast multi-layer architectures which include
at least one layer of hidden units. However, given that there is a
layer of input and an output units, we use the term two-layer for this
architecture
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Early on the simple two-layer error-driven learning net-
works were harshly criticized for being too restricted and
limited in scope, starting with a review of Rossenblatt’s
(1962) basic perceptron byMinsky and Papert (1969). Espe-
cially regarding practical applications, multi-layer networks
turned out to be much more powerful and successful with
their ability to learn non-linear structure in the input by con-
structing intermediate abstract representations. The further
exploration of the scope of the basic underlying error-driven
learning rule bare of any extensions or modifications was,
therefore, put on hold.

While research on the fundamentals of error-driven
learning has never completely stopped, recent advances
have revisited the original, simple models, in particular
the Rescorla-Wagner model (Rescorla & Wagner, 1972),
and questioned the theory and assumptions behind them.
This has led to a number of new insights about funda-
mental properties of learning in developmental psychol-
ogy (Ramscar, Dye, Gustafson, & Klein, 2013; Ramscar,
Dye, & Klein, 2013; Ramscar, Thorpe, & Denny, 2007;
Ramscar et al., 2010), aging research (Ramscar, Hendrix,
Shaoul, Milin, & Baayen, 2014; Ramscar, Sun, Hendrix, &
Baayen, 2017) and linguistics (Arnold, Tomaschek, Sering,
Lopez, & Baayen, 2017; Arnon & Ramscar, 2012; Baayen,
Milin, Ðurd̄ević, Hendrix, &Marelli, 2011; Baayen, Shaoul,
Willits, & Ramscar, 2016b; Milin, Divjak, & Baayen, 2017;
Linke, Bröker, Ramscar, & Baayen, 2017; Ramscar, Dye,
& McCauley, 2013; Ramscar & Dye, 2009; Ramscar &
Yarlett, 2007; Nixon, 2020; Nixon & Tomaschek, 2020; St
Clair, Monaghan, & Ramscar, 2009). Surprisingly, many of
these simple models turn out to be able to explain seemingly
complex phenomena of human cognition and sometimes
even predict behavior that more optimal and rational models
or more complex networks fail to explain (Gluck & Bower,
1988; Gureckis & Love, 2010). Hence, while error-driven
learning is used in cognitive modeling and machine learning
since over 60 years and integrated in highly complex mod-
els, the current findings with minimal error-driven models
suggest two things: first, that the scope of the basic error-
driven learning mechanism has still not been sufficiently
explored; and second, that such a fundamental exploration
is best done with radically simplified models. One likely
reason for the former is, as we noted above, the widespread
misconception that error-driven learning is associative (see,
e.g., Harris, 2006; Miller et al., 1995; Rescorla & Wagner,
1972 ), and a further advantage of the latter is that the dis-
criminative logic of error-driven learning can be illustrated
most clearly in a simple model.

Focus on the core learningmechanism

In order to make the workings of simple models more
straightforward and easy to understand, in this article

we will present an error-driven learning model that is
stripped off all unnecessary assumptions and parameters
(and layers).

In complex modern artificial neural network models it
is becoming increasingly difficult to pinpoint which part
of a model contributes to its behavior, and interestingly,
there is currently a trend towards developing methods
for analyzing the workings of complex neural networks
(e.g., Adi, Kermany, Belinkov, Lavi, & Goldberg, 2016;
Lei, Barzilay, & Jaakkola, 2016). The present approach is
consistent with this in that our focus will be on the very
simplest form of error-driven learning that nevertheless lies
in the heart of these more complex systems.

That previous approaches of studying error-driven
learning in two-layer network models haven’t advanced
much over the last decades might have been partly due
to scarce computational resources in the last century
and partly due to the sociological dynamics surrounding
the debate about the limitations of simple error-driven
learning models (Olazaran, 1996). However, we will argue
here that, to a large part, this was also caused by the
too restricted specification of models, especially of the
prominent Rescorla-Wagner model. On the one hand, we
will show how the Rescorla-Wagner learning rule can be
further simplified (see Section “Mathematically similar
learning rules”). On the other, we will show how the specific
assumptions about the input and output representations
used, strongly limited the scope of previous models (see
Section “Cue and outcome representations”).

The aims of this article are to systematically introduce
a simplified modeling framework to study error-driven
learning and to summarize the resulting learning dynamics
including their implications for learning theory. Crucially,
this analysis of simple error-driven learning models will
emphasize the discriminative logic of learning in them
which, as we will highlight in the following, differs
considerably from traditional conceptualizations of these
models. In the course of this we thus seek to highlight the
connections and, more importantly, the differences between
this analysis and previous research with simple error-driven
learning models.

We will start with a derivation of a simplified network
architecture and learning rule which can effectively isolate
the error-driven learning mechanism. Then, we will present
the main learning dynamics arising from this setup and
discuss how simulation results can be related to data of
real learners to inform theories about learning. Finally,
we will discuss the important role of input and output
representations for the scope of the present discriminative
error-driven learning model compared to historical models.

For readers interested in the practical implementation
of cognitive modeling with minimal two-layer error-driven
networks, we have prepared a tutorial which complements
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Fig. 1 A fully connected error-driven learning network, with incom-
ing connections to one outcome highlighted in blue (a). Consider an
example of learning to discriminate animals by first seeing an animal,
for example a dog, and then hearing it’s species name. (b) shows how
the activation of the outcomes dog and other animals develops given
the cue set {tail-wagging, a specific fur color}, maximizing certainty to

expect one specific outcome. (c) shows a hypothetical weight update
after seeing a dog and hearing “dog”. Black dashed lines show pos-
itive weight adjustments and red dashed lines negative adjustments.
The dashed box shows the current cue set in which weights compete
with each other

the theoretical aspects of the paper and provides the code
and practical details about the employed examples (https://
dorohoppe.github.io/tutorials/edl.html; the source code to
the tutorial can be found at https://git.lwp.rug.nl/p251653/
error-driven-learning-tutorial). An implementation of the
present approach is available with the R package edl (van
Rij & Hoppe, 2021).

Network architecture and learning
mechanism

The simple form of error-driven learning we will present
here is a fully connected two-layer feed-forward neural
network with a linear identity activation function and an
incremental error-driven updating of connection weights,
most widely known as the delta rule (McClelland,
Rumelhart, & the PDP Research Group, 1986; Widrow &
Hoff, 1960).

In the course of presenting this basic form of error-
driven learning, we will also analyze its conceptual logic,
and highlight the similarities and differences between
our analysis and previous, historical work employing
this mechanism. Before we begin, however, there is one
important point we need to foreshadow: As we will see
later (e.g., in Section “Cue and outcome representations”),
the definition of the network architecture and learning
mechanism is not enough to specify an error-driven
learning model. The crucial part that sets the new
discriminative perspective on these models off from
previous perspectives is the treatment and interpretation of
the input representations these models operate on.

Error-driven learning is discriminative

Error-driven learning implements the idea that learning is
based on expectations and is basically a process of making
and testing predictions. Ultimately its aim is to reduce
uncertainty about upcoming states of the world, which
is also the objective of the larger class of discriminative
models. In the following we will elaborate on the basic
components of error-driven learning models that give rise to
a mechanism satisfying this aim.

First of all, just as predictions, error-driven learning is
directional and crucially, its unidirectional dynamics can
only arise in a feed-forward network, in which connections
are directed from input to output units. Hence, the basic
model architecture we discuss in this paper is a feed-forward
two-layer network that fully connects a layer of discrete
input units (cues) with a layer of discrete output units
(outcomes)2 as illustrated in Fig. 1a. As defined by the feed-
forward property, weights from cues to outcomes are always
directional, from a cue to an outcome, never bidirectional,
between a cue and an outcome. This is the most basic
architecture of a neural network, employed by most
early error-driven learning models, for example, Widrow
and Hoff’s (1960) ADALINE, Rosenblatt’s (1962) simple
perceptron, and Rescorla and Wagner’s (1972) model.

Furthermore, as opposed to generative models which
estimate a probability distribution over all previous data

2In terms of classical conditioning, conditioned stimulus (CS)
corresponds to cue and unconditioned stimulus (US) corresponds to
outcome. Often, only two outcomes are considered: reinforcement
(+) or non-reinforcement (-) of the US, leading to notations such as
“CUE1+” and “CUE2-”.
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points, discriminative models update expectations primarily
based on the most recent data point, while previous
experience is captured only indirectly by the current state
of the network. A key feature of error-driven learning
is therefore also that it is an incremental algorithm that
updates weights online: over discrete training trials, weights
are incrementally updated recording a weight matrix for
every point in time. The weight matrix V between cues i

and outcomes j at time t is updated by adding a weight
adjustment to yield the new state of the network at time t+1:

V t+1
ij = V t

ij + ΔV t
ij (1)

To motivate how the weight adjustment ΔV t
ij is

calculated, we need to consider the goal of error-driven
learning, which ultimately makes it discriminative, in more
detail: to reduce uncertainty about the occurrence of states
in the world (Gallistel, 2003; Ramscar, 2013; Rescorla,
1988). This means that ideally, at any point in time,
the current state of the world will be expected with full
certainty, given the current context or conditions. In order
to reach this goal, a learner needs to learn to discriminate
structures in the world according to how they predict
different states of the world. For example, with what we
have learned by seeing many different dogs and rabbits
we are normally able to tell the difference between a dog
and a rabbit with full certainty, taking into consideration
their appearance and behavior. In terms of an error-driven
learning system this means that ideally weights develop
such that every possible set of cues, which can for example
represent the features of an instance of a specific dog, fully
predicts one unique outcome or outcome set, for example
the word “dog” (see Fig. 1b).

Error-driven learning tries to achieve optimal discrimi-
nation of cue structures by minimizing the error between
the desired state of full certainty about an outcome and the
actual current expectation of this outcome to occur given the
cues that are present at that point in time.

The desired full expectation of an outcome or the target
value of the optimization process is usually formalized
as the maximal activation (here, 1) of a specific outcome
unit, and the minimal activation (here, 0) for not expected
outcome units, respectively.

The actual current expectation of an outcome is captured
by the activation of the outcome given the currently present
cues. The activation of an outcome unit in an artificial neural
network is conventionally a function of the input received
from incoming connections (see highlighted connections in
Fig. 1a), also called net input. The most simple version of
a net input function net tj of an outcome j is the sum of
weights vt

xj of all cues x present at the current time t to
an outcome j (McCulloch & Pitts, 1943; e.g., also used
in Rescorla & Wagner, 1972; Rosenblatt, 1962; Widrow &

Hoff, 1960):

nettj =
∑

x∈cues(t)

vt
xj (2)

In neural network architectures, the net input to an
outcome is then further transformed by an activation
function, which can significantly influence the learning
behavior of the network. At this point, error-driven learning
models diverge. For example, a so-called heavy-side step
function which equals zero below a specific threshold and
one above this threshold can implement the assumption
that outcome units can only be on or off (McCulloch &
Pitts, 1943; Rosenblatt, 1962). Widrow and Hoff (1960)
and Rescorla and Wagner (1972) assumed that the input
of an outcome unit would not be transformed for the
error calculation (or transformed with a linear identity
function). Finally, modern neural networks usually assume
a nonlinear activation function which allows to capture non-
linear structures in the input (e.g., Rumelhart et al., 1986).
With our aim of simplifying the error-driven learning model
as much as possible, we however opt for the linear identity
function (equal to no transformation) in line with Widrow
& Hoff’s, 1960; Rescorla &Wagner’s, 1972 original model.
We therefore define the activation as equal to the net input:

act tj = nettj =
∑

x∈cues(t)

vt
xj (3)

The formulation of the learning rule for the actual
error-minimization process also differs slightly between
different suggested error-driven learning models. The
version with the least free parameters is the Widrow-
Hoff rule commonly referred to as the delta rule. (In the
following Section “Mathematically similar learning rules”
we will discuss mathematically similar formulations and
alternatives to this rule, especially also the differences with
the Rescorla-Wagner learning rule which is mostly used
in the context of current research employing two-layer
error-driven learning networks.)

