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The goal of this study was to implement a Riemannian geometry (RG)-based algorithm
to detect high mental workload (MWL) and mental fatigue (MF) using task-induced
electroencephalogram (EEG) signals. In order to elicit high MWL and MF, the participants
performed a cognitively demanding task in the form of the letter n-back task. We
analyzed the time-varying characteristics of the EEG band power (BP) features in the
theta and alpha frequency band at different task conditions and cortical areas by
employing a RG-based framework. MWL and MF were considered as too high, when
the Riemannian distances of the task-run EEG reached or surpassed the threshold
of the baseline EEG. The results of this study showed a BP increase in the theta
and alpha frequency bands with increasing experiment duration, indicating elevated
MWL and MF that impedes/hinders the task performance of the participants. High
MWL and MF was detected in 8 out of 20 participants. The Riemannian distances
also showed a steady increase toward the threshold with increasing experiment
duration, with the most detections occurring toward the end of the experiment. To
support our findings, subjective ratings (questionnaires concerning fatigue and workload
levels) and behavioral measures (performance accuracies and response times) were
also considered.

Keywords: EEG, mental workload, mental fatigue, band power features, Riemannian geometry

INTRODUCTION

With increasing developments of modern technologies like artificial intelligence and virtual reality
environments, more and more applications make use of mental state monitoring systems. These
systems allow applications to be adapted based on the user’s mental state which is a crucial
factor in fields such as driving or teaching assistance (Davidse et al., 2009; Walter et al., 2017;
Zander et al., 2017).

Abbreviations: ANOVA, Analysis of variance; BP, Band power; EEG, Electroencephalogram; EOG, Electrooculogram; LDA,
Linear discriminant analysis; MWL, Mental workload; MF, Mental Fatigue; NASA-TLX, NASA Task load index; pBCI, Passive
brain computer interface; PG, Performance group; ROI, Region of interest; RD, Riemannian distance; RG, Riemannian
geometry; SE, Standard error; VAS-F, Visual Analog Scale to Evaluate Fatigue Severity.
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Mental state changes, and more precisely increasing mental
workload (MWL) and mental fatigue (MF), are known to
affect the performance of a person while executing a cognitive
demanding task (Käthner et al., 2014). This effect is usually
projected on electrophysiological signals such as brain signals.
MWL can be defined as the number of tasks to be performed
simultaneously, the load in working memory, or more generally
as a measure of the quantity of mental resources engaged in a task
(Owen et al., 2005; Roy et al., 2013). Therefore, MWL can be seen
as a measure of task difficulty and depends on each individual’s
capabilities and effort (Gevins and Smith, 2006). High MWL
may affect people who use technology in their everyday life, such
as interacting with computers, smartphones, and other devices.
Mental overload, as a result of high MWL, can compromise
a user’s performance and even safety by increasing error rates
and reaction times (Xie and Salvendy, 2000; Young and Stanton,
2002), and can lead to the neglection of critical information,
known as cognitive tunneling (Thomas and Wickens, 2001;
Dixon et al., 2013; Dehais et al., 2014). MF is both objective
and subjective. In its subjective dimension, MF is described as
the feeling of weariness and lack of energy due to prolonged
periods of cognitive activity. From an objective point of view, it is
associated with exhaustion or tiredness that leads to a decrease
in task performance and commitment (Hockey, 1997; Boksem
et al., 2005). High MF may also hinder the attempts of a user
to complete a task that requires self-motivation, without signs,
however, of cognitive failure or motor weakness (Chaudhuri and
Behan, 2000). It has been shown that reduced motivation of a
user to perform a task which induces high MF, is associated with
increased sympathetic activity and decreased parasympathetic
activity (Mezzacappa et al., 1998; Johnson et al., 2006; Tanaka
et al., 2009).

The methods of detecting MWL and MF can be divided
into three main categories: Self-reporting and subjective
ratings, behavioral measures and (neuro)physiological measures
(Aghajani et al., 2017). The subjective level of workload can be
determined with the NASA Task Load Index (TLX) questionnaire
(Hart and Staveland, 1988), whereas the subjective level of fatigue
can be evaluated with the Visual Analog Scale to Evaluate Fatigue
Severity (VAS-F) questionnaire (Lee et al., 1991). Studies of
Käthner et al. (2014) and Roy et al. (2013) have shown that
if there is an increase in MWL and MF, there will be an
increase of the subjective levels of workload and fatigue in the
participants. Another behavioral method is to measure primary-
and secondary-task performance, such as performance accuracy
and reaction time (Wickens, 2008). If there is an increase in
MWL and MF, there will be a decrease in the task performance
(decrease of the accuracy and an increase of the reaction time)
of the participants (Roy et al., 2013; Käthner et al., 2014).
Accuracy and reaction time of the participants can be recorded
during the experiment and evaluated afterward. And finally, the
(neuro)physiological measures of MWL and MF are heart rate
variability, oculomotor activity (eye movements), pupillometry
(measure of pupil size and reflexes), electromyography (electrical
activity produced by skeletal muscles), galvanic skin responses
(changes in sweat gland activity), and brain activity (Sahayadhas
et al., 2012). The (neuro)physiological measure for MWL and

MF detection used in this study is brain activity and more
precisely power changes in certain frequency bands of the
electroencephalogram (EEG) signal. Herein, these changes will be
referred to as band power (BP) changes.

