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ABSTRACT

The combination of chromatin immunoprecipitation
with next-generation sequencing technology
(ChIP-seq) is a powerful and increasingly popular
method for mapping protein–DNA interactions in a
genome-wide fashion. The conventional way of
analyzing this data is to identify sequencing peaks
along the chromosomes that are significantly higher
than the read background. For histone modifica-
tions and other epigenetic marks, it is often prefer-
able to find a characteristic region of enrichment
in sequencing reads relative to gene annotations.
For instance, many histone modifications are typ-
ically enriched around transcription start sites.
Calculating the optimal window that describes this
enrichment allows one to quantify modification
levels for each individual gene. Using data sets for
the H3K9/14ac histone modification in Th cells and
an accompanying IgG control, we present an
analysis strategy that alternates between single
gene and global data distribution levels and allows
a clear distinction between experimental back-
ground and signal. Curve fitting permits false
discovery rate-based classification of genes as
modified versus unmodified. We have developed a
software package called EpiChIP that carries out
this type of analysis, including integration with and
visualization of gene expression data.

INTRODUCTION

A major goal of molecular biology is to understand how
the complex patterns of gene expression that define cell
types and states are organized and maintained. An im-
portant step towards this aim is the positional mapping
of DNA-interacting proteins, such as transcription factors

(TFs), histones or basic transcriptional machinery on
chromosomes. Linking this information to the expression
levels of genes provides important insights into the regu-
lation of transcription.
The main experimental strategy for studying protein–

DNA interaction in vivo is chromatin immunoprecipitation
(ChIP) (1), which is based on antibody-mediated enrich-
ment of protein–DNA complexes. Hybridization of the
immunoprecipitated DNA to tiling or promoter micro-
arrays (ChIP-chip) allowed extension of ChIP from
single-gene studies to the whole genome (2). A break-
through for ChIP-based assays came with the introduction
of next-generation sequencing technology, such as ABI
SOLiD, Roche 454, HeliScope or the Illumina Genome
Analyzer (3). Mapping of the sequencing reads to the
genome reveals positions where high numbers of reads
pile up to create peaks, indicating protein binding sites.
This approach was termed ChIP-seq and offers tremendous
advantages over ChIP-chip, such as single-base pair reso-
lution, much lower starting material requirements and the
absence of DNA-hybridization-related sensitivity issues
(4). ChIP-seq has therefore become the state-of-the-art
technology for mapping protein–DNA interactions in a
genome-wide fashion.
One of the key findings of pioneering ChIP-seq experi-

ments for TFs such as Stat1 (5) or Rest (NRSF) (6)
was the unexpectedly large number of putative binding
sites that are dispersed throughout the genome. Peaks
are often located far from loci or do not contain binding
motifs and yet are clearly not artifactual (7). Because
of this, accurate target gene assignment is currently
one of the major problems with TF ChIP-seq (7). In
that respect, ChIP-seq experiments for post-translational
modifications on histones have been more informative.
Different types of histone modifications exhibit clear
patterns of distribution along the genome and were
found to be associated with other functional features.
For instance, trimethylation of K4 on histone H3
(H3K4me3) is primarily found at transcriptional start
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sites of active genes (8,9). H3K27me3 marks, on the other
hand, are more spread out along the bodies of transcrip-
tionally repressed genes (8,10). Another type of histone
marks, H3K36me3, appears to mark gene bodies and
particularly exons of expressed transcripts (11–13).
Because this is a common feature of histone modifica-

tions, we have developed a search strategy to identify con-
sistent regions of genes that are globally most enriched in
a given ChIP-seq data set. To date, there is a small number
of published programs or packages [e.g. CEAS (14),
Repitools (15)] that allow one to search for such regions.
Our approach goes further by extracting the ChIP-seq

signal in this fixed window for each gene. The global dis-
tribution of this data shows a clear distinction between
experimental background and signal, which we use for
false discovery rate (FDR)-based classification of genes.
This allows us to define which genes are significantly
modified above background, and to quantify the level of
modification of each individual gene.
Using H3K9/14ac in Th2 cells as an example, we illus-

trate this strategy for analysis of ChIP-seq data and
present the software package EpiChIP, which allows one
to perform this analysis in a user-friendly way.