In a network with discrete cue and outcome units with
activation boundaries between 0 and 1, the delta learning
rule differentiates between three possible learning situations
to calculate the weight difference ΔV t

ij at every time step t :

ΔV t
ij =

⎧
⎨

⎩

0 , cue i absent
η(1 − act tj ) , cue i and outcome j present
η(0 − act tj ) , cue i present but outcome j absent

(4)

In the first of the three cases, when a cue does not
occur, no weights are updated. The second case describes
the situation when a cue and an outcome co-occur. In this
case, weights are adjusted according to the error between the
maximal possible weight value 1 and the current activation
of the outcome j modulated by a learning parameter η
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(per default, we suggest to set η = 0.01, as in: Baayen
et al., 2016b; Hoppe, van Rij, Hendriks, & Ramscar, 2020;
Ramscar et al., 2010). In the third case, the weights from
the current cue to every absent outcome in the network are
adjusted following the error between the activation of the
absent outcome j and 0.

The main characteristic that makes the delta rule
discriminative is that weights from single cues to single
outcomes are always updated as part of a system of weights
which influence each other (see Fig. 1a), in particular,
including the weights from all currently present cues to all
outcomes (present and absent). On the one hand, all present
cues in a learning event influence each other’s weight
adjustment in the activation term

∑
x∈cues(t) vt

xj (see Eq. 3
and Fig. 1c). Together with the fact that 1 defines a maximal
weight value, which restricts the error term 1−act tj in Eq. 4,
this leads to the dynamic of cues competing with each other
for predicting a specific outcome, or in other words, for
their share of the maximal weight value. On the other hand,
weights from one cue are always updated respective to all
outcomes in the network, also the outcomes that are absent
in the current learning event (see Fig. 1c).

What follows from updating the whole network after
every learning event is that the delta rule can associate and
dissociate cues from outcomes (see Fig. 1c). Association,
the process of increasing weights from cues to outcomes,
is a process mainly driven by positive evidence, thus,
when cues and outcomes co-occur. However, perhaps more
importantly, the delta rule also allows for dissociation of
cues from outcomes. First, the limit 1 on weight increase
creates the need to down-regulate overshooting weights.
Second and more importantly, the third case of Eq. 4
decreases weights when cues wrongly predict an absent
outcome, thus, when the learner is confronted with negative
evidence. As a consequence of this interplay between
association and dissociation, weights will not only depend
on how often a cue occurs with an outcome but also on
how often it does not occur with that outcome. Learning
is therefore not only depending on cue and outcome
frequency but also on how predictive, or in other words, how
informative a cue is for an outcome (Gallistel 2003, 2002,
Rescorla 1988, 1968; “information” is here used as defined
by Shannon 1948), meaning how much a cue can reduce
the uncertainty about the outcome and so contribute to a
maximal discrimination of cue structures.

In sum, when analyzing error-driven learning in such
a simplified framework we can observe its discriminative
nature: input is processed incrementally in order to directly
learn predictive structures in the environment with the aim
of fully reducing uncertainty. To simulate this process, it
is sufficient to use a two-layer feed-forward network in
which outcome units are activated directly by summing up

incoming weights, without any further transformation. The
weights are learned in an error-minimization process which
incrementally updates the whole network by applying two
mechanisms: first, outcome competition not only increases
connections between co-occurring items or events, but more
importantly also simultaneously decreases connections
between non co-occurring items or events; and second,
cue competition evaluates the informativity of single cues
relative to all currently present cues. Together these two
mechanisms ensure that at any point in time ideally only
one unique outcome (or one unique set of outcomes)
is expected while all others are discarded. (However, as
we will illustrate in more detail in Section “Learning
dynamics”, depending on the learning problem at hand, this
ideal goal is often not reached.) In particular, we suggest
that this minimal error-driven model is not only sufficient
but also most suited to study the basic mechanisms of
learning because the minimized parameter space decreases
the risk of confounding the underlying reasons for any
observed behavior of the model.

Mathematically similar learning rules

It is important to note that the Widrow-Hoff learning rule
or delta rule presented in Eq. 4 is mathematically equivalent
to linear regression (Evert & Arppe, 2015; Gluck & Bower,
1988) and very closely related to logistic regression (Evert
& Arppe, 2015), which uses a logistic activation function
instead of an identity activation function.

All of these accounts provide a least-squares solution
(minimizing the squared differences between the target
outcome activation 1 or 0 and the actual outcome activation
summed over all training trials) that an incremental learner
will fluctuate around or asymptote towards. In cases in
which the learning trajectory is not of interest, there are
several ways to directly calculate this solution or the
equilibrium state (see e.g., Danks, 2003; Evert & Arppe,
2015).

The delta rule is also very closely related to the Rescorla-
Wagner learning rule (Rescorla & Wagner, 1972), which
comes, however, with some additional parameters. Because
this rule is often referred to in the context of simple
two-layer error-driven learning networks, we shall briefly
discuss why the simpler delta rule should be preferred
over the Rescorla-Wagner learning rule when studying
basic error-driven learning. The Rescorla-Wagner learning
rule makes several additional assumptions, which are
implemented in additional parameters:

ΔV t
ij =

⎧
⎨

⎩

0 , cue i absent
αiβ1(λ − act tj ) , cue i and outcome j present
αiβ2(0 − act tj ) , cue i present but outcome j absent

(5)
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First, in this formulation the upper target value of an
outcome’s activation is not restricted, but defined by a more
general parameter λ. As it is applied to all outcome units,
λ acts only as a scaling parameter and can therefore be
generally set to 1.

Second, in contrast to the general learning rate η in
the delta rule, the Rescorla-Wagner rule allows for a more
detailed specification of a salience parameter αi , which can
vary by cue, and for two learning rates, one for positive
evidence (case 2 of Eq. 5), β1, and one for negative evidence
(case 3 of Eq. 5), β2

3.
A general problem that these salience parameters raise

is that the concept of “salience” is typically ill-defined in
the literature (e.g., in linguistics: Boswijk & Coler, 2020).
In particular, because salience is often conceptualized as
a property of a stimulus which makes it “stand out” from
its surrounding context, the whole idea of salience is
conflated with discriminability. Since the point of delta-
rule learning is to determine cue weights in context —
which makes some cues more salient than others — from
a theoretical perspective, adding a salience parameter to
the delta rule appears to be at best unparsimonious and
at worst circular. For example, the parameter αi has been
used to account for overshadowing (Rescorla & Wagner,
1972). However, in modeling blocking, which is essentially
a special case of overshadowing, this effect is more
parsimoniously explained by previous learning, which is
reflected in the weights between cues and outcomes in the
network (see Section “Cue competition”), an explanation
that provides more insight about underlying processes than
fitting the effect by tuning an αi parameter. Similarly, the
use of different β1 and β2 has been mainly motivated by
the assumption that the presence of outcomes is inherently
more salient than the absence of outcomes, which is why
originally Rescorla and Wagner (1972) set β1 = 0.2 and
β2 = 0.1. While this assumption is broadly sensible from
a discriminative perspective, given that it is difficult to
determine reliable cues for an outcome which occurs in
many situations and that most outcomes are more frequently
absent than present, there are also situations in which the
absence of an outcome is more salient, for example, when
it is more frequently present than absent (McKenzie &
Mikkelsen, 2007). This suggests that assumptions about
salience in regard to the representations employed in
learning models need to be made very carefully, and that
other options, such as attending more closely to the learning
task and the inevitable prior experience of learners may
be more preferable than simply tweaking an effect that the
model itself is supposed to capture. Overall, we suggest

3Theoretically Rescorla and Wagner (1972) had assumed different
learning rates for different outcomes but practically they presented
only models considering two outcomes, reinforcement and non-
reinforcement.

that, on the one hand, simple error-driven learning models
can be usefully employed to investigate the still elusive
concept of salience by manipulating the training data or
input representations. On the other hand, when the salience
of elements of a representation cannot be captured in this
way — perhaps because of the effects of evolution on
learners’ perceptual system — it might be best to use more
detailed models that explicitly attempt to capture these
effects as opposed to hard coding them in a simpler more
general model.

It is worth noting that, probably, many of the original
modifications to the delta rule associated with the Rescorla-
Wagner learning rule might be best understood in terms
of the limited options available to modelers when it was
first proposed. At that time, there were few alternative
formal models of learning, and computational resources
were extremely limited. Accordingly, modelers were forced
by necessity to work only with simple learning mechanisms
and very simple representations. Further, when iterations
were still often calculated by hand, adding these parameters
clearly simplified the computational complexity of actually
running simulations. Simply assuming that one cue was
more salient than another could allow a modeler to avoid the
task of reconstructing the learning trajectory that actually
led to that salience. By contrast from a modern perspective,
the costs associated with processing more complex input
representations and training regimens using the delta
rule (which can exert an enormous influence on model
outcomes, Bröker & Ramscar, 2020) are now relatively
trivial, and a range of models with different strengths and
weaknesses now exists for modeling tasks where use of the
simplified delta rule may be inappropriate (this is discussed
in detail further below). Thus, rather than seeking to explain
learning phenomena by constantly modifying the same
simple learning mechanism, when this mechanism is not
suited to a task, modelers today have the option of selecting
different learning algorithms and/or architectures that might
be more appropriate to the phenomena in question.

In conclusion, we would suggest that these free
parameters actually get in the way when it comes to using
simple error-driven learning models in research. If this
suggestion is followed when using the simple delta rule
(Eq. 4), it further follows that all learning dynamics can
be attributed to the core mechanism, which comprises the
processes of association, dissociation and cue competition,
and to the underlying frequency distribution of cues,
outcomes, and learning events. In the following section we
will now isolate the main learning dynamics that result
from the basic error-driven learning mechanism. However,
we need to foreshadow: the employment of the delta
learning rule is not sufficient for an error-driven learning
network to show the dynamics of discriminative learning.
Rather, discriminative learning unfolds from an interaction
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between the learning rule and the structure of the input (see
Section “Cue and outcome representations”).

Learning dynamics

Having presented a simplified network architecture and
learning mechanism, we next turn our attention to the details
of basic error-driven learning dynamics. In the following we
will lay out how they arise from the basic setup we have
described in the previous section.