Due to their portability, high temporal resolution and
relatively low cost, most of the currently used passive brain
computer interface systems are EEG-based (Babiloni, 2019). The
study from Babiloni (2019), for example, showed that BP features
extracted from the EEG can successfully detect and distinguish
the different mental states of the user, such as MWL and MF.
They reported that an increase in MWL leads to a BP increase
in the theta frequency band at frontal cortical areas with a
simultaneous BP decrease in the alpha band at parietal areas
(Babiloni, 2019). These results corroborate the findings in Holm
et al. (2009); Stipacek et al. (2003), and Scerbo et al. (2003).
Klimesch et al. (1999) reported that increasing MF is associated
with a BP increase in the lower frequency bands (<12 Hz) and
a BP decrease in the higher frequency bands (>12 Hz). Similar
findings were observed in the study of Boksem et al. (2005). In
another study, Käthner et al. (2014) found increasing alpha BP at
parietal cortical areas and an increase in the theta BP at multiple
widespread electrode positions, linked to elevated MF.

For mental state detection from EEG, most commonly used
classifiers include linear discriminant analysis (LDA) and its
variants (shrinkage or stepwise LDA), support vector machines
and k-nearest neighbors (Liu et al., 2017; Acı et al., 2019; Lotfan
et al., 2019; Lotte and Roy, 2019). Another classification approach
is based on the so-called ensemble learning. The idea of this
concept is to combine different classifiers such as LDA, support
vector machines and artificial neural networks (Klosterman
and Estepp, 2019) or use multiple base classifiers such as
convolutional neural networks (Gao et al., 2019; Salimi et al.,
2019; Zhang et al., 2019, 2021). In order to improve classification
accuracy, spatial filtering techniques like the common spatial
pattern (CSP) algorithm are used in combination with a linear
classifier (e.g., LDA; Barachant et al., 2010). The CSP algorithm
maximizes the class separability by calculating the eigenvalues
of the covariance matrix of the classes (Ramoser et al., 2000).
Another concept that makes use of the eigenvalues of covariance
matrices is the Riemannian geometry (RG). As presented in Yger
et al. (2017); Appriou et al. (2018), and Congedo et al. (2017),
the RG can be employed for feature representation and learning,
classifier design and calibration time reduction. Barachant et al.
(2010, 2013b) showed that the RG can be also successfully used
to classify motor imagery tasks. Furthermore, they showed that
it can be easily expanded to the multi-class scenario and it can
be combined with kernel-based machine learning methods due
to the scalability of the Riemannian framework (Barachant and
Bonnet, 2011; Barachant et al., 2013b).

In this work our aim was to detect high MWL and MF
in participants performing cognitively demanding tasks. To
mentally challenge and tire the participants, the letter n-back
task (Kirchner, 1958) was used. For MWL and MF detection,
we recorded brain activity for subsequent signal processing and
data analysis. The brain signals were acquired non-invasively,
using the EEG as the main measurement modality. Our main
methodological approach relied on detecting changes on the
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covariance matrices of different EEG trials with respect to a
reference state. Covariance matrices belong to the Riemannian
manifold of the symmetric and positive definite matrices and the
RG technique provides a framework to manipulate these matrices
and measure their distances in their native space. Our signal
analysis findings were supported by self-reporting and subjective
ratings, as well as behavioral measures. Based on the literature
of mental state monitoring systems, we explored the relationship
between MWL, MF, and EEG BP changes. An increase in theta
BP and a decrease in alpha BP is expected during high MWL,
whereas an increase in alpha BP is expected during high MF.
We hypothesized that these changes would also be projected
on the Riemannian distances between resting and task-induced
EEG signals in the alpha and theta band. This hypothesis was
subsequently used as a basis for MWL and MF detection.

MATERIALS AND METHODS

Participants
Twenty healthy subjects participated in this study (7 female and
13 male). The participants had normal or corrected to normal
vision. Their age ranged from 21 to 31 years, with a mean of
26.15 years and a standard deviation of 2.6 years. The participants
were informed about all the aspects of the experiment and
voluntarily provided their written informed consent. All subjects
were instructed to sit calmly on their chair and avoid (as much as
possible) eye, head and body movements during the experiment.

Experimental Design
The experimental design is illustrated in Figure 1. At the
beginning and at the end of the experiment, a paradigm to
intentionally record eye artifacts was presented, followed by
the VAS-F questionnaire. In Run 0, the baseline EEG was
recorded during a passive screening of the task (resting EEG).
In run 1, 2, and 3, the participants had to perform the letter
n-back task (Kirchner, 1958). After each task-run, the NASA-
TLX questionnaire had to be filled in. The different parts of
the experiment are described in more detail in the following
sections. The paradigms for the eye artifact recording, the
passive screening and the letter n-back task were developed and
presented using MATLAB R© (Release 2019b, The MathWorks,
Inc., Natick, MA, United States)1 and the Psychtoolbox
(Psychophysics Toolbox Version 3)2. The participants were
seated on a desk chair in front of a monitor. A Keyboard was used
to perform the letter n-back task.

Eye Artifact Recording
Artifacts due to eye movements, blinks and saccades strongly
affect the EEG signal, and should therefore be corrected (Keren
et al., 2010; Plöchl et al., 2012). At the beginning and at the end
of the experiment, a paradigm to intentionally record these eye
artifacts was presented. The paradigm used for eye movement
recording, as well as the employed eye artifact detection and
correction algorithms were introduced by Kobler et al. (2017).

1https://github.com/sccn/labstreaminglayer/wiki/
2http://psychtoolbox.org/

The paradigm included four different conditions: rest, horizontal,
vertical, and blink. Rest: A blue circle was presented on a black
screen. The participants had to fixate the blue circle without
moving or blinking. Horizontal: The blue circle was moving
between the left and right side of the screen. The participants had
to follow the blue circle with their eyes. Vertical: The participants
had to follow the blue circle with their eyes moving up and down
on the screen. Blink: The blue circle was shrinking and enlarging
at a certain frequency. The participants had to blink according
to that frequency.