MATERIALS AND METHODS

Th2 cell differentiation culture

Spleens of C57BL/6 mice aged from 7 weeks to 4 months
were removed and softly homogenized through a nylon
mesh. The medium used throughout the cell cultures was
IMDM supplemented with 10% FCS, 2 mM L-glutamine,
penicillin, streptomycin and 50 mM b-mercaptoethanol.
Cells were washed twice and purified by a Ficoll density
gradient centrifugation. Cd4+Sell+cells were isolated by a
two-step MACS purification using the naive T Cell
Isolation Kit II (Miltenyi Biotec). Cells were seeded into
24-well plates that had been coated with a mix of anti-Cd3
(1mg/ml, clone 145-2C11, eBioscience) and anti-Cd28
(5mg/ml, clone 37.51, eBioscience) antibodies overnight,
at a density of 250 000 cells/ml and a total volume of
2ml. The following cytokines and antibodies, respectively,
were added to the Th2 culture: recombinant murine Il4
(10 ng/ml, R&D Systems), neutralizing Interferon-g
(5mg/ml, Sigma). Cells were cultured for 4–5 days at
37�C, 5% CO2. After this, cells were taken away from
the activation stimulus, diluted 1:2 in fresh medium con-
taining the same cytokine concentration as before. After
2–3 days of resting time, cells were directly cross-linked in
formaldehyde for preparing ChIP-seq samples. For FACS
staining, cells were restimulated with phorbol dibutyrate
and ionomycin (both used at 500 ng/ml, both from Sigma)
for 4 h in the presence of Monensin (2 mM, eBioscience)
for the last 2 h after the resting phase. For real-time PCRs,
the cells were lysed in Trizol. FACS staining and real-time
PCR showed successful Th2 differentiation
(Supplementary Figure S1A and S1B).

FACS staining

After restimulation, cells were washed in PBS and fixed
overnight in IC fixation buffer (eBioscience). Staining for

intracellular cytokine expression was carried out accord-
ing to the eBioscience protocol, using Permeabilization
buffer (eBioscience), and the following antibodies: anti-
Interferon-g-APC (1/1200, clone XMG1.2, eBioscience),
anti-Il13-PE (1/400, clone eBio13A, eBioscience) and
anti-Gata3-Alexa647 (one test, TWAJ, eBioscience).
Stained cells were analyzed on a FACSCalibur (BD
Biosciences) flow cytometer using Cellquest Pro and
FlowJo software.

Real-time PCR

In parallel to the FACS staining, cells from the Th2 cell
culture were subjected to real-time PCR to control for
proper differentiation. To this end, RNA of 106 cells
was isolated with Trizol (Invitrogen) according to the
manufacturer’s protocol. cDNA was produced using
Superscript III reverse transcriptase (Invitrogen), follow-
ing the protocol supplied by the manufacturer. The cDNA
was subjected to real-time PCR, using the SYBR green
PCR master mix (Applied Biosystems) and a 7900 HT
Real-Time PCR system (Applied Biosystems). The
primers used were as follows: Tbx21 (fwd: TTTCCAAG
AGACCCAGTTCATTG, rev: ATGCGTACATGGACT
CAAAGTT), Gata3 (fwd: CCCTCCGGCTTCATCCTC
T, rev: CTGCACCTGATACTTGAGGC) and Ror�t
(fwd: CCGCTGAGAGGGCTTCAC, rev: TGCAGGA
GTAGGCCACATTACA). Specificity was determined
by recording melting curves and checking product sizes
on agarose gels. Normalization to control primers
(Rplp0, fwd: TGCACTCTCGCTTTCTGGAGGGTG,
rev: AATGCAGATGGATCAGCCAGGAAGG) and
analysis was carried out as described previously (16).