In order to understand the basic learning dynamics in
an error-driven learning model, we need to, first of all,
return to our main assumption from the previous section
that error-driven learning serves to minimize uncertainty
about upcoming states of the world. The prediction error
is reduced maximally, when the summed weights of a
set of cues approximates 1. Consequently, cues have to
compete for their share of the limited outcome activation,
a process called cue competition. However, full certainty
about outcomes cannot be achieved in every situation, due to
ambiguous cues or missing information. For example, when
seeing a bird in a tree (without having access to binoculars),
we only can use the bird’s size to classify the bird, which
is often not a reliable predictor. In this case, we would be
more likely to conclude that this bird was a Great Tit rather
than a Coal Tit, because the first species is much more
commonly seen in the Netherlands than the latter. Thus, in
situations in which uncertainty cannot be fully decreased,
the best alternative is to expect outcomes according to
their probability under the current circumstances. In error-
driven learning, the updating of weights to absent outcomes
(see Eq. 4, case 3) leads to outcome competition, which
makes sure that the most probable outcome in a situation is
favored.

Importantly, situations in which only cue competition or
only outcome competition play a role, are very unlikely.
Usually we are confronted with situations in which
these two mechanisms interact. However, to explain the
two dynamics, we will first discuss cue and outcome
competition separately and then investigate how they work
together in error-driven learning.

Thereafter, we will discuss how the qualitative difference
between cue and outcome competition gives rise to
asymmetry effects and touch on the temporal dynamics in
error-driven learning models.

Cue competition

Cue competition occurs when multiple cues appear with the
same outcome. A very simple example of cue competition
is Kamin’s (1969) blocking paradigm in which rats were
trained to expect a shock by either presenting a light or

presenting a tone (“noise”) together with a light before a
shock. Kamin observed that after the rats had learned to
expect a shock after a light, they would not subsequently
learn the predictive value of a new cue, the tone, appearing
together with the light. In the following, we will use
this example (replacing the shock with food, see Fig. 2a)
to illustrate the dynamics of cue competition and to
analyze how these dynamics change under different training
regimens.

First of all, cue competition serves the function of
maximizing the activation (i.e., the expectancy) of an
outcome given every possible set of cues by optimizing the
cue weights to this outcome. In our example, this means
that the weights of the cues tone and light to the outcome
food will be optimized such that both the expectancy of food
given only the light and the expectancy of food given the
light together with the tone will be maximal.

This optimization process entails that whenever a set of
cues appears together with an outcome, the cues within the
set compete for their share of the prediction of this outcome
depending on how informative the single cues are about the
outcome averaged across all learning events. Crucially, this
competition arises from the fact that the weight update for
each single cue is calculated proportionally to the activation,
which is the sum of the weights of all currently present cues.
Therefore, the magnitude of the weight adjustment of each
single cue is affected by the weights of all other cues it co-
occurs with. If one of the cues enters the competition with a
high weight value, because it appears more frequently with
the outcome than the other cues, the weight update will
be small. As a result, the other cue(s) in the cue set will
never be able to reach a similarly high weight. This happens
for example in situations in which one cue appears more
frequently with the outcome than the other cues, such as the
light which is twice as frequent as the tone in the blocking
paradigm (see Fig. 2b).

If the frequencies of the cues presented to a model
are held constant, the effect of cue competition can be
modulated by the temporal sequence of training trials. In the
blocking paradigm this can be illustrated by observing how
the training sequence influences how well the less frequent
cue in the compound is learned, in our case the tone. First of
all, the classic blocking effect (see Fig. 2c), where this cue
is completely blocked, occurs when the light is pretrained
until it fully or almost fully predicts the outcome by itself.
Then, no share of the outcome activation is left for the
tone in the compound with light and the tone becomes
almost completely redundant. However, when training trials
are completely randomized (see Fig. 2b), the tone will
carry part of the outcome prediction at first and only over
time, the overall more frequent light cue will fully predict
the outcome by itself. Finally, when the classic blocking
training sequence is reversed such that the compound cue
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Fig. 2 Illustration of the cues and outcome in Kamin (1969) blocking
paradigm (a). During randomized training the weight from the more
frequent light cue to the outcome food is increased until light com-
pletely predicts food by itself (b). This effect is amplified when the
light is trained first by itself to predict food (c). While in b) the tone

can temporarily increase its weight, it almost can’t increase its weight
in c). When the compound cue consisting of light and tone is trained
first (d), the weight of the tone cue stays constant (until a new training
regimen, e.g. as in b) would be applied)

is trained first (see Fig. 2d), the tone will, in theory, not
decrease4 its weight when later the single light cue is trained
(until light and tone would appear again as a compound
cue). This illustration shows how the training sequence can
influence cue competition and that it can be worthwhile to

4This illustrates that error-driven learning does not assume that
weights between cues and outcomes decay over time.

study the learning effects over time, an issue that we will
come back to again later.

In the previous example, frequency determined the
outcome of cue competition as a function of the order in
which the cues were presented. However, it is crucial to see
that frequency only matters within sets of cues. To illustrate
this important point, consider another example: a light cue
is either paired with a loud or a soft tone preceding food,
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with the former set of cues being more frequent than the
latter (Fig. 3a). After randomized training, the light will be
the strongest and also the most frequent cue, however, both
tones, the more frequent and the less frequent one, will have
the same weight. In this example, not the different frequency
of the two tones determines the learned weights but the
identical way in which they compete with light within the
set of cues.

These two examples (see Figs. 2 and 3a) serve to
illustrate some basic mechanisms of cue competition: first,
only cues that co-predict the same outcome as a set
can compete with each other; second, within these sets,
frequency of occurrence with the outcome determines which

cue will develop the strongest weight; third, temporal
organization of training modulates this effect, as cue
competition is temporally restricted until the outcome
is maximally predicted by all sets of cues. With these
mechanisms cue competition can identify the most relevant
cues to be able to fully predict an outcome across all
possible situations (i.e., cue set - outcome occurrences).

Still, the dependencies in cue competition can quickly
become very complex. Figure 3b shows what happens
when not only the two different tones interact with light
independently but also when they interact with each other.
In that case, when all cues interact with each other, all
frequency effects vanish and all cues develop the same

Fig. 3 Different examples of cue competition. a) shows how frequency
only determines weight differences within sets of cues, as the more
frequent loud tone develops the same weight to the outcome food
as less frequent soft tone. b) illustrates how frequency effects in cue

competition can be canceled out by the structure of cue interactions.
Here, every cue interacts with every other cue, which results in all cues
having the same weight despite their different frequencies
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weight to the outcome because all cues influence each other
to the same extent. Hence, how cues interact with each other
can take precedence over the different cue frequencies and
in this way cue competition can even cancel out frequency
effects.

Outcome competition

Thus far, we have only considered situations in which there
can be multiple cues but only a single outcome. Only in
such cases can we observe pure cue competition (i.e., in
the absence of effects resulting from the competition of
outcomes). To observe the opposite case, pure outcome
competition, we need to construct a situation in which there
is only one cue, but multiple outcomes (note that these are
highly idealized examples).

When multiple outcomes are being predicted by one
or only a few cues, a complete optimization of outcome
activations with the aim of full uncertainty reduction will
not be possible as in the previous examples. One cue
cannot fully predict more than one outcome as would be the
hypothetical aim in an example where a light cue predicts
both food and water delivery (see Fig. 4a). While it seems to
be intuitively possible to predict two outcomes from one cue
set, this does not comply with the assumption that the aim of
learning is to maximize the certainty with which an outcome
can be expected. Thus, in such situations a mechanism is
needed which maximizes the likelihood of choosing the
correct outcome. This is exactly the objective of outcome
competition: it approximates the conditional probabilities
of outcomes given a cue (Ramscar, 2013; Ramscar et al.,
2010).

Fig. 4 Illustration of outcome competition. In situations with less cues
than outcomes (as in a), not all outcomes can be fully predicted. In that
case, the updating of absent outcomes as in case 3 of Eq. 4, leads to
the learning of conditional probabilities of outcome given a cue. Here,

food is twice more likely to occur after the light than water (b). With-
out this mechanism (for illustration purposes), the single weights will
both increase to the activation limit of 1 (c), a result which theoretically
violates the aim of maximizing certainty of outcome predictions
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Outcome competition in error-driven learning results
from the updating of cue weights to absent outcomes (case
3 of Eq. 4). This mechanism decreases the weights from all
currently present cues to all outcomes that are absent in a
specific learning event. Figure 4b shows how this results in
learning conditional probabilities of all outcomes given the
present cue. Here, light predicts food two thirds of the time
and water one third of the time. If the updating of absent
outcomes is disabled, the weights to both outcomes, food
and water, will rise to 1 as shown in Fig. 4c, a learning
outcome which would, again, contradict the aim of maximal
uncertainty reduction. Furthermore, Figure 4 shows that
outcome competition reduces weights more easily than cue
competition, which can reduce weights only if the maximal
outcome activation is reached. The weight development
with outcome competition (see Fig. 4b) appears therefore
less stable than without outcome competition (which
we removed from the learning algorithm for illustration
purposes as described in Appendix; see Fig. 4c). Outcome
competition is thus an inherently different process than
cue competition. While cue competition depends on the
predictive value of cues, outcome competition depends
entirely on the distribution of a set of outcomes relative to a
set of cues.

Interactions of cue and outcome competition

While it is important to note that learning should
always be considered in the context of a system, we
should also acknowledge that the “systems” presented as
examples in the previous section, are far from ’realistic’.
However, limited models like these aim to capture
sub-parts of larger learning systems in order to make
important local interactions in the overall learning process
comprehensible. Accordingly, after having illustrated the
isolated mechanisms we will now focus on how cue and
outcome competition interact.

Let us consider an example which illustrates the
interaction of cue and outcome competition: learning
to discriminate different animals from each other. In
Fig. 5, learning the difference between dogs and rabbits
is simulated: in this example (dog-rabbit example 1), the
learner encounters big and small tail-wagging dogs, small
barking dogs, and small hopping rabbits. Note that this
example is rather similar to the light-tone example in
Fig. 3b, except that this example includes a second outcome
(see Fig. 5a).

To illustrate the contributions of both cue and outcome
competition in this example, Fig. 5 compares the weight
development during error-driven learning as defined in
Eq. 4 with weight development when either cue or outcome

competition is turned off during learning (see Appendix).
After training with normal error-driven learning (see
Fig. 5b), dogs are discriminated by the cues tail-wagging
and barking and rabbits by hopping. Size (as captured by the
cues small and big), however, is learned to be an overall less
informative cue dimension. Remarkably, the cue barking is
learned to be more predictive for dogs than being small,
although small dogs are defined to be more frequent in
this example (see Fig. 5a) than barking dogs. As the cue
small, however, also appears with the outcome rabbit, this
cue is overall less useful as compared to the cue barking
to discriminate dogs from rabbits — which is correctly
captured in the learned weights when the full error-driven
learning mechanism is applied.

Figure 5c shows the weight development when outcome
competition is turned off during learning by skipping the
updating of absent outcomes, thus the entire third case
of Eq. 4. In this case, the weight development resembles
the light-tone example in Fig. 3b. This shows that without
outcome competition, cue competition optimizes weights
per outcome, but not across outcomes. Therefore, the
simulation does not pick up on the fact that small is a cue
which is not discriminating well between rabbits and dogs
and that it should therefore have a lower weight than other
discriminating cues, for example barking.