Recording the Baseline Electroencephalogram
In Run 0, a passive screening of the task was conducted. The
participants were instructed to calmly look at the screen where
the paradigm was presented, but without performing the task.
In this way, the resting EEG of the participants was recorded,
which was used as baseline EEG in the signal processing and data
analysis part. The BP changes for detecting increasing MWL and
MF were calculated based on the differences between the baseline
EEG and the task-run EEG.

Performing the N-Back Task
In run 1, 2, and 3, the participants had to perform the letter
n-back task with varying difficulty. The paradigm of the task was
designed to exhaust and tire the participants, in order to elicit an
increase in MWL and MF.

The letter n-back task consisted of a sequence of 20 letters. The
goal of the task was to identify target letters within the sequence.
A target letter was defined as follows: if the currently presented
letter was the same as n letters back, the current letter was
assigned as the target letter. In each sequence, five target letters
were included. In order to avoid creating short words, which
would facilitate the task, only consonants were used. During the
experiment, three different n-back tasks were presented: 1-back,
2-back, and 3-back.

The trial structure of the task runs can be seen in Figure 2.
At the beginning of the trial, the instruction of the current
task was presented for 2 s in order to inform the participants
which n-back task they had to perform. In the reference phase,
a fixation cross was shown for 2 s. The task itself had a duration
of 40 s. Each letter was presented for 0.5 s, with 1.5 s pause
between the letters. During the pause, the fixation cross was
shown again to avoid random eye movements. If a target letter
was identified, the participants had to press the t key. Once the
task was completed, there was a 6 s break before the next trial.
Each of the three conditions of the task-run (1-back, 2-back, and
3-back) was presented eight times, which led to 24 trials per run.
The tasks were presented in a pseudo-randomized order, with
the restriction of a maximum of two consecutive trials with the
same task. One trial lasted 50 s, resulting in a total duration
of 20 min per run.

Visual Analog Scale to Evaluate Fatigue Severity and
NASA-TLX Questionnaires
The questionnaires were used to support the findings in the brain
signals and evaluate whether the experiment was demanding
enough to elicit high MWL and MF. The VAS-F questionnaire
had to be filled in by the participants at the beginning and at the
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FIGURE 1 | Experimental design – Paradigm for eye artifact recording at the beginning and at the end of the experiment, followed by the VAS-F questionnaire; Run
0: passive screening of the task to record the baseline EEG; Run 1, 2, and 3: performing letter n-back task, followed by NASA-TLX questionnaire.

FIGURE 2 | Trial structure of the letter n-back task (example 2-back): Instruction (2 s), reference phase (2 s), task (40 s), and resting phase (6 s).

end of the experiment, after the eye artifact correction paradigm.
This questionnaire evaluated the self-reporting and subjective
rating of MF in the participants and consisted of 18 questions
concerning individual levels of fatigue (e.g., feeling drowsy, tired,
and worn out) and energy (e.g., feeling active, vigorous, and
energetic) in ratings from 0 to 10. The NASA-TLX questionnaire
had to be filled in by the participants after each task-run, in order
to evaluate the self-reporting and subjective rating of MWL. This
questionnaire consisted of six questions concerning workload
(ratings from 0 to 20).

Signal Acquisition
For the recording and amplification of the brain signals and the
eye artifacts a mobile amplifier (LiveAmp; Brain Products GmbH,
Gilching, Germany) was used. The amplifier was connected to
the electrodes and placed in a pocket of the cap on the back of
the participant’s head. The amplified signals were preprocessed
(50 Hz notch filter) and sent via Bluetooth connection to a
personal computer. As a recording software, the BrainVision
Recorder (Brain Products GmbH, Gilching, Germany) was used.

The EEG signals and the electroocculgram (EOG) were recorded
by 32 active electrodes at a sampling rate of 500 Hz. The layout
of the electrodes was modified from the Standard 32Ch actiCAP
snap for LiveAmp (Easycap GmbH, Herrsching, Germany). To
acquire the EEG signals, 28 electrodes were used at the following
positions: Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7,
C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, O1, Oz,
and O2. To record eye artifacts, three electrodes were used for
the EOG. The electrodes were fixed with adhesive rings on the
forehead (EOGM), on the left (EOGL), and on the right cheek
(EOGR) of the participants. The ground electrode was placed
at position Fpz, the reference electrode at position FCz. The
electrode used for optional re-referencing was mounted at the
right mastoid of the participants.

Signal Processing
The individual steps of the signal processing chain are illustrated
in Figure 3 and can be divided into three blocks: preprocessing,
eye artifact correction [adapted from Kobler et al. (2017)]
and spatial resolution enhancement. Signal processing was
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implemented in MATLAB R©, supported by adapted functions
from the EEGLAB toolbox3 (Delorme and Makeig, 2004). EEG
and EOG and the paradigm markers generated with MATLAB R©

were linked via lab streaming layer (LSL; Kothe, 2014) and
recorded with the LabRecorder (default recording program
for LSL)4. The recorded signals were saved to an extensible
data format file.

Preprocessing
Fifty Hz power line interference was removed using a 50 Hz notch
filter (Retdian and Shima, 2016). The EEG and EOG signals were
additionally band-pass filtered between 0.4 and 40 Hz (zero-phase
fourth-order Butterworth filter) in order to remove the unwanted
direct current component (0 Hz), the low (<0.4 Hz) and the high
(>40 Hz) frequency components.