ChIP-sequencing

Preparation of the samples was based on Wilson et al.
(17). Briefly, 3 � 107 Cells were cross-linked in 0.4% for-
maldehyde for 10min at room temperature. After lysing
cells and nuclei, samples were sonicated with a Diagenode
Bioruptor at the maximum power setting for 15min with
30 s intervals. This yielded DNA fragments with a median
size of �200 bp as estimated by agarose gel electrophor-
esis. The immunoprecipitations were performed with
either an unspecific control IgG from polyclonal rabbit
serum (Sigma, Catalog-number I5006) or anti-H3K9/
14ac-specific antiserum (Millipore, Catalog-number
06-599). Precipitates were processed with a ChIP-seq
single-end sample preparation kit (Illumina) according
to the manufacturer’s protocol with the following modifi-
cations: the PCR step was performed before gel extrac-
tion; Zymed spin columns were used for concentrating
the samples after the individual reactions. The final
eluates were sequenced on an Illumina GAII Genome
Analyzer.

ChIP-seq data analysis

Custom Perl (v5.8.8) and R (version 2.10.1, http://www
.r-project.org/) scripts were used at virtually all steps of
the processing procedure. The H3K9/14ac sequencing
resulted in 36-bp reads which were mapped to the mouse
genome (mm9) with Bowtie (18). Ambiguous read
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mappings were discarded (Supplementary Table S1). The
data was submitted to Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo/), and is downloadable
under accession number GSE23092. The mapping output
files were then converted into browser-extensible data
(BED) files containing the positions of all fragments
based on the assumption that each 36 bp read represented
the end of a 200-bp fragment. The BED files were further
converted into wiggle format files (WIG) by calculating
the heights of stacks of overlapping fragments for each
position. These files allowed viewing of the data in the
UCSC genome browser and were used to check the data
(Supplementary Figure S1C). For studying the distribu-
tion of ChIP-sequencing reads with respect to genes, the
genomic coordinates of all murine RefSeq genes were
downloaded from the table browser of the UCSC
genome browser. Name2 of the RefSeq table was used
as the primary identification key and to link ChIP-
sequencing and microarray data (see below). The main
analysis involved the determination of the area under
the ChIP-seq peaks within defined windows of each
RefSeq gene. In the case a TSS window was used and a
gene had more than one transcriptional start site, the start
site with the largest such area was chosen. Normalization
by the total number of reads yielded the (normalized locus
specific chromatin state) NLCS values. For log2-trans-
formation and curve fittings, we removed genes with
area 0.

The heatmap displaying expression versus histone
modification was generated by applying 2D kernel
density estimation using the R library MASS.

These analyses except the mapping and the WIG file
generation were implemented in EpiChIP using Java.

Expression data

Expression data (Th2) of Wei et al. (19) were downloaded
from Gene Expression Omnibus (GEO, http://www.ncbi.
nlm.nih.gov/geo/), accession number GSM548964. The
mapped and normalized microarray data were used.
Present (P) and absent (A) calls of the microarray
probesets were ignored. The intensities for each probeset
were log2 transformed. These values were then linked to
RefSeq genes based on the Affymetrix MOE430 2.0 anno-
tations of build 27. If more than one probeset was
mapping to a gene, the probeset with the highest intensity
was chosen as representative of the gene’s expression level.

Curve fitting

We modeled the distribution of the IgG control data with
a truncated normal (truncated at 0.5) distribution, a
lognormal distribution or a truncated Poisson distribution
(0 was excluded as possible value). For the sample data,
we used two-component mixture models of normal or
lognormal distributions as given by

f xð Þ ¼
X1

i¼0

�i�i x;�i,�ið Þ ð1Þ

where �i denotes the probability density functions, ai rep-
resents the fraction which the i-th component contributes

to the total and�i and �i are the parameters of the i-th
component. The fits were determined by a Java implemen-
tation in EpiChIP of the expectation maximization algo-
rithm (EM) (20). The resulting likelihood values were used
to calculate the bayesian information criteria (BICs) (21).
In case of the fits to the not-XSET processed IgG control
data, we used numerical optimization of the likelihood
function with the R function ‘optim’.
Upon setting a threshold for the ChIP-seq value, the

FDR of background (BG) genes with regards to histone
modified (HM) genes can be defined (FDRHigh):

FDRHigh xð Þ

¼

R1
x �0�0 t;�0,�0ð ÞdtR1

x �0�0 t;�0,�0ð Þdt+
R1
x 1� �0ð Þ�1 t;�1,�1ð Þdt

ð2Þ

Analogous calculations were carried out for the negative
groups (FDRLow), by swapping the two distributions and
integrating from �1 to x:

FDRLow xð Þ

¼

R x
�1
ð1��0Þ�1 t;�1,�1ð ÞdtR x

�1
�0�0 t;�0,�0ð Þdt+

R x
�1
ð1��0Þ�1 t;�1,�1ð Þdt

ð3Þ

The threshold x for a defined FDR was determined so that
FDRðxÞ ¼ y: Values above or below the thresholds
determined for FDRHigh or FDRLow, respectively, were
classified as HM or BG, respectively.