On the other hand, Fig. 5d shows weight development
during learning without cue competition by allowing each
weight to independently reach a limit of 1, as opposed to
restricting the sum of weights of all cues currently present
to 1 (as in Eq. 3). Without cue competition, outcome
competition makes the weights mirror the conditional
probabilities of the outcomes given the single cues. Here,
the cue big develops an equally high weight as tail-wagging
and barking as they are all predicting a dog with full
certainty. The cue small however, predicts a dog only in two
out of three cases.

Hence, as opposed to learning without outcome competi-
tion, learning with enabled outcome competition takes into
account how cues appear with other outcomes in the net-
work, such as the cue small appears with both outcomes,
dog and rabbit. Learning without cue competition differs
from learning according to the full error-driven mechanism
(see Fig. 5b) in that the cue big will also be disregarded as
a predictive cue with error-driven learning. Crucially, this
happens although, evaluated by itself, it is fully predictive
for the species discrimination. Yet, in contrast to assessing
the predictive value of cues in isolation, the full error-driven
learning mechanism discovers which cue dimensions are
informative as a whole - here for example both big and small
are learned to be uninformative. In particular, if cues are
completely complementary, such as in Fig. 5 where every
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Fig. 5 Illustration of the interaction of cue and outcome competi-
tion in dog-rabbit example 1. In this example, the weights learned
with full error-driven learning (b) show that species-specific features
(e.g., tail-wagging) are more relevant for species discrimination than
shared features (i.e., size). When outcome competition is turned off
during learning (c), the model does not discover that size is a feature

dimension shared between the two species and cue competition leads
to the same weights from all features (as in Fig. 3b). When cue com-
petition is turned off during learning (d), weights correspond to the
conditional probabilities of the label, here, “dog”, given a feature
(small has a lower weight because in some cases it also precedes the
label “rabbit”)

cue set contains a size cue (either big or small), they will
develop the same weight and will be treated by the system as
one dimension (see also Fig. 3a where the visual dimension
is learned to be more reliable than the acoustic dimension).
This shows once more how error-driven learning is a pro-
cess which is influenced by and acts on the whole system of

cues and outcomes over time and is never processing events
in isolation.

On its own, cue competition can serve to compare
cues within sets of cues regarding how well they can
predict a specific outcome, whereas it is only together with
outcome competition that it serves to maximize the outcome
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activation in real-world learning situations in which cue
sets need to be discriminated from each other based on
their occurrence with different outcomes. Accordingly,
only the two processes working in conjunction form a
discriminative mechanism which allows learning to find the
cue dimensions which are most informative given a whole
system of predictive relations.

Asymmetry effects

The qualitative differences between cue and outcome
competition predict an important characteristic of error-
driven learning - it is potentially asymmetric, depending on
the ratio of cues and outcomes (Ramscar, 2013; Ramscar
et al., 2010). Intuitively, this already follows from the
assumption that error-driven learning is prediction-based, as
predictions are inherently asymmetric. Indeed, behavioral
research has shown that changing the presentation order of
cue and outcome stimuli in a task changes learning, e.g.,
human learning of visual categories (Ramscar et al. 2013,
2010) and various linguistic categories (e.g., Chinese tones
Nixon (2020); lexical stress, Hoppe et al., 2020; number
words, Ramscar, Dye, Popick, & O’Donnell-McCarthy,
2011; or noun class, Ramscar, 2013).

If we take a task, such as the dog-rabbit example in
Fig. 5 and switch cues and outcomes, the task changes and
with it the learning (compare Figs. 5b and 6b). The first

cue-outcome order, when objects precede words (object-
first, comparable to feature-label in Ramscar et al., 2010;
or postmarking in Hoppe et al., 2020), simulates a learner
who has to decide whether a specific animal is a dog or a
rabbit (Fig. 5a). The second cue-outcome order, when labels
precede objects (label-first, comparable to label-feature in
Ramscar et al., 2010; or premarking in Hoppe et al., 2020),
simulates a learner who has to decide which animal a
speaker refers to when saying either “dog” or “rabbit”
(Fig. 6a). The difference in weight development between
these two learning situations illustrates again the difference
between cue and outcome competition: the learned weights
clearly differ when animal features compete for labels
as cues or as outcomes. When the features compete as
cues for the labels, weights correspond to how relevant a
feature dimension is for the categorization (Fig. 5b); when
the features compete as outcomes for the labels, weights
correspond to the conditional probabilities of the features
given a category (Fig. 6b).

Also the resulting choice behavior of a learner in this
example is affected by the different cue-outcome order in
the object-first and label-first situation. In both cases, a
maximally discriminating learner would be completely cer-
tain about his choice. In Fig. 7a we can see that this is the
case after object-first training, where the activations show
that the learner expects a small barking animal always to
be dog but never a rabbit (choice probabilities averaged

Fig. 6 Learned weights after label-first training mirror conditional
probabilities of features given a label (in this case, “dog”). Here,
features that are less frequent in dogs (barking and big) receive a
lower weight than features that are more frequent in dogs (small and

tail-wagging). This differs from weight development in object-first
training (Fig. 5), where weights correspond to the relevance of features
for discrimination (in that case, size features are less relevant than the
other features)
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over 100 simulations: pc(dog|{small, barking}) =
1, pc(rabbit |{small, barking}) = 0). After label-first
training, however, predictions are not that clear (see
Fig. 7b): while a small hopping animal is least pre-
dicted after the label “dog” is heard, it is still pre-
dicted in some cases (pc({small, barking}|dog) =
0.25, pc({small, hopping}|dog) = 0.17).

However, the difference in learning between the two
different orders of labels and objects in this example is
not very large, as cue competition does not have such a
strong advantage over outcome competition here. A slightly
adjusted situation which is illustrated in Fig. 8 shows a more
dramatic difference. In this second example (dog-rabbit
example 2), low frequency items of one category share a
feature with high frequency items of the other category (as
in Ramscar et al., 2010): while dogs are mostly large ani-
mals, only a few large rabbits exist. When animal features
compete as outcomes for the species labels, this leads to
misclassification of low frequency items, such as big rab-
bits and small dogs (Fig. 8b, pc({small, barking}|dog) =
0.06, pc({small, barking}|rabbit) = 0.29). However,
when animal features compete as cues, low and high fre-
quency exemplars can be classified correctly (Fig. 8a,
pc(dog|{small, barking}) = 1, pc(dog|{big, tail −
wagging}) = 1)).

These two examples illustrate how asymmetry can affect
some learning situations more than others (see experimental
evidence in Hoppe et al., 2020). What both examples have

in common is the asymmetric network structure which is
necessary to observe an asymmetry effect in learning. In
general, we can observe that when the cue layer has more
features than the outcome layer, thus when the network
is convergent, learning can be maximally discriminative
because features can compete as cues for outcomes (as in
Figs. 2, 3, 5). When the cue layer has fewer features than the
outcome layer, thus when the network is divergent (Osgood,
1949; Greenberg, 1957), learning cannot be maximally
discriminative and approaches conditional probabilities
instead, because features compete as outcomes for cues (as
in Figs. 4, 6).

This discussion of asymmetry effects in learning serves
to highlight two points that are important to consider
when evaluating an error-driven learning model: first, it
is important to pay attention to subtle differences in
temporal order when determining which entities are coded
as cues and which as outcomes; second, it is important
to consider the resulting network structure which can
determine whether cue or outcome competition will govern
the learning process.

Temporal dynamics

In the previous section we discussed how the temporal
characteristics of predictions, which are at the base of
error-driven learning, transfer to the learning process. We
have seen that time matters for the relation between cues

Fig. 7 Outcome activations after a) object-first and b) label-first train-
ing on dog-rabbit example 1 (see Section “Interactions of cue and
outcome competition”). When objects precede labels in training
(a), dogs (here shown: small, barking dogs), can be discriminated
optimally: the activation of the label “dog” given a dog exemplar
approaches 1 and the activation of the label “rabbit” approaches 0.

However, when labels precede objects (b), optimally discriminative
activations cannot be reached: given the label “dog”, dogs with most
frequent features (small and tail-wagging) are expected more than dogs
with less frequent features (barking and big); crucially, also rabbits are
expected to a certain extent after hearing the label “dog”
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Fig. 8 Outcome activations after a) object-first and b) label-first train-
ing on dog-rabbit example 2 (see Section “Asymmetry effects”). As
opposed to example 1 (Fig. 7), misclassifications occur here after
label-first training (b): after hearing a label, e.g. “dog”, low frequency
exemplars of the wrong species, here, big rabbits, are expected more

than low frequency exemplars of the correct species, here, small dogs.
This is due to the particular kind of feature structure, in which one
feature of low frequency exemplars in one species (i.e., here big in
the species of bunnies) also occurs in high frequency exemplars of the
other species (i.e., dogs)

and outcomes, as learning can be temporally asymmetrical.
Time also needs to be considered for other parts of an error-
driven learning simulation. Network weights are usually

updated incrementally, which makes it possible to observe
learning over time. This at the same time creates the need
to consider the order of training trials, as it can have a
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significant effect on the learning outcome (see, e.g., the
blocking effect, Arnon & Ramscar, 2012; Kamin, 1969).
Ultimately, in building models, one has to decide how long
a network is trained and whether the whole time course or
only the point of convergence of the network is of interest in
a simulation. Furthermore, time becomes a defining factor
when modeling sequence learning, where detailed temporal
relations can be considered during the learning process or
else later during model evaluation.

Time course of learning and convergence

The blocking example illustrates how trial order, either
blocked (Fig. 2c) or randomized (Fig. 2b), does not change
the convergence point of the network but does change
the time course of learning. Importantly, in a constantly
changing environment, the point of convergence is just
an abstract construct, which is probably never reached.
Usually a learner is never a blank slate and new information
will interfere with already learned information, as for
example in language attrition, when a speaker switches
from one dominant language to another. On the one hand,
the kind of forgetting that interference in an error-driven
learning network over time can produce has been framed
as a weakness of the learning algorithm, the sequential
learning problem (McCloskey & Cohen, 1989; Ratcliff,
1990). On the other hand, interference offers an explanation
of forgetting, which we need to account for when modeling
human or animal learning, without assuming decay of
weights over time (e.g., McLaren & Mackintosh 2000).

Furthermore, a closer look at some of our previous
examples can reveal how learning dynamics change over
time. In Figs. 3 and 5, we can observe how frequency
can have an influence on learning early in training, such
that more frequent cues are associated or dissociated faster
from outcomes, while later in training, frequency effects are
canceled out by cue and outcome competition. Considering
the amount of training of the model is therefore always an
important step when building or evaluating an error-driven
learning simulation.

To be clear, the learning procedure according to Eq. 4 is
always iterative, in line with the aim of simulating online
human or animal learning. Thus, although it would be
theoretically possible, weight updates are not performed in
batches as it is often done in machine learning procedures
to minimize noise in the learning trajectory and maximize
computational efficiency. However, in cases in which the
time course of learning is not of interest for a simulation,
the point of convergence or equilibrium of an error-
driven network, which equals the least-squares solution of
the input matrix (Evert & Arppe, 2015), can be directly
calculated with, e.g., Danks, (2003) equilibrium equations
(implemented in Arppe et al., 2018).