Eye Artifact Correction
The eye artifact correction block was adapted from Kobler et al.
(2017). The first step was to calculate the EOG derivatives
from the three EOG electrodes (EOGL, EOGM, and EOGR):
horizontal, vertical, and radial EOG derivatives. Next, a lowpass
filter was applied on the EOG derivatives, in order to remove
the unwanted higher frequency components. The applied filter
was a zero-phase second order Butterworth filter with a cutoff
frequency of 5 Hz. The lowpass-filtered EOG derivatives were
divided into trials (epochs). The EOG paradigm markers were
used to cut the continuous signal into epochs of the same
length, as well as to distinguish between the four conditions (rest,
horizontal, vertical, and blink). Noisy trials were excluded after
visual inspection. With the information about the eye movements
from the eye artifact paradigm and the EOG derivative epochs, a
training data set was generated. The training data was fitted by
the eye artifact correction algorithm and consisted of six different
artifact classes: right, left, up, down, blink, and rest. The algorithm
used a penalized logistic regression model to classify the eye
artifacts and remove them from the EEG signal.

Spatial Resolution Enhancement
To further improve the spatial resolution, EEG was spatially
filtered by applying an orthogonal derivation (Laplace filter;
Hjorth, 1975).

Data Analysis
After the preprocessing and artifact correction of the signals,
the cleaned EEG signals were used for further data analysis.
This section describes the steps that were followed to extract
BP differences between task-run and baseline EEG in different
frequency bands. We also present the methods that were
employed to conduct statistical analysis and dataset classification,
as well as the algorithms that were used to define and detect
high MWL and MF.

Calculating Band Power Differences
To calculate BP, the EEG signals were first decomposed into
theta (4–8 Hz) and alpha (8–13 Hz) frequency bands by applying

3http://www.sccn.ucsd.edu/eeglab/
4https://github.com/sccn/lslarchived/wiki/LabRecorder.wiki/

a zero-phase fourth-order Butterworth bandpass filter. The
continuous signals were then divided into single trials (epochs)
and separated by the three task conditions (1-back, 2-back, and 3-
back). BP was defined as the decadic logarithm of the power of the
bandpass signal epoch during the task phase (40 s) of a single trial.
BP calculation was performed for each trial of the task-run EEG
in both theta and alpha frequency bands and for each condition
(1-back, 2-back, and 3-back). In order to compute the BP changes
after each single trial of the experiment, each BP result from the
task-run EEG was subtracted by the mean of the baseline EEG
(averaged over all three trials). The mean of the baseline EEG
was used to compare the BP results from signals of equal length.
For the grand average analysis, the participants were divided into
two groups according to their task performance: Group 1 (high
performers) and Group 2 (low performers). The segmentation
was done by the median split of the task performance (and
specifically the performance accuracy) of the participants. The
median split is a very common form of dichotomization that has
been extensively used in various studies to infer groups based on
continuous variables.

Statistical Analyses
For the statistical analyses, the BP changes of each condition
(1-back, 2-back, and 3-back) and each run (run 1, run 2,
and run 3) were inspected. The BP changes of the individual
trials were averaged over a whole run, for each condition
separately. Furthermore, the individual channels were aggregated
into four regions of interest (ROIs): Frontal: Fp1, Fp2, F7, F3,
Fz, F4, and F8; Central: FC5, FC1, FC2, FC6, C3, Cz, and
C4; Parietal: CP5, CP1, CP2, CP6, P7, P3, Pz, P4, and P8;
Occipital: O1, Oz, and O2. Again, the participants were divided
into two groups, according to their task performance. Statistical
analysis was conducted for both alpha and theta frequency
bands, separately. To investigate possible effects and interactions
between the different conditions we ran a 3 × 3 × 4 mixed
design repeated measures analysis of variance (ANOVA). The
within factors included the runs (RUN: i.e., run 1, 2, and 3),
the conditions (TASK: i.e., 1-back, 2-back, and 3-back) and the
ROIs (ROI: i.e., frontal, central, parietal, and occipital). The
between factors were generated from the two participant groups.
To further investigate the influence of these parameters on the
BP changes, a post hoc analysis was conducted. Within this
analysis, the BP changes from each run, condition and ROI
were compared, as well as the influence of the two participant
groups (high and low performers). A bonferroni correction
was used to control for multiple comparisons in the post hoc
tests. Both the repeated measures of ANOVA and the post hoc
analyses were performed with the free and open-source statistical
software Jamovi5.

Detection of High Mental Workload and Mental
Fatigue
For the detection of high MWL and MF, we applied a framework
based on concepts of RG. RG has already been introduced to
detect artifacts in EEG signals, by calculating the Riemannian

5https://www.jamovi.org/
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FIGURE 3 | Signal processing chain – The individual steps from the raw EEG and EOG signal to the clean EEG signal can be divided into three blocks:
preprocessing, eye artifact correction [adapted from Kobler et al. (2017)] and spatial resolution enhancement.

distance of a signal to a defined threshold of the reference
(baseline) signal (Barachant et al., 2013b). First, the covariance
matrix of the reference signal (baseline EEG) was calculated as:

Cref =
1

Nref − 1
· Xre f XT

re f (1)

The covariance matrix (Xre f XT
re f) was scaled by the number

of samples Nref of the reference signal. Next, a window of 500
samples (i.e., 1 s) and a step size of 125 samples was applied to
the reference signal. Note that the window and the step size was
selected as an optimal tradeoff between temporal resolution and
computational runtime. A small window would lead to biased
covariance estimates. On the other hand, a longer window would
provide lower temporal resolution and tracking performance.
The step size defines the overlap between neighboring windows
and affects both temporal resolution but also runtime. The
smaller the step size the better the resolution but also the higher
the computational workload. A step size of 125 was found to be
appropriate to track changes in the alpha and theta band. For each
window, the covariance matrix Cwin was calculated similarly as in
(1). The combined eigenvalues of the covariances Cwin and Cref
were given as:

λ = eig
(

C−1/2
win Cre fC

−1/2
win

)
(2)

The Riemannian distance of the window to the reference signal
(DR) was computed by summing up the logarithmic power of
each eigenvalue λn and taking its square root (Förstner and
Moonen, 2003):

DR =

√√√√ N∑
n=1

log10 (λn)
2 (3)

Equation (3) was tracked in time by estimating its value for each
step throughout the whole reference signal. The same procedure
was applied to the task-run EEG. The distance for each condition,

in each run and for both frequency bands (i.e., theta and alpha)
was calculated. Again, we used a window of 500 samples and a
step size of 125 samples. For each step, the covariance matrix
of the corresponding window and its eigenvalues were estimated
using Eqs. (1) and (2). Cref was defined as the covariance matrix of
the reference signal (baseline EEG). The Riemannian distances of
the eigenvalues (i.e., DT) were again computed based on Eq. (3).