Implementation in EpiChIP

The analysis methods were implemented in EpiChIP as
described above. EpiChIP was written in Java.

MACS analysis

The MACS program (version 1.3.7.1) was downloaded
from http://liulab.dfci.harvard.edu/MACS/ and run
under standard parameters except for ‘tsize’ which was
increased to 36 and ‘m-fold’ which was decreased to 20.
Both the H3K9/14ac samples as well as the IgG control
were used as input except for the H3K27me3 sample, for
which no control was available (8).

RESULTS

Identifying the globally most highly enriched regions of
genes

We generated ChIP-seq data for the H3K9/14 histone
acetylation in murine Th2 cells, a cell type that is part of
the immune system and can be obtained in large numbers
ex vivo. Supplementary Figure S1A and S1B demonstrate
characterization of the cell type by protein and mRNA
expression of cell-type-specific genes (Il13 and Gata3).
To test the experimental background of the ChIP-seq
method, we also prepared data from a control sample
where we used a non-specific IgG antibody during
the immunoprecipitation step. Supplementary Table S1
shows that we were able to map �10–27 million reads
per ChIP-seq reaction of which �80% were uniquely
mappable.
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We processed the mapped read positions based on the
‘XSET’ method (22), by assuming our 36-bp sequence
reads to be the ends of fragments of an average size of
200 bp. We then converted this into a distribution of
read density along the chromosomes. Supplementary
Figure S1C shows the resulting peak landscape along the
Gata3 gene.
In order to find the region relative to a specific genomic

mark (50- or 30-end of genes, exons or introns) where
histone modifications are present, we first aligned all the
genomic objects (genes, exons or introns) according to
either 50- or 30-ends and depicted an overall landscape of
read distribution along the genomic objects –x-axis being
the base pair distance relative to the alignment point and
y-axis being the number of read-nucleotides per gene at
that base pair. Additionally, we stretched or compressed
each genomic object to the same length and obtained
another set of landscapes in terms of ‘percentage length’.
Within these landscapes, global peaks are detected as
region with a read enrichment of >40% of the largest
value and no <150 bp in width (2% in the case of percent-
age length). This is used as a window for further analysis
(for a further discussion of the window detection proced-
ure, please see the discussion in the Supplementary Data).
Once the windows are identified across all genomic
annotations, their importance is determined and ranked
by how many reads fall into each window normalized to
the window width.
In the case of our H3K9/14ac data set, the most

enriched window is from 400-bp upstream of the tran-
scription start site (TSS) to 807-bp downstream. In
contrast, the IgG control distribution is much flatter,
showing only a slight enrichment at TSSs (Figure 1A).
Therefore, we used this window for further analysis. It is
also interesting to note that intron/exons junctions
featured small peaks.
Clearly, this strategy can be applied to any type of

chromosomal annotation, including, for example,
enhancer annotations. Furthermore, it can be applied to
ChIP-seq data for proteins other than histones, e.g. TFs,
RNA polymerase and so forth, to search for globally
enriched regions relative to gene or enhancer annotations
for instance.

Gene-by-gene quantification of histone modification levels:
signal versus noise

Based on the optimal window of H3K9/14ac around
TSSs, we extracted the peak area within the window for
each gene individually. We normalize this value by the
total area and define it as the normalized locus-specific
chromatin state (NLCS). When we display the global dis-
tribution of this value for all genes as a density plot, the
number of genes decays rapidly as the value increases for
both the control and the H3K9/14ac sample. The H3K9/
14ac sample features an extra shoulder (Figure 1B), which
is emphasized by log-transforming the data, and suggests
that the sample data is a sum of two separate but
overlapping distributions (Figure 1B). This is reminiscent
of flow cytometry data, where protein staining with fluor-
escent antibodies often leads to two separate distributions

of log-transformed fluorescence intensity per cell, one cor-
responding to auto-fluorescence or background staining,
the other to the subpopulation of cells expressing the
protein (23).