Sequence learning

While in simulations of clearly delimited tasks (for example,
animal classification) time is an additional modeling
parameter which needs to be considered, it is the most
crucial factor when modeling sequence learning. In our
previous examples the definition of cues and outcomes
was mainly dependent on two aspects: first, the task
that determines the relevant outcomes; second, temporal
ordering, which is crucial in defining cues and outcomes, as
predictions can only be based on earlier occurring elements.
The latter is also crucial for sequence learning where the
task is not focused on predicting a single correct outcome
or outcome set, such as, when making a medical diagnosis
or choosing a word to communicate a specific meaning, but
on the temporal sequence itself, such as, when mounting a
bicycle or singing a melody.

One way of modeling sequence learning with a simple
two-layer learning network has been suggested by Gureckis
and Love (2010) who implemented an associative chain in
which each element predicts the following element as an
outcome, which then turns into a cue for the next following
element. In its simplest form such an associative chain
model has no memory, however to add short-term memory
to the model, Gureckis and Love (2010) added a shift
register which can add a specified number of preceding
elements as cues to the current outcome.

This simple two-layer associative chain model with
short-term memory turned out to be a good predictor
of human performance in two sequence learning tasks
(Gureckis & Love, 2010). Like human participants, the
model could solve a sequential problem with low statistical
complexity (sequences consisting of a concatenation of
random samples of a sequence of integers, here 0 to 3, e.g.,
[0-1-2-3]-[2-1-0-3]-[1-3-2-0]), but both human participants
and the model struggled with learning sequences with
higher-order statistical dependencies (where every third
element of the sequence is an XOR evaluation of the
preceding two elements, e.g., [0-0-0]-[1-1-0]-[1-0-1]).

Crucially, Gureckis and Love (2010) suggest that the
limited capacity of such simple models in learning complex
sequences might depict human learning more realistically
compared to more complex models, such as recurrent
networks. Historically, the problems that associative chain
models show in learning sequences with higher-order
statistical dependencies have been a source of critique
(e.g., Lashley, 1951) and led to a concentration on more
powerful models with hidden layers and recurrence which
are able to transform input representations. However, in
comparing their simple associative chain model with a
recurrent network (Gureckis & Love, 2010) conclude that
these higher-level representations constructed by hidden
layers of recurrent networks are not always used by humans:
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while a simple recurrent network with a hidden layer was
indeed able to learn the sequence that the associative chain
model could not learn, also the human participants did not
pick up on the pattern. Moreover, the recurrent network was
much slower in learning the sequence with low statistical
complexity, in which the higher-level transformations of the
network seemed to be a hindrance to solving the task. Thus,
surprisingly, the simpler two-layer associative chain model
clearly outperformed the more complex recurrent network
in predicting human performance in the sequence learning
tasks.

Gureckis and Love (2010) approach shows how two-
layer error-driven learning networks can be used to model
sequence learning. An interesting question that arises from
the comparison of two-layer and multi-layer sequence
models relates to higher-order representations. Under which
circumstances should the events encountered in a learning
situation be represented as undiscriminated sequential
chunks, as opposed to sequences of elemental items? This
is a point we will discuss in detail in Section “Cue and
outcome representations”.

Sequential processing

Another interesting example of using two-layer networks
to model the learning of sequential processes is presented
by Baayen et al. (2016b) who show how a network trained
non-sequentially, can nevertheless still offer insight into the
processes that give rise to the understanding of continuous
speech.

The aim of Baayen et al.’s (2016b) work was to show how
a network that does not implement word segmentation can
understand continuously presented speech. Understanding
speech was here simplified to activating the correct
sequence of word forms when encountering a specific
sequence of triphones. In order to not train the model
on segmentation, the authors trained it non-sequentially
creating a learning event for every sentence, in which
all triphones of the sentence were given as cues and the
sentences’ word forms as outcomes to the model. In the
following step, they evaluated how the model would process
a continuous stream of speech split up into triphones.
Sequential processing, in this case, was simulated by
moving a fixed-size window over the input stream of
triphones, similar to the learning and evaluation procedure
of Gureckis and Love (2010). In the end, although the
network was trained without sequential information, it
could segment the speech stream and give rise to behavior
usually thought to occur at later stages of processing (after
a segmentation stage), such as long-distance dependency
processing.

These two examples (Baayen et al., 2016b; Gureckis
& Love, 2010) show how simple error-driven learning

models can simulate sequential learning and processing. For
modeling these phenomena, the temporal order of events
is obviously a crucial factor, however, since all learning
happens in time, the incremental updating mechanism
of error-driven learning can also illuminate the temporal
dynamics of learning situations that may not at first
glance seem either sequential or time-related. The issue
of interference (see Section “Time course of learning and
convergence”), for example, serves to highlight the fact that
because learning is a process in which cue and outcome
competition interact over time, temporal dynamics are a
factor in almost all real world learning situations.

Relatingmodel outcomes to behavior

To better understand the underlying learning dynamics in
a given learning situation, it is possible to directly analyze
the output of an error-driven learning simulation, which
is usually the weight matrix between cue and outcome
layer after completed training, or a list of weight matrices
for every time step. However, in order to test whether a
simulation is capturing a given phenomenon, the model
output has to be related to behavioral data.

The first step in determining how a given model will
respond (activate an outcome) to a given input (in the form
of a set of cues), is to determine the strength of support
for possible outcomes, which is defined as the outcome
activation (Eq. 3). This makes it possible to get the model’s
response to a realistic input, thus a set of cues and not only
isolated single cues, which can then be compared to the
response of a human or animal learner. Calculated over all
possible sets of cues and outcomes, the resulting activation
matrix can then be used to predict specific response data,
such as for example, accuracy or reaction times.

To simulate accuracy, a choice rule needs to be
applied to the outcome activation vector, to derive the
probabilities of outcomes being chosen as a model response
to an input. As outcome activations are ordinal data,
potential transformations of outcome activations to response
probabilities should be functions that preserve order
(Church & Kirkpatrick, 2000; Rescorla & Wagner, 1972).
Transformations that have been used are, amongst others,
a step function with a specific threshold (e.g., Church
& Kirkpatrick, 2000), a logistic function (e.g., Gluck &
Bower, 1988; McClelland et al., 1986), or the Luce choice
rule (Luce, 1959; e.g., used by Gureckis & Love, 2010;
Hoppe et al., 2020; Ramscar et al., 2010). Two important
points to consider when calculating choice probabilities
from activations are, first, that outcome activations can
be negative, which needs to be corrected for to apply for
example the Luce choice function (e.g., by setting negative
activations to zero as in Hoppe et al., 2020, and Ramscar
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et al., 2010) and, second, to be aware of the choice baseline,
which could differ from the baseline in the empirical data
set (and which is dependent on the number of outcomes or
possible choice alternatives).

To simulate empirical reaction time to an outcome for
smaller data sets, the (negative) activation of that outcome
given the present cues can be used directly. For larger data
sets, reaction times can better be approximated by a log
transformation of inverse activations (log(1/activation))
to remove skew from the data (Baayen et al., 2011).
Note, however that this does not automatically extend to
other types of continuous response data. Recent work by
Lentz et al. (2021), for example, suggests that error-driven
learning activations have to be handled differently to predict
EEG data than to predict reaction time data. Hence, overall,
the simulation of various kinds of behavioral responses
based on error-driven learning activations is still very much
work in progress.

The output of an error-driven learning model, that is,
the learned weight matrix and the outcome activation
matrix, has furthermore been used to derive more abstract
measures than the direct simulation of behavioral responses
(as, e.g., employed in Baayen, Milin, & Ramscar, 2016a;
Hendrix, 2015; Milin et al., 2017). However, it needs to
be stressed that the trade-off between trying to model a
problem as precisely as possible and trying to derive an
explicit contribution to theory (Bonini’s paradox) can also
be extended to the analysis of a model’s output. While
more abstract measures can be used to derive alternative
predictors for behavioral data, it is also more difficult to
clearly interpret them.

Cue and outcome representations

The error-driven learning mechanism formulated in Eq. 4
is a mechanism which discriminates cues from each other
by associating and dissociating them from outcomes,
leading to the learning of positive, neutral or negative
expectations. However, while error-driven learning, in
theory, is a discriminative process, the full mechanism can
only arise in a model operating on suitable cue and outcome
representations which actually define a discrimination
problem (Hoppe et al., 2020; Ramscar, 2013; Ramscar et al.,
2011; Ramscar et al., 2010).

First and foremost we need to be explicit about the
theoretical role that we assume representations to fulfill
in error-driven learning models: that they are supposed
to capture accessible information in the environment that
can potentially be used to reliably predict upcoming items
or events. This means we do not assume representations
to actually mirror concrete neurobiological states of the
brain, especially given the fact that “detailed, empirically

grounded theories of how the brain encodes complex inputs
are rare in the literature” (Bröker & Ramscar, 2020, p.1).

Given this basic assumption about the theoretical role
of representations, we next need to distinguish between
two different ways of conceptualizing representations on
varying levels of granularity. Historically, the error-driven
learning model by Rescorla and Wagner (1972) was used to
observe how weights between cues and outcomes develop
depending on how these cues appear with each other
in compounds. For this reason only cue representations
on one (not clearly defined but suggested low) level of
granularity — so-called elemental cue representations —
were given as input to the model. These elements were
assumed to compositionally combine to represent stimuli
combining elemental properties (i.e., the combination
of stimuli A and B would be represented as {A, B}).
Subsequent work, reacting to limitations of this purely
elemental (or compositional) approach, allowed also novel
representations for cue combinations (i.e., the combination
of stimuli A and B would be represented as {AB}) —
also referred to as configural cue representations (see, e.g.,
Pearce, 1987). Importantly, the configural conceptualization
of representing cue combinations is in line with the idea
of learning being a process of abstraction (Ramscar et al.,
2010; Rosch, Mervis, Gray, Johnson, & Boyes-Braem,
1976): in this process, unpredictive input representations are
unlearned, potentially (but not necessarily) leading to more
abstract representations instead of detailed compositional
representations. In the following, we therefore refer to
configural representations as representations on higher
levels of abstraction than combinations of elemental
representations.

Whether (and sometimes when) associations are learned
between more abstract configural representations or com-
binations of elemental representations, has been widely
discussed in the literature (Harris, 2006; Pearce, 1987, 2002;
Wagner & Brandon 2001). Importantly, from a discrimina-
tive perspective, focus is put less on whether but on when
representations on different levels of abstraction are used
for discrimination, as we will argue in this section. First of
all, discrimination is assumed to be a process of uncertainty
reduction which, beginning on high levels of abstraction that
allow only for coarse discrimination leads to lower levels
of abstraction that allow for more detailed discrimination
(Ramscar et al., 2013, 2010). This idea runs counter to
the elemental view which assumes that predictive structure
between items or events in the environment can be uncov-
ered starting from low levels of granularity. In addition, the
aim of discriminative models is to learn the predictive struc-
ture between items or events in an environment. We will
argue in this section that only a model presented with a suf-
ficiently vast set of cues and outcome representations on
different levels of abstraction can discover the relevance of
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specific cue representations to optimally predict the given
outcomes. Hence, in this section we will first focus on the
limitations connected to the definition and historic applica-
tions of the Rescorla-Wagner model based on an elemental
view of the formation of associations in an environment.
Then, we will sketch out how cue and outcome represen-
tations should be defined from a discriminative point of
view.