To define an appropriate threshold for MWL and MF
detection, Barachant et al. (2013a) used the following equation:

THRS = mean (DR)+ 2.5 · std(DR) (4)

Herein, however, we followed the standardization procedure
suggested by Congedo (2013). The Riemannian distances are
characterized by their asymmetric distribution. To make their
distribution symmetric we used the standardized distances to
the geometric mean with respect always to the reference signal.
Specifically, for each run, we estimated the geometric mean
(µref) and geometric standard deviation (σref) of the Riemannian
distances of the reference signal,

µref = e
( 1

K
∑

k ln(DR)
)

(5)

σref = e

(√
1
K
∑

k

[
ln
(

DR
µref

)]2
)

(6)

and used both Eqs. (5) and (6) to standardize the distances
extracted from the task-run EEG as follows:

z (DT) =
ln
(

DT
µref

)
ln (σref)

(7)

Then, the standardized task-induced Riemannian distances
(Eq. 7) were compared to a predefined threshold of:

THRS = ± 2.5 (8)

To detect high MWL and MF, the Riemannian distances of each
step through the task signal (task-run EEG) were averaged over
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trials and compared with the threshold of Eq. (8). If the average of
the Riemannian distance reached or surpassed the threshold, high
MWL and MF was detected in the participants. The distances
were calculated in both frequency bands (theta and alpha).

RESULTS

Grand Average Band Power Changes
In order to obtain the BP changes over time (i.e., runs), a grand
average analysis (average over all participants) was conducted
for the theta and the alpha frequency bands separately. The BP
changes of each trial were averaged over each task condition
(1-back, 2-back, and 3-back) at each run. Additionally, the BP
changes were computed separately for the high and the low
performance group (PG). The BP changes of the theta frequency
band of the high performers are illustrated in Figure 4A, the
BP changes of the low performers in Figure 4B. For both PGs,
there was a slight BP increase in run 1 and run 2. For the high
performers, however, the BP slightly decreased again in run 3,
whereas the low performers exhibited a high BP increase. The
most significant differences between high and low performers
were found at the 1-back task in run 3 (Figure 5A). The BP
changes for both PGs were most prominent at the parietal
cortex. The grand average results of the BP changes in the alpha
frequency band showed a slightly different behavior for both the
high (Figure 6A) and the low performers (Figure 6B). For both
PGs, there was a BP decrease in run 1, followed by a slight BP
increase in run 2 (Figure 5B). As in the case of the theta frequency
band, the BP of the high performers slightly decreased again
in run 3, whereas the BP of the low performers showed a high
increase. The most significant differences between high and low
performers were found at the 1-back task in run 3 (Figure 5B).
In contrast to the theta band, the BP changes for both PGs in the
alpha band were most prominent at the central cortex. For both
frequency bands, overall, the low PG showed a higher BP increase
compared to the high PG.

Statistical Analyses
For the alpha band a significant main effect was found for TASK
[F(1.68, 30.26) = 17.24, p < 0.001, ηp2 = 0.49], RUN [F(1.56,
28) = 22.16, p < 0.001, ηp2 = 0.55], and ROI [F(2.03,36.58) = 5.02,
p = 0.011, ηp2 = 0.22]. The between subject factor PG did not
reach significance [F(1,18) = 2.27, p = 0.15, ηp2 = 0.12].

For the post hoc tests, the different conditions were compared
with each other using paired t-tests with Bonferroni correction.
For the low performers, a statistically significant difference was
detected only between run 1 and run 3 for both the theta
[t(19) = −3.91, p < 0.01] and the alpha band [t(19) = −4.72,
p < 0.01]. At the alpha band, the comparisons reached statistical
significance at the 1-back task between run 1 and run 2
[t(19) = −4.13, p < 0.01] and between run 1 and run 3
[t(19) = −4.66, p < 0.01], as well as at the 3-back task between
run 1 and run 3 [t(19) =−4.57, p < 0.01]. Statistically significant
differences at the alpha band were found between run 1 and
run 3 at the following ROIs: at the frontal [t(19) = −4.36,
p < 0.01], the central [t(19) = −5.46, p < 0.01], the parietal

[t(19) = –4.86, p < 0.01], and the occipital cortex [t(19) = −4.68,
p < 0.01]. Additionally, the comparison between run 1 and run 2
showed statistical significance at the central cortex [t(19) =−4.19,
p < 0.01]. For the theta-band a significant main effect was
found for TASK [F(1.22, 22) = 17.24, p = 0.002, ηp2 = 0.39],
RUN [F(1.79, 32.28) = 18.26, p < 0.001, ηp2 = 0.51], and
ROI [F(1.60,28.74) = 9.49, p = 0.001, ηp2 = 0.35]. Furthermore
a significant interaction effect was observed for RUN × ROI,
[F(2.88, 51.28) = 3.49, p = 0.023, ηp2 = 0.16]. Post hoc analysis
revealed significant differences in the frontal region between run
1 and run 2 [t(19) = 4.43, p = 0.021], in parietal region between
run 1 and run 3 [t(19) = 5.10, p = 0.005] and in occipital region
between run 1 and run 2 [t(19) = 4.67, p = 0.013] and run 1 and
run 3 [t(19) = 5.01, p = 0.006]. The between subject factor PG did
not reach significance [F(1,18) = 2.27, p = 0.15, ηp2 = 0.12].