Figure 1. ChIP-seq data distribution for the H3K9/14ac histone modi-
fication. (A) The cumulative read density for the whole genome is
shown from �5 kb to +5kb relative to TSSs. The H3K9/14ac sample
(blue) shows a strong enrichment within the first kb downstream from
TSS. The IgG control (black) shows a much weaker enrichment in this
region. (B) Kernel density estimates of the distributions of all genes
with respect to NLCS values within the window from �400 to
+807 bp with respect to TSSs. IgG control (black/top) and H3K9/
14ac sample (blue/bottom) are shown on linear (left) and log2 (right)
scales. The dotted lines represent the signal distributions of random
intergenic regions of the same window size. The shapes of the data
distributions suggest that the H3K9/14ac sample consists of two
separate distributions, the experimental/biological background (BG)
and the actual histone-modification signal (HM). (C) Mathematical
modeling of the IgG control-data distribution. The genome-wide distri-
bution of the numbers of sequencing reads within the �400/+807 bp
window from TSSs (not XSET processed) are shown as a histogram on
linear (left) and log2 (right) scales. Numerical maximum likelihood fits
of truncated Poisson (red), normal (cyan), lognormal (purple) and
truncated normal distributions (green) are overlaid. Parameters and
BICs are given in Supplementary Table S2.
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The major question is what the natures of the two
subpopulations of our sample are. From the log trans-
formation, we observe that the NLCS of the IgG control
displays only one peak (apart from the smaller spikes
which are due to log transformation) with NLCS values
very similar to the left peak of the H3K9/14ac data. This
observation indicates that the left peak is likely due to
the background noise. This is also confirmed by a study
of the genomic background within the samples. Here, we
randomly selected fragments with the optimal window
width from the intergenic regions and plotted the distri-
bution of the NLCS values (Figure 1B, dotted lines). For
the IgG control, the resulting distribution largely overlaps
with the distribution based on the window (Figure 1B).
The small shift to the left probably reflects the slight TSS
enrichment we have seen previously (Figure 1A). The
H3K9/14ac intergenic distribution also lies slightly
toward the left of the left peak, and its large overlap
with the left peak suggests that the left peak consists of
a large proportion of experimental noise and possibly
biological noise, which should be filtered from the right
peak—the genes with true modification signals. Therefore,
we designate these two to-be-separated subpopulations of
genes as BG (background) and HM (histone modification)
(Figure 1B).

In order to separate HM from BG, the shape of each
distribution has to be elucidated. Although most studies
assume that the experimental background of
high-throughput sequencing follows Poisson distributions
(22), some studies suggest that the ChIP-seq background
is not simple (24,25). In order to directly compare a
Poisson fit to possible alternatives (normal, log normal
or truncated normal), we extracted from our IgG
control data the number of complete sequencing reads
that map to the TSS window. We excluded genes with
zero values (2% in H3K9/14ac and 18% in IgG, which
are reasonably low portions) because a discontinuity of
the distribution is present at zero due to the lack of reso-
lution and hence not suitable for modeling. We calculated
the Bayesian Information Criterion (BIC) (21) as an indi-
cation of the goodness-of-fit. The fitting results suggest
that the two-parameter distributions (normal, lognormal
and truncated normal) fit much better than the one-
parameter Poisson model. Amongst the two-parameter
distributions, the truncated (at 0.5) normal distribution
fits best to the IgG control distribution (Figure 1C, see
Supplementary Table S2 for parameters).

The shape of the HM distribution of our H3K9/14ac
sample suggests that a normal or lognormal function
would fit the distribution of this group of genes well too.
In order to determine contributions of the BG and HM
groups to the total distribution of the data, we fit
two-component mixture models of various combinations
of normal and lognormal distributions (two normal, two
lognormal, mixed lognormal and normal) to the NLCS
distributions by using the expectation EM (20). Due to
the complexity of parameter estimation, the truncated
normal distribution was not included here.