Given the asymmetry in error-driven learning networks,
we split this discussion up into separate considerations
about cue representations and outcome representations. We
will first focus on cue representations, where the main
task of a discriminative model is to discover the optimal
discriminative structure given a set of outcome represen-
tations. Note that the discussion of cue representations is
especially important for simple two-layer networks, which
cannot transform the predefined input representations, such
as in networks with hidden layers or recurrence. Later, we
will then focus on outcome representations, which can be
seen as dictating the task and therewith the discrimination
of cue representations.

Elemental and configural cue representations

We begin with a review of the historical approach
to representation in learning models which originates
in the associative/compositional tradition of learning in
psychology and assumes that association is a purely
elemental process in which the relevant granularity levels
of stimulus representation can be built up gradually starting
from low levels of abstraction by combining some kinds of
elemental stimuli.

Accordingly, when Rescorla and Wagner (1972) first
presented their error-driven learning model it was applied
to so-called elemental cue representations. The question,
which levels of percepts can be classified as sufficiently
“low-level” or “elemental” is never really discussed, so that
we would suggest to interpret this term in a relative sense
contrasting representations on higher levels of granularity.
In fact, to explain learning phenomena observed in simple
animal studies such as the blocking effect (Kamin, 1969) no
further considerations of stimulus representation is needed.
For example in simulating blocking, the combination of the
blocking and the blocked stimulus coded compositionally
as two separate cues successfully explains the learning
dynamics (see also Section “Cue competition”). However,
this kind of coding of cue configurations soon reached a
limit in explaining effects with more complex, conditional
relations between stimuli such as negative patterning
(A → reinforcement; B → reinforcement; AB → no
reinforcement, also written as A+; B+; AB- in the context
of classical conditioning) or biconditional conditioning

(AB+; CD+; AC-; BD-; Harris, 2006; Melchers, Shanks, &
Lachnit, 2008; Miller et al., 1995).

The crucial assumption that was necessary to explain
some of these basic learning phenomena, such as blocking,
but that posed problems for others was that the weights
of different cues are independent from each other and
thus can be simply combined by summation. On the
one hand, summation is a crucial concept which enables
competition between cues as seen in Eq. 4, in which
weights are summed up in the activation term. Empirically,
findings of summation effects, for example, that the
compound of two stimuli evokes a stronger response
than the stimuli in isolation, are mixed (Melchers et al.,
2008). While summation is mostly observed for stimuli
that are clearly separable (Lachnit, 1988) or from different
modalities (Aydin & Pearce, 1997; Kehoe, Horne, Horne, &
Macrae, 1994), it is less observed for integral (compositely
perceived) and same-modality stimuli. (We need to note
here that these concepts that have been put forward to
explain the presence or absence of summation effects
might be equally difficult to define as the concept of
elemental percepts. From a discriminative perspective,
these differences between cue representations might also
be connected to how relevant single representations
are regarding discrimination in a current or previously
experienced task.)

On the other hand, the summation principle alone makes
it difficult to explain how the weight or activation given a
configuration of cues could be different from the sum of
its parts. Yet, for instance, this is a necessary prerequisite
to explain negative patterning. Figure 9 shows an example
of negative patterning, where two cues, a tone and a
light, presented by themselves predict one outcome, food,
but in combination predict another outcome, water. When
the combination is coded elementally/compositionally (i.e.,
with the cue representations Light and Tone; Fig. 9b), the
distinction between these two outcomes cannot be learned
because the elemental cues become associated to a similar
extent to both outcomes.

In reaction to the limitations of models with purely ele-
mental cue representations, different extensions were sug-
gested (for comprehensive reviews refer to Harris, 2006;
or Melchers et al., 2008). Most importantly, many exten-
sions include the addition of cue representations on higher
levels of abstraction, for example non-compositional repre-
sentations for combinations of lower-level cue representa-
tions (e.g., a cue LightTone that combines the cues Light
and Tone). One suggestion contrasting a purely elemental
approach was put forward by Pearce (1987), who suggests
a purely configural approach in which cues that appear
together are only represented by one configural cue omitting
cue representations on lower levels of abstraction. Figure 9c
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Fig. 9 Different cue structures to model negative patterning, in which
single stimuli predict a different outcome than their combination (a).
When the stimulus compound is coded compositionally as a combi-
nation of its elements ({Tone, Light}), the two outcomes cannot be
discriminated from each other (b). When the stimulus compound is

coded by a single configural cue ({LightTone}), discrimination is opti-
mal but not realistic (c). The combination of a configural cue and
its elements ({Tone, Light, LightTone}) captures discrimination and
generalization (d). See also the interactive interface in the tutorial

shows how this can lead to very good (too good according
to Harris, 2006) learning in the negative patterning prob-
lem. However, to be able to account for generalizations
between cue configurations sharing lower-level elements,
additional mechanisms were needed, such as a similarity
measure between cue configurations. A simpler approach is
to allow for both elemental and configural cue representa-
tions (as suggested by Rescorla, 1973), or in other words,

cue representations on multiple levels of abstraction (e.g.,
used by Ramscar & Dye, 2009; Ramscar et al., 2013; Ram-
scar et al., 2011). Figure 9d illustrates how this approach
also leads to successful learning of negative patterning, as
the model learns which cue representations on which level
of abstraction are informative for which outcomes, while
still accounting for interference between cue combinations.
One major problemwith the latter approach is, however, that
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aiming to include all possible abstract configural cue repre-
sentations in a model’s input representations quickly leads
to a combinatorial explosion (Gluck & Myers, 2001).

Besides these extensions, more complex elemental
models based on Rescorla and Wagner (1972) and Widrow
and Hoff (1960) have been proposed, in which parsimony
is traded for more explanatory power. McLaren and
Mackintosh (2000), for example, refined the elemental
cue representation approach by assuming continuous
probabilistic sampling of “microfeatures”, which was also
able to explain conditional discrimination, such as negative
patterning. However, together with an added weight decay
and stimulus salience mechanism, this model outsourced
dynamics that could in theory be explained by simple error-
driven learning. On the one hand, to avoid confounding, we
suggest to always carefully weigh the advantages of such
extensions that risk to come with a loss of understanding of
the underlying mechanisms. On the other hand, we do not
want to discourage exploring low-level cue representations
(see also Ghirlanda, 2005), as depending on the problem
at hand, we certainly need representations on all levels of
abstraction.

A final way to include cue representations on multiple
levels of abstraction into an error-driven learning model
is to change the network architecture and add hidden
layers to the network (e.g., Delamater, 2012; McLaren,
1993; Schmajuk, Lamoureux, & Holland, 1998). These
models directly address the question of how higher-level,
“configural” representations arise in a model, for example,
a node in a hidden layer can represent the combination of
two cues in the input layer. One advantage of this is that
in this way they solve the combinatorial explosion problem,
with which two-layer models are confronted. However,
the disadvantage of this approach is that it is not directly
observable what kind of representations are learned in a
hidden layer. Therefore such models make it difficult to
understand what kind of representations, i.e., on what level
of abstraction, are relevant for a specific learning situation.

At this point, we need to elaborate on a principled prob-
lem with the associative approach to cue representations: its
theoretical commitment to specifically defined input repre-
sentations. As by definition, elemental representations on all
levels of granularity can be traced back to a set of elemental
representations, associative learning theories need to pro-
vide a theoretical motivation for specifying these elements.
This is problematic given that the approach of trying to
concretely and compositionally define input representations
is inherently regressive (Ramscar et al., 2010), especially
given that the goal of the endeavor of identifying neurobio-
logically plausible elemental input representations for such
simple models is questionable considering the complex and
still ill-understood myriads of networks underlying higher-
level processing in the brain (Bröker & Ramscar, 2020). In

contrast, within a discriminative theory the theoretical com-
mitment to specific representations is neither necessary nor
wanted, as learning models are explicitly conceptualized as
tools to investigate what kind of representations are theo-
retically needed to predict a given set of outcomes (these
are often referred to as distributed representations in the
connectionist literature as, e.g., in Rumelhart, Hinton, &
McClelland, 1986). Importantly, the set of hypothetically
possible representations is not restricted to a particular form
or level of abstraction. They are only required to conform
to discriminative principles, which means that they should
capture contrastive patterns in the environment, which can
be of any form and on any level of abstraction.

In summary then, this discussion about elemental and
configural representations in fact raises questions about
the kind of levels of abstraction in cue representations
that are best employed in two-layer error-driven learning
models. The fact that two-layer models cannot construct
higher-level representations during learning permits only
one conclusion, namely that such representations have to
be explicitly given to a model in order for it to veridically
simulate problems, such as negative patterning. Thus in
the next section we will argue that, among other factors,
only if a model is confronted with cue representations
on different levels of abstractions, it can make a realistic
estimation about which cues on what levels of abstraction
are informative for solving a given task, which should
exactly be the objective of learning from a discriminative
perspective. This idea is furthermore supported by previous
evidence and models which suggest that cue representations
on different levels of abstraction are learned to be relevant
based on task demands (e.g., Dye & Ramscar, 2009; Hoppe
et al., 2020; Melchers et al., 2008; Ramscar, 2013) and
depending on learning experience (e.g., Arnon & Ramscar,
2012; Ramscar et al., 2013).

Defining discrimination-friendly cue
representations

All representations are wrong but some are useful.
-adapted from George E. P. Box

As the foregoing discussion hopefully makes clear,
there is no one right way to represent the cues involved
in a learning situation, just as there is no right way
to formulate a model (Box, 1976). The usefulness of
specific representations strongly depends on the problem at
hand and factors such as task demands, prior experience,
experimental instructions and stimulus properties (Melchers
et al., 2008). In fact, this is exactly the task of learning
from a discriminative perspective: learning to represent
the environment in a way that suffices for a given
task (translated into outcome representations), rather than
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assuming a fixed set of low-level representations that
compositionally combine, as it is usually conceptualized
from an elemental/associative point of view (see, e.g.,
Harris, 2006; Smolensky, 1988). Accordingly, this makes it
even more important to thoroughly consider what kind of
cue structure is suited to model a given problems.

As we have noted above, although historically, error-
driven learning models have been described as associative,
they are in fact discriminative (Ng & Jordan, 2002; Ramscar
et al., 2010). In the light of this, it is worth considering the
kind of cue and outcome representations that best support
discriminative learning. Therefore in this section, we will
describe some guidelines and heuristics for defining cue
and outcome representations that can trigger discriminative
learning dynamics. Generally the aim of a discriminative
learning model is to discover a weighted combination of
cues which best predicts the present outcome, or in other
words, to discriminate the best cue structure given the
present outcomes (Ramscar et al., 2010). Although the cue
and outcome representations that are given to a model
should be informed by theory, in order that the model can
also contribute to theory, it can be useful to give it some
leeway to discover a realistic structure in the cue weights
within these representations. In contrast, if the scope of a
defined cue structure in a model is too limited, the model
will probably be less able to generate novel predictions and
robust generalizations.