Subjective Ratings and Behavioral
Measures
In addition to the BP changes of the EEG, subjective ratings
and behavioral measures were also used to determine increasing
MWL and MF. For the subjective ratings, VAS-F and NASA-
TLX questionnaires were conducted before, during and after
the experiments. As behavioral measures, the task performance
accuracies and the response times were used.

Subjective Ratings
The VAS-F questionnaires were taken before and after the
experiments and were divided into two categories: the fatigue
level and the energy level. The highest possible score of both
rating categories was scaled to 100% for comparison purposes.
The grand average rating of the fatigue level increased from
24 to 54%, whereas the energy level decreased from 65 to 46%
throughout the duration of the whole experiment. The NASA-
TLX questionnaires were conducted after each run. Again, the
highest possible rating score was scaled to 100%. The results of
the individual subjects reveal a diverging behavior: For some, the
task load increased during the experiment, for others the task
load remained the same or even decreased. However, the grand
average ratings of the task load increased continuously after each
run (56, 63, and 68%, respectively).

Behavioral Measures
The performance accuracies were calculated based on the number
of correctly detected target and non-target letters during a task.
An accuracy of 100% means that all five target letters were
detected correctly (by pressing the t key) and none of the 15 non-
target letters were identified as a target letter. The accuracies of
each task condition were averaged over all trials at each run. The
performance accuracies decreased with increasing task difficulty
(i.e., increasing n), which means that the 1-back task yielded the
highest performance accuracies (99, 99.13, and 98.88%) and the
3-back task the lowest (88.03, 90.84, and 89.94%). By comparing
the performance accuracies between the runs, however, the
results showed only small changes. For each task condition, there
was a small increase in performance accuracy from run 1 to run
2 and a small decrease from run 2 to run 3 (Figure 7A). As a
second performance measure, the response times of the subjects
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FIGURE 4 | Grand average theta BP changes of the (A) high PG and (B) low PG. The task conditions were averaged over all trials at each run.

FIGURE 5 | Mean ± SE of the (A) theta and (B) alpha BP changes in the low and high PG for each run, task (color-coded) and ROI (i.e., frontal, central, parietal, and
occipital). Asterisks denote statistically significant differences (p < 0.05) between low and high PG. The color of the asterisk represents a specific task (i.e., 1-back:
blue, 2-back: purple, or 3-back: green).

during the task execution were considered. Response time was
defined as the time difference between the letter onset and the
pressing of the t key. The response times of each task condition
were averaged over all trials at each run. The response times
increased with increasing task difficulty (increasing n), which
means that the lowest and highest response times were detected
during the 1-back task (0.53, 0.54, and 0.54 s) and the 3-back task
(0.83, 0.83, and 0.76 s), respectively (Figure 7B). Similarly to the
performance accuracies, only small changes occurred between the
runs. During the 1-back task, there was a small increase from run

1 to run 3 (0.01 s). During the 2-back and 3-back task, however,
we detected a small decrease from run 1 to run 3 (0.06 and 0.07 s).

Mental Workload and Mental Fatigue
Detection
The detection of MWL and MF was implemented by using
the RG. MWL and MF were defined as too high when the
Riemannian distances of a task-run EEG reached or surpassed the
threshold of Eq. (8). The differences between the threshold and
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FIGURE 6 | Grand average alpha BP changes of the (A) high PG and (B) low PG. The task conditions were averaged over all trials at each run.

FIGURE 7 | Boxplots depicting (A) performance accuracies and (B) response times over all participants for each run and each task condition.

the Riemannian distances are presented in Table 1. The distances
of each window were averaged over all trials per task condition
at each run. The Riemannian distances reached or surpassed the
threshold (illustrated as 0 or negative difference, respectively)
in eight subjects (gray highlighted rows). The number of high
MWL and MF detections increased with increasing experiment
duration (increasing run number). Four detections occurred at
run 1, 7 at run 2, and 8 at run 3. The grand average differences
of all subjects decreased with increasing run number (1.20, 0.84,
and 0.88 for run 1, 2, and 3, respectively). Figure 8 shows the
grand average differences for each PG separately. The differences
between the threshold and the Riemannian distances of the low
performers (1.16, 0.87, and 0.54 for run 1, 2, and 3, respectively)
were lower than the differences of the high performers (1.22,
0.81, and 1.15 for run 1, 2, and 3, respectively). Furthermore,
the differences of the low PG decreased continuously over time,
whereas the differences of the high PG stayed the same within the
experiment duration.

DISCUSSION

In order to detect increasing MWL and MF, the BP changes over
time were analyzed at the individual task conditions (1-back, 2-
back, and 3-back), ROIs (frontal, central, parietal, and occipital)
and PGs (high and low performers). To corroborate the findings
of the BP changes, the behavioral measures (performance
accuracy and response time) and subjective ratings (VAS-F
and NASA-TLX questionnaires) were inspected. Furthermore,
the RG was applied to define the threshold for detecting
high MWL and MF.

Differences Between Performance
Groups and Task Conditions
The results revealed differences in the BP changes between the
low and the high PG for both frequency bands. While for the
low performers a high BP increase was elicited over time, the
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TABLE 1 | Absolute differences between the threshold (Eq. 8) and the standardized Riemannian distances of the task-run EEG (Eq. 7) for the low and high PG.