All of the tested models fit the data well, with very close
BICs (normal+lognormal, Figure 2A, for other combin-
ations, see Supplementary Figure S2 and Table S3). For

further analysis, we picked the model that represents BG
and HM groups as normal and lognormal (Figure 2A),
respectively, as they best reproduce the shape of the actual
distribution.

Distinguishing histone-modified genes from background

Based on the parameterization of the BG and HM distri-
butions, we can now quantify the overlap between the two
groups of genes at any point of the data distribution. An
FDR can be set which gives a minimum threshold of
NLCS above which the probability of finding a BG gene
is below the desired FDR value. Genes with NLCS values
higher than the minimum threshold can then be classified
within the desired FDR. Similarly, BG genes can be
obtained by a maximum threshold, which means that for
genes below this threshold, the probability to find HM
genes is less than the FDR.
We chose an FDR of 0.01 and performed a binary clas-

sification of genes for both the BG and HM groups of
genes (Figure 2A). Of the total 21 326 genes, 20 424
could be classified, with the remainder of 902 genes in
the intermediate region where the BG and HM distribu-
tions overlap extensively. Our classification agrees with
the current understanding of T helper cell biology as
genes expressed exclusively in Th2 cells such as Gata3,
Il4 and Il13 are found in the HM group. Genes such as
Ifng and Il17a, on the other hand, which are known to be
expressed in Th1 and Th17 cells (and not in Th2 cells),
respectively, are found in the BG category.

Integration with expression data

In order to probe the biological meaning of the two sets of
genes, we extracted the expression levels of genes in each
category from published microarray data for the same cell
type (19). Genes in the HM category were expressed at
significantly higher levels (P< 2.2� 10�16, one-sided
Wilcoxon rank-sum test) than those classified as BG
(Figure 2B).
To further study the relationship between histone modi-

fication and expression, we display the combined histone
modification and expression data for all genes as a 2D
density plot, with the color denoting the density of genes
at particular spots. This representation of the NLCS
versus gene expression data supports the concept of BG/
HM separation, as two clearly identifiable groups of genes
are visible, which correspond to either high expres-
sion and presence of H3K9/14ac histone modification or
low/off expression and histone modification at back-
ground levels, respectively (Figure 2C). Comparison with
Figure 2B shows that the expression levels of the BG/HM
classified genes agree very well with the expression levels
of the two groups of genes in Figure 2C.
These results demonstrate that the global pattern of

ChIP-seq signal for a histone modification allows us to
distinguish experimental or biological background from
the actual signal, if the data is extracted from each gene
individually based on a sequence window. This in turn
makes it possible to classify genes into background and
histone-modified genes and yields estimates for the
genome-wide fraction of modified genes. The close
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agreement with the expression data demonstrates the
validity and power of our approach. An overview of our
analysis strategy is given in Figure 3.

EpiChIP software

Based on our observations, we have developed the
‘EpiChIP’ software, which allows the analysis of
ChIP-seq experiments in a similar way to the approach
described above. EpiChIP is a platform independent
desktop application and comes with a user-friendly graph-
ical interface that does not require any programming
skills. The user supplies EpiChIP with files of sequencing
reads that were mapped by any of three common mapping
programs (Maq, Eland, Bowtie) or BED files. Then, based
on a gene annotation file (RefSeq for mouse and human
are included with EpiChIP) or user-defined custom anno-
tations, one or more sequence windows with respect to
genomic coordinates can be chosen. These may include
regions around the TSS or end of a gene, the sequences

at intron/exon boundaries, etc. EpiChIP then determines
the density of paired-end or XSET-processed single-end
reads along the sequence window(s) for each gene.

The genome-wide distribution of the data along the
window(s) is displayed, peak detection is performed and
further window-specific information such as the percent-
age of total peak area that falls into the various windows
is output. This enables the user to decide which window
should be used for the further analysis.

EpiChIP allows the user to upload a control sample and
overlay it with the plots generated for the actual sample as
a further means to test the presence of specific signal in the
sample (in addition to the presence of bimodality in the
global data distribution).