In what follows, we illustrate three important points
that help improve cue representations with the aim of
allowing a two-layer error-driven model to unfold its full
discriminative mechanism, using Ramscar et al.’s (2013)
model of English plural acquisition. The task of this model
was to predict the plural form, for example “mice”, of a
noun based on cues from the environment, such as the
items referred to by a specific noun, for example the
presence of multiple mouse items. First, we conclude from
the discussion about which levels of abstraction should be
considered for the specification of cue representations, that
including representations on multiple levels of abstraction
can considerably increase the possibilities of a model to
find predictive structure in cue representations given a
set of outcome representations. Crucially, in addition, the
discriminative view suggests that discrimination proceeds
from high to low levels of abstraction, which can also be
interpreted as coarse and detailed levels of discrimination.

Ramscar et al.’s (2013) model of English plural
acquisition is directly based on this idea. It includes
representations of cues from the environment on multiple
levels of abstraction in order to predict the plural form of an
English noun (which can be regular or irregular): Ramscar
et al. (2013) observed that early in learning, when the model
has mainly seen regular plural forms (together with the
objects appearing with them), the general cue multiple items

is rated by the model to reliable predict the regular plural
ending “-s”, leading to quick overregularization of the less
frequently occurring nouns with irregular plural formation;
only later, the model discovers more reliable, lower-level
cues, such as multiple mouse items to predict specific plural
forms (i.e., “mice”). Thus, in their case, the inclusion of
representations on multiple levels of abstraction leads to the
finding that during the process of discrimination, effects
such as overregularization can occur.

Another example of the importance of considering levels
of abstraction of cue representations in two-layer error-
driven learning models comes from a recent proposal
by Baayen and Hendrix (2017) who present a series
of models that challenge Minsky and Papert’s (1969)
historical claim that two-layer perceptrons (equivalent to
the framework presented here) can solve only linearly
separable problems. Contrary to this, Baayen and Hendrix
(2017) show that when representations of an abstract
nonlinear problem are on beforehand transformed into a
linear domain, they can be solved by a two-layer error-
driven learning network. Hence, while two-layer error-
driven models cannot construct abstractions from the cue
representations that they have access to, problems requiring
such abstractions can still be investigated with such models,
given that abstract cue representations are explicitly given
to a model.

A second point, directly related to the different levels of
abstraction of cue representations, is that only a cue struc-
ture where sets of cues overlap between different outcomes
can trigger the full error-driven learning mechanism with
cue and outcome competition. Notably, overlap can often be
added to a set of cue representations by including represen-
tations on higher and lower levels of abstraction than seem
intuitively necessary to predict different outcomes reliably
(e.g., see: Baayen et al., 2016b; Hoppe et al., 2020; Ram-
scar et al., 2010). On the one hand, creating overlap with
cue representations on higher levels of abstraction can be
important for simulating the process of discrimination in an
error-driven learning model: for example, in Ramscar et al.’s
(2013) model, the overregularization effect arises because,
initially, more general and less informative cue representa-
tions are poorly discriminated from more detailed and more
informative cue representations. On the other hand, over-
lapping low-level cues (e.g., the cue representations {small,
hopping} in addition to {dog}) can be particularly useful
when investigating how abstract representations might be
learned (e.g., Baayen et al., 2016b; Hoppe et al., 2020;
Ramscar et al., 2010).

A further important thing to note is that all representa-
tions in two-layer networks should intersect (i.e., no two sets
of cues should be disjoint). The simplest way of ensuring
this is to include a cue that occurs in all learning con-
texts (sometimes referred to as a context, environmental,
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or a constant cue5). Conceptually this cue can be thought
of as corresponding to the properties of the environment
that are constant, such as for example the presence of the
learner, or that are undiscriminated, in Ramscar et al.’s
(2013) model, for instance, the cue stuff was added to every
cue set. Critically, from the perspective of the actual learn-
ing mechanism, the addition of this cue ensures that no sets
of cues can be disjoint and that the amounts of error pro-
duced in different learning events always add up to zero. As
a result, the cue weights learned will be in proportion to the
whole learning system — basically this cue plays the same
role as the intercept term in a regression model. Moreover,
the inclusion of a representation for generally undiscrimi-
nated properties of the environment makes a model more
realistic given the assumption that learning proceeds from
perceiving the world as an undiscriminated set of items and
events to learning to perceive predictive structures in the
environment.

Third, Ramscar, Dye, and McCauley’s (2013) example
illustrates how important it can be to consider the larger
context of a problem, such as for example multiple
modalities. While at a first glance, noun inflection
might seem to be a problem that could be modeled
using only phonological or morphological units (such
as e.g., MacWhinney & Leinbach, 1991; Rumelhart &
McClelland, 1986), the involvement of cues from the
physical environment (i.e., semantics) have been shown to
be essential to solving the problem (Ramscar, 2002). In
addition, the larger context can also literally be just a larger
system of cues and outcomes, which does not only involve
the specific entities involved in the problem. Ramscar,
Hendrix, Shaoul, Milin, & Baayen (2014), for example,
investigate age effects in paired-associate learning of a small
subset of noun associations by looking at how associations
between words in the whole language develop over time for
a single speaker. In this way, they show that the associations
which a noun has built over a lifetime of language learning,
directly influence how easily it can be associated with the
nouns used in the paired-associate learning test, some of
which are highly unlikely to appear in vicinity to the target
noun in natural language.

To summarize then, these three factors, representations
on multiple levels of abstraction, overlapping sets of
cues, and inclusion of the larger context can make cue
representations more discrimination-friendly in the sense
that they define a problem which actually requires a

5Note that in our example simulations we deliberately did not include
a constant cue in order to make them easier to understand, also when
they included disjoint cue sets, such as the examples in Figs. 6, 7b, and
8b. Crucially, however, activations in these cases would not be affected
by adding a constant cue to each cue set, given that the constant cue is
also included in the calculation of the activations.

discriminative learning mechanism. Crucially, even with a
large number of cues, the model dynamics usually still stay
accessible as only a small amount of the learned connection
weights will be significantly different from zero (Arnold
et al., 2017). In the light of these considerations, we would
suggest that representations should err in the direction of
richness rather than sparseness. The idea being that a model
provided with sufficient “data” will probably learn to mirror
predictive relationships between real items or events more
closely and robustly than a model provided with a more
limited context.

Outcome representations

Thus far, we have mostly focused on cue representations
and disregarded the impact of outcome representations,
which are rarely discussed in the literature. Regarding
discrimination they also have a less prominent role, as
they are not the object of the discrimination process, such
as cue representations, but the subject. Hence, usually
outcome representations define the task at hand, for
example, naming an object (where outcome representations
would be word forms) as opposed to inferring what a
speaker was communicating with a specific word (where
outcome representations would be items or events from the
environment or semantic representations). Furthermore, the
level of abstraction of outcomes has a direct impact on the
learned cue structure, as usually discrimination on different
levels of abstraction stands in a trade-off: either focus has to
be put on features which discriminate categories from each
other, thus that are shared between items within a category,
for example, features that discriminate dogs from rabbits, or
focus has to be put on features which differ between items to
discriminate them, for example, unique features of different
dog breeds (Dye & Ramscar, 2009; Hoppe et al., 2020;
Ramscar, 2013). Overall, the outcome structure determines
what, that is, which cue structure, a model is going to learn.
This also means that a two-layer error-driven learning model
can only capture one learning process with one objective
and cannot be compared with a process model or a cognitive
architecture (e.g., ACT-R, Anderson 1996, 2005).

Finally, it’s important to stress that the cue and outcome
representations employed are a defining part of a model
(Bröker & Ramscar, 2020) which can set apart different
kinds of models based on the same error-driven learning
mechanism and on the same network architecture (Note
that we use the term model here in its more specific sense
as consisting not only of a learning mechanism and a
network architecture, but also of specific cue and outcome
representations). Because of this, and because cue and
outcome representations inevitably embody the theoretical
assumptions of modelers it seems fair to say that the
various error-driven learning models in cognitive science
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do not form a coherent theoretical class of models, a point
illustrated for example by the vast differences between
error-driven grammar learning models (MacWhinney &
Leinbach, 1991; Ramscar et al., 2013; Rumelhart &
McClelland, 1986), which vary widely in their data structure
and theoretical assumptions and in to what extent they treat
their tasks as discrimination problems.

Discussion

Historically, not long after two-layer error-driven learning
networks were initially introduced into the cognitive
sciences, the focus of the field shifted to multi-layer
networks. One reason for this was that it was thought
that only they could resolve the limitations of two-
layer networks that have been highlighted at the time
(Minsky & Papert, 1969). One consequence of this was
that the degree to which two-layer networks might still
contribute to our understanding of cognition was largely left
unexplored over the following decades (a factor that was
further compounded by the limited available computational
resources at the time). It is only recently that researchers
have begun to reexamine the degree to which two-layer
networks might still contribute to theoretical understanding.
On the one hand, new evidence suggests that some of the
originally claimed limitations can be overcome, or rather
that they do not need to be overcome if we, for example, can
assume different stimulus representations (e.g., Baayen &
Hendrix, 2017). On the other hand, some aspects of simple
error-driven learning models that have been claimed to be
limitations can in fact be interpreted as advantages when
it comes to using these models to understand the concrete
mechanisms underlying human or animal behavior.

In this regard it is important to note that the main
point of exploring a learning phenomenon with a simple
two-layer network is to maximize its interpretability. This
means that the problem must be abstracted to a degree
which, first, makes the workings of the model directly
accessible, and second, makes it possible to relate them
directly to the basic error-driven learning mechanism. Two-
layer models achieve this goal by their very simplicity,
which minimizes free parameters and in this way makes
transparent the basic error-driven learning mechanism. This
simplicity helps to ensure that a model’s behavior can
be directly attributed to the main error-driven learning
mechanisms (association and dissociation) and the resulting
dynamics (cue and outcome competition). Consider for
example different approaches to modelling the process
of forgetting: on the one hand in error-driven learning,
forgetting is simulated via interference dynamics, which
directly result from the process of dissociation; on the
other hand, there is evidence (Ramscar et al., 2017) that

this produces behavior very similar to behavior produced
by time decay dynamics, which are usually implemented
as a separate process in learning models based solely on
association (Anderson, 1996; Pavlik & Anderson, 2005).
The question whether or to what extent interference or
time decay can account for forgetting is still discussed in
the memory literature (e.g., Hardt, Nader, & Nadel, 2013;
Oberauer & Lewandowsky, 2008). However, comparing the
two models shows how in the interference model, forgetting
arises out of the basic model dynamics, while in the time
decay model, the mechanism of forgetting needs to assume
an additional process. While (and maybe also because of
the fact that) it is rather difficult to separate the passing of
time and interference, the interference explanation seems
to be more parsimonious since it suggests that forgetting is
actually inherent to the learning mechanism itself.