Sub. Difference between threshold and Riemannian distance (dB) PG

Run 1 2 3

Task 1 2 3 1 2 3 1 2 3

EB1 1.78 1.88 1.28 1.14 1.36 0.89 1.17 1.17 0.99 Low

EI5 0.48 0.82 0.60 0.27 0.21 0.52 0.13 0.24 0.20 Low

EK2 0.97 0.98 1.09 0.81 1.10 0.97 0.74 0.97 0.94 High

EQ1 0.59 0.76 1.07 –0.13 –0.21 0.67 –0.13 0.08 0.23 Low

EQ9 1.84 1.70 1.50 1.66 1.67 1.46 1.47 1.49 1.22 Low

ES8 2.07 2.11 2.08 1.05 2.08 1.90 1.54 2.09 1.99 Low

EU6 2.00 1.97 1.74 1.84 1.68 1.43 1.61 1.91 1.70 High

EV2 1.43 1.93 2.02 –2.99 –1.33 –3.08 0.93 0.86 1.37 High

EV4 1.59 1.57 1.54 1.60 1.55 1.68 1.59 1.66 1.72 High

EV6 –0.03 –0.14 0.02 0.14 0.50 0.28 –0.09 0.11 –0.07 Low

EW1 1.44 1.41 1.45 1.09 1.27 1.28 0.98 0.90 0.85 High

EW2 1.16 1.45 1.51 1.09 1.56 1.28 1.29 1.35 1.41 High

EW3 1.05 1.30 1.08 0.26 0.42 0.26 0.24 0.18 –0.07 Low

EW4 1.03 1.10 1.17 1.15 1.13 1.04 0.91 0.98 0.94 High

EW5 0.43 1.58 1.46 0.43 1.61 1.68 0.14 1.35 1.45 Low

EW6 0.47 0.43 0.62 –0.10 0.26 0.28 0.40 0.62 0.63 High

EW7 1.50 0.42 –0.32 1.23 1.58 1.43 1.33 1.56 1.42 High

EW8 1.94 1.93 1.91 1.87 1.82 1.84 2.05 2.01 1.96 High

EW9 1.26 1.37 1.43 1.19 1.32 1.09 –1.55 –0.17 –0.64 Low

EX2 0.00 0.63 0.48 –0.34 0.53 0.37 0.00 0.40 0.20 High

AVG 1.15 1.26 1.19 0.66 1.01 0.86 0.74 0.99 0.92

1.20 0.84 0.88

Values in bold font-weight refer to instances where the Riemannian distance reached or surpassed the threshold.

A B

FIGURE 8 | Average difference (and SE) between the threshold (THRS – Eq. 8) and the standardized Riemannian distances of the task-run EEG (Eq. 7) and for the
(A) high and (B) low PG.

high performers showed only small BP increases and even BP
decreases between runs. Furthermore, the post hoc tests showed
only a statistically significant difference at the low PG between
run 1 and run 3. These findings led to the expected assumption

that MWL and MF are correlated with task performance. Our
results are in accordance with previous studies Käthner et al.
(2014) and Roy et al. (2013) that show that task performance
decreases with increasing MWL and MF.

Frontiers in Human Neuroscience | www.frontiersin.org 10 November 2021 | Volume 15 | Article 746081

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-746081 February 12, 2022 Time: 18:52 # 11

Wriessnegger et al. Riemannian Geometry Detects Mental State

Concerning the task-conditions, MWL and MF were expected
to increase with increasing task difficulty. We also hypothesized
that BP would increase with increasing n of the letter n-back
task. The results in Figures 4–5, however, show that the highest
BP increase at both frequency bands was elicited at the 1-back
task. A possible explanation of this outcome could be that the
1-back task was very easy to perform in relation to the other
tasks, and the participants lost concentration and focus on the
task. This theory can be supported by the BP increase at multiple,
widespread cortical sites, which indicates that more cortical areas
were activated during the 1-back task.

Influence of Mental Workload and Mental
Fatigue at the Investigated Regions of
Interests
The topographical plots in Figures 4, 5 show that the theta BP
increased at the frontal cortex for both PGs as suggested in
previous studies (Scerbo et al., 2003; Stipacek et al., 2003; Holm
et al., 2009; Babiloni, 2019). The strongest theta BP increase,
however, occurred at the parietal cortex, which is not in line with
previous findings of MWL increase. This can be explained by
the overlapping BP increase toward the end of the experiment,
caused by increasing MF as suggested by Boksem et al. (2005) and
Klimesch et al. (1999). Since the exact cortical region influenced
by increasing MF is not specified in the literature, this outcome
leads to the assumption that increasing MF induces a higher theta
BP increase at the parietal cortex than at other cortical areas. The
post hoc test comparisons revealed no statistical significance in
the theta band. The lowest p-values for each ROI, however, were
achieved again between run 1 and run 3.

The results of the BP changes at the alpha band can be
observed in Figures 6, 5. The BP decrease at the parietal sites for
both PGs at run 1 supports previous findings concerning MWL
increase (Scerbo et al., 2003; Stipacek et al., 2003; Holm et al.,
2009; Babiloni, 2019). However, an alpha BP decrease was also
observed at frontal and central sites. At run 2, increased alpha
BP was detected at various cortical areas, indicating possibly
increased MF (Klimesch et al., 1999; Boksem et al., 2005). This
theory was confirmed by observing the differences between the
PGs at run 3: While the high performers exhibited only small
increases and even decreases in their alpha BP, there were high
alpha BP increases in the low performers. It appears that the
lower task performance of the low PG was an aftereffect of
increased MF, expressed as a higher alpha BP increase especially
at the fronto-central cortical areas. In contrast to the theta band,
the post hoc test comparisons revealed statistically significant
differences between run 1 and run 3 for each ROI. These results
suggest that the influence of increasing MWL and MF is higher
in the alpha band than in the theta band, which can also be seen
at the topographical plots of the BP changes.