Based on the selected window, the NLCS value for each
individual gene is then extracted and the distribution of
NLCS among all genes is displayed on linear or log2 scale.
Currently, our program fits combinations of normal or
lognormal distributions to this data and displays all
relevant fitting parameters. An upgrade allowing for

Figure 2. (A) Mathematical modeling of the H3K9/14ac sample data. (A) combination of a normal (for BG) and a lognormal distribution (for HM)
was fit to the NLCS data (from the �400/+807-bp TSS window, as shown in Figure 1B). The experimental data is shown in blue, the BG curve in
orange, the HM curve in purple, the sum of the two latter in red. The fit was based on parameter estimation by expectation maximization.
Parameters are given in Supplementary Table S3. Alternative fits are shown in Supplementary Figure S2. The grey lines indicate the thresholds
at FDR=0.01. (B) Expression levels of genes in the BG and HM categories. The expression levels are significantly different (P< 2.2� 10�16,
one-sided Wilcoxon test). (C) Plot of histone modification versus gene expression for each gene. The heatmap represents a 2D-kernel density estimate
of �15 000 genes.
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further distributions is planned. EpiChIP lets the user
decide on an FDR and saves the resulting gene lists in
files that can be used for further analysis.

In the case that the 1D distribution does not allow one
to clearly identify two peaks, we also included a feature
for linking the data to a second data set, such as gene
expression data, and displaying it as a heatmap as in
Figure 2C. The user can then encircle groups of genes
and save them to files.

EpiChIP is downloadable for multiple platforms from
http://epichip.sourceforge.net/index.html. The web site
will be regularly updated and contains a tutorial, a
detailed documentation, an FAQ list and the mapped
Th2 sample and control files which can be used as
demos for exploring EpiChIP functions.

Examples

We have tested EpiChIP on published ChIP-seq datasets
for 36 histone modifications, RNA PolII and CTCF
binding and H2AZ histones in human Th cells (8,26).

EpiChIP confirmed previously described genomic distri-
butions of the studied modifications and identified
optimal windows varying from <200 bp to >5 kb in
length in 14 out of 16 histone acetylations and 14 out of
20 methylations (Supplementary Table S4). The smaller
number of optimal windows that were identified among
the methylations probably reflects the more diverse
pattern of histone methylations, which, in contrast to
the acetylations, can also be associated with repressed
transcription and generally show more intricate distribu-
tions, such as the marking of expressed exons (11,27).
In all cases where an optimal window was detected, the

bimodality in the log NLCS-value distribution was
observed. We show screenshots of the curve fittings
EpiChIP performed on five different examples. For
H3K9me1, we used the window EpiChIP detected auto-
matically, from �987 to +2568 bp with respect to TSSs
(Figure 4A). For H3K27me3, where a peak at TSSs is
not strong but present, we manually picked a window
from the TSS to 2-kb downstream (Figure 4B). Finally,
we picked a window from the start of exons to+300-bp

Figure 3. Overview of the analysis strategy.
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Figure 4. EpiChIP screenshots for analysis examples. Types of histone modifications and analysis windows as indicated (A) H3K9me1, (B)
H3K27me3 and (C) H3K36me3.
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downstream (the first exons and introns of all genes are
excluded by EpiChIP to avoid signal overlaps from TSSs)
for the H3K36me3 modification (Figure 4C). In addition,
we show curve fittings to two canonical activating histone
modifications, H3K9ac (Supplementary Figure S3A) and
H3K4me3 (Supplementary Figure S3B). The EpiChIP
curve fitting yielded good fits in all cases and allowed suc-
cessful separation of HM from BG. This illustrates the
functionality of our program and demonstrates the wide
applicability to different types of histone modifications
and other data.