It is clear that the increased interpretability of these
models comes at the cost of scope, and historically,
many problems that researchers have tried to tackle might
simply not be suited to be modeled this way. If we,
for example, look at the long list of “failures” brought
forward by Miller et al. (1995), while a few of them
might be solved by reframing the learning problem or input
and output representations, for most of these problems
it is likely that they are simply not really suitable for
modeling in a two-layer error-driven learning network.
One solution, that has been often applied but comes
with the problem of not contributing much theoretical
insights (see also Section “Mathematically similar learning
rules”), is to keep the learning mechanism and add
additional parameters that can make the mechanism work
for problems, such as for example overshadowing (as it
is, e.g., done by Rescorla and Wagner, 1972). Another
solution is to acknowledge the limitations of these simple
models and to draw on different, or additional mechanisms
or more complex network architectures. Regarding the
case of overshadowing, Rokers et al. (2002) provide an
example of how a combination of two multi-layer error-
driven networks connected by a feedback mechanism can
simulate how more or less salient cues act differently in a
blocking paradigm tested on rats. Their model is directly
informed by research on cortico-hippocampal networks
and implements a postulated mechanism in the septal
region that modulates input representations during learning.
Importantly, this highlights another limitation of simple
two-layer networks: although they can discriminate between
input representations (potentially at different levels of
abstraction) and in this sense learn which representations
they need to predict the outcomes defining a given task, they
cannot learn (in the sense of form) these representations
during the same learning process with the same outcomes
(Ramscar, 2021). In order for the latter process to occur, the
more abstract cue representations that need to be learned
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would somehow need to be given to the model as outcomes
(besides the representations defining the task at hand) and
as cues. It is far from clear how this can be done in a two-
layer network, yet it is exactly what happens in a multi-layer
network, where hidden units can serve both as outcomes to
input representations and cues to output representations (or
further hidden units).

This leads directly to another point which is important
for understanding the scope of these models: they do not (or
should not) aspire to be complete process models. Although
error-driven learning was first introduced into psychology
in what were essentially blackbox empiricist terms (i.e.,
as models of “the learning process”), our increasing
understanding of the neurobiology of learning and the
inherent complexity of human neurocognitive architecture
makes clear that no single error-driven learning network,
regardless of its complexity, can be realistically considered
to be a ‘complete’ model of how the cognitive system
learns. However, in contrast to more holistic symbolic
cognitive architectures, simple error-driven learning models
have nevertheless turned out to be particularly helpful
regarding the investigation of the neural underpinnings of
more complex cognitive processes: the fact that they are able
to capture in some detail the specific aspects of learning
given a specific situation and a specific set of assumptions
has enabled researchers to employ these models to predict
the behavior of specific neural mechanisms in learning
(Schultz, 2000; Schultz, Dayan, & Montague, 1997; Waelti,
Dickinson, & Schultz, 2001). This work has allowed to
relate the behavior of different brain regions in learning
to the different subprocesses of more complex network
architectures (Mack, Love, & Preston, 2016; Mack, Love,
& Preston, 2018; Mack, Preston, & Love, 2020), as well
as to connect observed changes in learning in childhood
to the development of a more complex network learning
architecture in development (Ramscar & Gitcho, 2007;
Thompson-Schill, Ramscar, & Chrysikou, 2009).

These findings further support the idea that while simple
error-driven learning networks are ultimately limited in
their computational power as compared to more complex
modeling approaches, it remains to be seen whether the
specific characteristics causing this reduction in power
are in fact limitations. One such arguable limitation is,
for example, that error-driven learning based on the delta
rule, as we present it here, is a discrete process, and
thus cannot directly process continuous input. However,
it can still be the case that — given that from a
scientific perspective, simulations are ultimately aimed
at increasing understanding — this simplification can
nevertheless illuminate mechanisms of learning from
continuous input. In fact, whether mechanisms in cognitive
processing and learning are discrete or continuous is often a
question under discussion and, interestingly in many cases,

such mechanisms can be modeled by both discrete and
continuous models (e.g., Miller, 1988; van Der Wel, Eder,
Mitchel, Walsh, & Rosenbaum, 2009). If we assume that
discretization is a process of abstraction from what are
originally continuous sensory signals, this then raises the
question what kind of levels of abstraction are necessary
to model a problem, which can be investigated very well
with two-layer error-driven learning models. First, because
of the fact that in modeling with two-layer networks,
representations on different levels of abstraction have
to be chosen explicitly, this question is often naturally
considered during the modeling process. Second, as
computational resources have grown, it has become possible
to approximate a continuous signal surprisingly closely
with a two-layer error-driven model (i.e, a continuous
acoustic speech signal: Arnold et al., 2017), hence enlarging
the range of possible levels of abstract representations to
explore. Two recent studies investigating the required levels
of abstraction in language processing with two-layer error-
driven learning models find that surprisingly low levels
of abstraction are required for word processing: Baayen
et al. (2016b) find that a model with speech input which
is not segmented into words but into a of triphones shows
behavior which has been before explained by segmentation;
Arnold et al. (2017) find that a model trained on a close
approximation of a continuous speech signal shows similar
performance in word recognition to human participants.
In summary then, it seems that although simple two-layer
error-driven models cannot model continuous processing
directly, they can be used to explore questions in relation
to the kind of representations and levels of abstraction that
are theoretically needed to solve problems of cognitive
processing or learning even when it comes to continuous
processes.

Another important characteristic of simple two-layer
error-driven learning models is that they by definition are
unable to transform their input representations during learn-
ing (beyond simple weight adjustments). The advantages
that multi-layer networks bring in this regard is one of the
main reasons for their success in many engineering appli-
cations. Crucially, multi-layer networks solve two prob-
lems that emerge in two-layer networks: the problem that
researchers are constrained by their theory and underly-
ing assumptions in choosing a set of input representations
and the problem that any attempt of hand coding a com-
plete set of possible representations leads to a combinatorial
explosion whenever cue representations on multiple levels
of abstraction are required. However, at the same time and
somewhat paradoxically, this weakness may actually be a
strength when it comes to using simple networks as theoret-
ical tools. On the one hand, the fact that two-layer models
cannot learn internal representations, clearly limits their
capacity to solve a complex task by considering only simple
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input representations especially when the abstract represen-
tations actually required to solve the task are unknown. On
the other hand, because in simple two-layer networks all
cue and outcome representations have to be chosen explic-
itly, researchers are forced to attend more closely to the cue
and outcome representations selected, which in turn facili-
tates the generation of concrete theoretical insights in this
regard. In particular, the very simplicity of these models
can serve to make explicit the consequences of represen-
tational assumptions — for example, whether a stimulus
is likely to be perceived as a chunk or as a set of ele-
ments, or the degree to which two given outcomes are in
fact discriminable to a learner — that can be obscured by
more powerful models. In contrast, because representations
learned internally in complex hidden layers are not directly
accessible to researchers, the use of multi-layer networks
can lead to situations where researchers are able to simulate
hypothesized behavior in a given task without fully under-
standing exactly why a given simulation actually works.
Hence, while multi-layer networks can simulate the con-
struction of abstract representations, two-layer networks use
explicitly chosen representations to investigate how specific
representations are related to a learned behavior. Conse-
quently, both approaches contribute to the understanding of
the learning process on different levels of abstraction and
therefore, in the best case, they should inform research in
a complementary way. For current purposes, the combina-
tion of these approaches also helps clarify how in fact the
learning of predictive input representations in an abstract
non-linear space is ultimately the key mechanism of error-
driven learning: first, this is exactly what happens in the
hidden layers of deep neural networks and, second, we have
seen that already to model simple behavioral results, such
abstract and non-linear representations can also be helpful
in a simple two-layer model.

These last considerations show again the trade-off
between detail and abstraction in modeling. As Bonini’s
paradox suggests, increasing complexity often comes
at the cost of understanding. Notwithstanding the fact
that approaches of different degrees of complexity and
abstraction are necessary to resolve this modeling paradox,
two-layer error-driven networks can, when sensitively and
appropriately employed, serve as an opposing force to
the tendency towards increasingly complex models. By
placing the focus on the learning process itself, this simple
framework is a valuable tool for the study of error-driven
learning, which is not only an ubiquitous mechanism in
today’s models of learning but also clearly has much to
contribute when it comes to the development of theories of
cognition. In this way, a careful analysis of the basic error-
driven learning mechanism leads to the conclusion that this
learning mechanism is inherently discriminative which in

turn implies that it might be most productively applied
within a discriminative theory of learning and processing.

Appendix: Adjusted EDL weight updates
for illustration purposes

To illustrate the contributions of both cue and outcome
competition (see Fig. 5), we created two adjusted versions
of the weight update, one with disabled cue competition and
one with disabled outcome competition.

To disable cue competition, errors are not calculated
relative to the outcome activation, but only relative to the
weight of the current cue to the current outcome:

ΔV t
ij =

⎧
⎨

⎩

0 , cue i absent
η(1 − vt

ij ) , cue i and outcome j present
η(0 − vt

ij ) , cue i present but outcomej absent

(6)

To disable outcome competition, the third case of the
weight update is ignored during learning. As a result, only
weights to present outcome are updated:

ΔV t
ij =

⎧
⎨

⎩

0 , cue i absent
η(1 − act tj ) , cue i and outcome j present
0 , cue i present but outcome j absent

(7)

Open Practices Statement The code for all example simulations
is available at https://dorohoppe.github.io/tutorials/edl.html and the
source code to this tutorial can be found at https://git.lwp.rug.nl/
p251653/error-driven-learning-tutorial.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.
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Bröker, F., & Ramscar, M. (2020). Representing absence of evidence:
Why algorithms and representations matter in models of language
and cognition. Language, Cognition and Neuroscience 1–24.
https://doi.org/10.1080/23273798.2020.1862257.

Carpenter, G. A., & Grossberg, S. (1987). A massively parallel
architecture for a self-organizing neural pattern recognition
machine. Computer Vision, Graphics, and Image Processing,
37(1), 54–115. https://doi.org/10.1016/S0734-189X(87)80014-2

Church, R. M., & Kirkpatrick, K. (2000). Theories of conditioning
and timing. In Handbook of contemporary learning theories,
(pp. 221–264): Psychology Press.

Cooper, R. P., & Guest, O. (2014). Implementations are not
specifications: Specification, replication and experimentation in
computational cognitive modeling. Cognitive Systems Research,
27, 42–49.

Danks, D. (2003). Equilibria of the Rescorla-Wagner model. Journal
of Mathematical Psychology, 47(2), 109–121.

Delamater, A. R. (2012). On the nature of CS and US representations
in pavlovian learning. Learning & Behavior, 40(1), 1–23.

Dutton, J. M., & Starbuck, W. H. (1971). The plan of the book. In
Dutton, J. M., & Starbuck, W. H. (Eds.) Computer simulation of
human behavior, (pp. 3–9). New York: Wiley.

Dye, M., & Ramscar, M. (2009). No representation without
taxation: The costs and benefits of learning to conceptualize the
environment. In Taatgen, N., & van Rijn, H. (Eds.) Proceedings
of the 31st annual meeting of the cognitive science society,
(pp. 3175–3180).

Evert, S., & Arppe, A. (2015). Some theoretical and exper-
imental observerations on naive discriminative learning. In
Proceedings of the 6th conference on quantitative investi-
gations in theoretical linguistics Tübingen. Retrieved from.
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