Subjective Ratings and Behavioral
Measures
The outcome of the VAS-F and NASA-TLX questionnaires
suggest that the participants experienced an increase in their
subjective workload and fatigue level and a decrease in their
energy level during the experiment. Although these results

indicate the influence of a cognitive demanding task on the
mental state of the participants, as suggested by Käthner et al.
(2014) and Roy et al. (2013), the increases of the fatigue and
workload level (and the decrease of the energy level) were
expected to be higher. This can be confirmed by looking at the
performance accuracies: The results at a certain task condition
were very similar at all 3 runs. The small increases from run 1
to run 2 can be attributed to learning effects, especially at the
3-back task. From run 2 to run 3, a drop in the performance
accuracy was expected, but did not occur. It must be mentioned
that the high task performance accuracies occurred due to the
fact that there were only five targets opposed to 15 non-targets
during a trial sequence. This means that detecting no target at
all still led to a performance accuracy of 75%. The same behavior
was projected on the response times: The response times for each
task condition remained the same during the experiment or even
decreased, instead of increasing.

Interpretation of subjective ratings must be done with caution
(especially with a scale from 0 to 20). However, with an average
of over 20 participants, the results can be considered meaningful.
Overall, the participants experienced an increase of their fatigue
and workload level, but not as high as expected. Together
with the results of the behavioral measures (low increase or
no increase at all), we concluded that the experiment was
not demanding enough to elicit high MWL and MF in all
participants. An improvement for further studies would be to
prolong the duration of the experiment (e.g., by adding another
run). Since the 3-back task is already quite demanding, adding a
higher n-back task to increase the difficulty of the experiment is
not recommended.

Mental Workload and Mental Fatigue
Detection
Most mental state monitoring systems use various classification
algorithms in order to detect high MWL or MF. The classification
approach was considered in this study as well, in the form
of an LDA classifier in combination with a CSP filter based
on BP features. However, the results showed no significant
differences between the n-back tasks. To this end, the detection
of high MWL and MF was implemented by using the RG. If the
Riemannian distance of a task-run EEG reached or surpassed
the threshold defined by the baseline EEG (expressed by 0 or
negative difference values, respectively), the level of MWL and
MF was defined as too high. Detection was conducted at the
alpha band, since the influences of MWL and MF on the BP
changes were revealed to be higher in the alpha than the theta
band. Even though the detection rate was only 40%, this outcome
is quite promising. The results confirm the assumptions that
the experiment was not demanding enough for most of the
participants. But still, we could observe a correlation between task
performance and MWL/MF level.

Most of the detections occurred at run 3, indicating that
fatigue and workload levels increased over time. This trend
becomes even clearer when looking at the results of Figure 8. The
differences between the Riemannian distance of the task-run and
the threshold were averaged over each run and divided into the
two PGs. For the high PG, there was a small decrease from run

Frontiers in Human Neuroscience | www.frontiersin.org 11 November 2021 | Volume 15 | Article 746081

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-746081 February 12, 2022 Time: 18:52 # 12

Wriessnegger et al. Riemannian Geometry Detects Mental State

1 to run 2, whereas from run 2 to run 3 the difference remained
the same. In contrast, the differences of the low PG exhibited a
continuous decrease during the experiment. This trend suggests
that the low PG would have reached their MWL and MF limit if
the experiment duration was longer.

Note that the Riemannian distances were averaged over all
trials per task condition. In order to apply the RG approach on
an online detection system for mental state monitoring, a single
trial detection of MWL and MF would be desired. A potential
error source of the RG approach is the influence of artifacts since
the distance of an artifact influenced EEG signal may also surpass
the threshold of the baseline EEG. To avoid these false positive
detections, a comprehensive artifact correction pipeline must be
implemented for online detection.

Channel selection and dimensionality reduction is an
important aspect that we plan to include in future studies.
By selecting topologically relevant electrodes and defining
individualized alpha and theta frequency bands in each subject,
the detection sensitivity of our proposed framework may
improve further.

CONCLUSION

The aim of this study was to detect high MWL and MF in
participants performing a cognitive demanding task in the form
of the letter n-back task. For the detection, RG was applied
on BP features of the EEG. The results of the BP changes
over time partly agreed with the findings in the presented
literature. For increasing MWL, the theta BP continuously
increased as expected at the frontal cortex but showed even
higher increases at the parietal cortex. The alpha BP initially
decreased according to the literature at the parietal cortex, but
also at the frontal and central areas. At run 2, BP started
to increase at multiple, widespread cortical areas. The theta
and alpha BP increase toward the end of the experiment
indicated increasing MF. It appears that the initial influence
of increasing MWL on the BP changes is overlapped by the
influence of increasing MF. Although this behavior was expected,
a clear distinction between MWL and MF is not possible using
only BP features.

The results of the subjective ratings and the behavioral
measures revealed another limitation of this work: The
experiment was not cognitively demanding enough to elicit
high MWL and MF in all participants. This outcome was
confirmed by the high BP differences between the low and
high PG. A suggested improvement for further studies is
to prolong the duration of the experiment, for example, by
adding an additional run. The detection of high MWL and

MF by using the Riemannian distances of the task run EEG
showed promising results. High MWL and MF was detected
mainly in the low PG. These findings are consistent with
the observed BP changes at both the theta and the alpha
frequency band, where increasing MWL and MF was only
elicited for the low PG. Additionally, the averaged differences
between the Riemannian distance of the task-run and the
threshold of the low PG exhibited a negative correlation with
experiment duration.

Overall, MWL and MF detection with the RG approach shows
promising results. To validate the capabilities of our proposed
detection algorithm, future studies must be conducted with a
longer experiment duration and a larger number of participants.
Future improvements regarding the methodological aspects of
this work revolve around channel selection and individualized
alpha/theta band definition for RD estimation. Further steps
toward an online detection system for mental state monitoring
require the implementation of a trial-wise detection algorithm
and the application of an online artifact correction procedure.
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