We further studied the consistency of EpiChIP with one
of the most widely used peak-finding program, MACS
(28). We used the list of peaks MACS identified in our
H3K9/14ac sample to represent a new starting dataset for
EpiChIP and compared its output on the MACS peaks
with the EpiChIP output on the original data. We found
that the optimal window for the MACS peaks (from �402
to+841 bp at TSSs, Supplementary Figure S4A) was very
similar to the one identified in the original data (see
above). Moreover, once we used this window to calculate
the NLCS values and perform a classification into BG and
HM, the overlap between HM genes and genes that had a
MACS peak in the same window was very high
(Supplementary Figure S4B). This good agreement
supports our concept of background modeling based on
the genome-wide data distribution. Furthermore, it dem-
onstrates that EpiChIP and peak-finding programs can be
used in a complementary manner. As a further example,
we compared the performance of EpiChIP and MACS on
the H3K27me3 dataset as described above. When we
select for all genes that have MACS peaks within the
region from 0 to 2 kb with respect to TSS and plot
the expression levels of those, we find that many of the
MACS-selected genes are still expressed at high levels,
whereas the proportion of EpiChIP-‘HM’ genes that are
expressed are lower and within the range expected from
the FDR (Supplementary Figure S5).

DISCUSSION

We demonstrate here a novel way for analyzing ChIP-seq
data for histone modifications. The strengths of our
approach are the focus on fixed sequence windows with
respect to genomic coordinates, the extraction of data on a
single-gene basis, the analysis of the genome-wide distri-
bution of the data and the modeling of the background by
curve fitting. As our findings show, this reveals a number
of undiscovered features of the structure of the data,
which is invaluable to understanding the underlying bio-
logical mechanisms.

Most other programs for analyzing ChIP-seq data are
aimed at the detection of peaks, which is usually not re-
stricted to specific regions along the genome. This
approach is useful for TFs and enhancer-marking
histone modifications such as the H3K4me1 mark (29).
However, it is not fully suited to most other histone modi-
fications, which are not found as sharp peaks but usually
cover larger regions associated with gene coordinates. By
considering a defined, fixed sequence window with respect

to gene positions, there is no need for EpiChIP to separ-
ately estimate the background within a shifting window at
each point to account for heterogeneous regions along the
genome. Instead, our global approach clearly allows the
distinction between signal and background. Thus,
EpiChIP makes minimal assumptions and does not
attempt ‘blind folded’ background estimation.
Detection and/or shape of the background distribution

will depend on parameters such as the total number of
sequencing reads, the frequency of the studied histone
modification, the biological noise associated with it and
the experimental noise of the used method. The higher the
read number, the fewer genes will have zero reads, and the
background distribution will become better defined.
Improvements of the current ChIP-seq techniques will
likely lead to reductions of the experimental background
noise. This might be balanced by increased sensitivity,
possibly revealing distributions of biological background
noise with more accuracy.
The EpiChIP analysis strategy does not make direct use

of the control sample in the background/signal discrimin-
ation process. Although this has certain drawbacks such
as the loss of position-specific background information,
this is largely compensated for by the window approach.
For instance, our IgG control shows slight enrichment
close to TSSs which is, however, similar at all TSSs
throughout the genome and not due to a few outliers.
For analysis of the actual sample, the window approach
is therefore expected to yield similar levels of background
at all analyzed spots. A major advantage of determining
the background internally is that the actual distribution
itself is used, allowing a more accurate determination of
the real background. Since there is a trade-off of
sequencing read numbers between signal and background
in the experiment but not in the control, the background
levels in the actual sample might be lower in terms of
NLCS than in the control. The internal curve fitting for
signal/background discrimination is not affected by this.
In any case, inclusion of controls in ChIP-seq experiments
provides useful information about the characteristics of
the background distribution.
The successful analysis of several different types of

histone modifications with EpiChIP indicates that our
approach is generally applicable to ChIP-seq data for
histone modifications. Our binary classification provides
an easy way to compare and/or integrate large datasets of
many epigenetic marks in terms of absence/presence of
marks at genes. Thus analysis tools such as clustering,
principal component analysis, etc. can readily be run
across all genes in a genome. Integration with expression
data also becomes very easy and might reveal associations
of modules of epigenetic modifications with certain gene
expression levels.
EpiChIP can also be used with custom genomic anno-

tations. Thus it can serve as a tool for directly analyzing
the dependence between a ChIP-seq data set and a set of
chromosomal annotations derived from other ChIP-seq
data sets, RNA-seq data sets or yet another source. In
this way, EpiChIP provides new perspectives for discover-
ing novel patterns and formulating hypotheses with
regards to transcriptional regulation.
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