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ABSTRACT Accidental oil spills from shipping and during extraction can threaten
marine biota, particularly coral reef species which are already under pressure from
anthropogenic disturbances. Marine sponges are an important structural and func-
tional component of coral reef ecosystems; however, despite their ecological impor-
tance, little is known about how sponges and their microbial symbionts respond to
petroleum products. Here, we use a systems biology-based approach to assess the
effects of water-accommodated fractions (WAF) of crude oil, chemically enhanced water-
accommodated fractions of crude oil (CWAF), and dispersant (Corexit EC9500A) on the
survival, metamorphosis, gene expression, and microbial symbiosis of the abundant
reef sponge Rhopaloeides odorabile in larval laboratory-based assays. Larval survival
was unaffected by the 100% WAF treatment (107 �g liter�1 polycyclic aromatic hy-
drocarbon [PAH]), whereas significant decreases in metamorphosis were observed at
13% WAF (13.9 �g liter�1 PAH). The CWAF and dispersant treatments were more
toxic, with decreases in metamorphosis identified at 0.8% (0.58 �g liter�1 PAH) and
1.6% (38 mg liter�1 Corexit EC9500A), respectively. In addition to the negative im-
pact on larval settlement, significant changes in host gene expression and disrup-
tions to the microbiome were evident, with microbial shifts detected at the lowest
treatment level (1.6% WAF; 1.7 �g liter�1 PAH), including a significant reduction in
the relative abundance of a previously described thaumarchaeal symbiont. The re-
sponsiveness of the R. odorabile microbial community to the lowest level of hydro-
carbon treatment highlights the utility of the sponge microbiome as a sensitive
marker for exposure to crude oils and dispersants.

IMPORTANCE Larvae of the sponge R. odorabile survived exposure to high concen-
trations of petroleum hydrocarbons; however, their ability to settle and metamor-
phose was adversely affected at environmentally relevant concentrations, and these
effects were paralleled by marked changes in sponge gene expression and preceded
by disruption of the symbiotic microbiome. Given the ecological importance of
sponges, uncontrolled hydrocarbon releases from shipping accidents or production
could affect sponge recruitment, which would have concomitant consequences for
reef ecosystem function.

KEYWORDS sponge larvae, hydrocarbon toxicity, gene expression, microbial
symbiosis

Tropical coral reefs are currently facing unprecedented declines due to global
climate change and declining water quality (1). Natural hydrocarbon reservoirs are

often found adjacent to coral reefs (2, 3), raising a unique conservation challenge as
exploratory and extraction drilling are frequently undertaken in close proximity to these
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environmentally important biodiversity hot spots. Petroleum hydrocarbon exposures
from shipping accidents (4, 5) and spills from coastal and offshore processing facilities
can significantly impact coral reef communities over decadal time scales (6, 7). Two
high-profile oil spills, the Montara well-head platform incident off northwest Australia
(which released �4,500 m3 of medium crude oil into the Timor Sea) (8–10) and, shortly
afterwards, the Macondo Deepwater Horizon incident (which released �780,000 m3 of
light crude oil into the Gulf of Mexico) (11–14), emphasize the importance of under-
standing the effects of hydrocarbon spills and response interventions (e.g., application
of chemical dispersants) on sessile reef invertebrates.

Marine sponges can occupy up to 80% of the available substrate and are ecologi-
cally important constituents of benthic environments as they provide habitat for a
diverse array of epi- and endofauna, couple the benthic and pelagic zones by filtering
large quantities of seawater, mediate biogeochemical fluxes, and facilitate consump-
tion and release of nutrients (15–20). Sponges often host dense and diverse microbial
communities which can comprise up to 35% of the host biomass and contribute to
many aspects of the sponge’s physiology and ecology (21–23). Considering the func-
tional importance of the microbiome for host health, sponges are often described as
“holobionts,” indicating an interdependent consortium comprising the sponge host
and the associated bacteria, archaea, unicellular algae, fungi, and viruses (24). In
determining the sensitivity of marine sponges to environmental stressors, such as
hydrocarbons, it is therefore necessary to consider the response of both the host and
the symbiotic microbial community. To date, very little research has addressed how
hydrocarbons and other petroleum products affect the sponge holobiont, particularly
for early life history stages and processes (25–29).

Marine sponges often have decoupled life history stages, with the planktonic larvae
of many species performing vertical migration to aid dispersal by optimizing exposure
to water currents (30). This behavior may bring them into direct contact with water-
soluble and entrained oil as well as with surface slicks following oil spills. Understanding
the impact of hydrocarbon exposure on marine larvae is critical because the survival of
early life history phases underpins reef recovery and resilience following disturbances
(31, 32). A few field (5) and laboratory (29, 33–39) studies have described significant
adverse effects of hydrocarbon exposure on the early life history stages of corals, with
larval settlement generally considered to be one of the most sensitive early life history
processes (29). Oil spill interventions often involve the application of large quantities of
chemical dispersants (including surfactants) to promote oil solubility and reduce the
impact of surface slicks (40). While dispersants have a lower toxicity than dissolved oil,
they can increase the solubility of polycyclic aromatic hydrocarbons (PAHs) and there-
fore increase exposure to benthic and pelagic organisms (41). Despite the ecological
importance of sponges, there is no available data on how they respond to dispersants,
and only two studies have tested the impacts of oils or PAHs on sponge larvae, with
contradictory results. While larvae of the encrusting sponge Crambe crambe were
described as being sensitive to hydrocarbon exposure, with a nominal concentration of
0.5 �g liter�1 PAH mix (25) affecting metamorphosis, larvae of the demosponge
Rhopaloeides odorabile were insensitive to condensate (liquid fraction from gas wells),
with metamorphosis unaffected until dissolved total petroleum aromatic hydrocarbon
(TPAH) concentrations exceeded 11,000 �g liter�1 (29).

Organisms cope with environmental stress by modifying their physiological func-
tions and gene expression patterns to achieve cellular homeostasis (42). Although
researchers have explored shifts in sponge gene expression in response to thermal
stress (43–48), heavy metals (49, 50), and polychlorinated biphenyls (51), the molecular-
level stress response of sponges to hydrocarbons has never been assessed. Similarly, a
considerable body of research has evaluated how the sponge microbiome responds to
various stressors, including temperature (52–54), carbonate chemistry (55), nutrients
(56, 57), heavy metals (58–60), and sediments (61–64), but no studies have assessed
how sponge symbionts respond to hydrocarbons. Interestingly, while many of these
sponge microbiome studies report microbial community shifts with declining host
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health, others report remarkably stable microbial communities irrespective of host
health or stressor level, indicating that the environmental sensitivity of sponge micro-
biomes is highly species and stressor specific. In addition, metaproteomic research has
shown that while the genomic composition of the sponge microbiome may stay
relatively stable upon initial exposure to environmental stress, expression of important
symbiotic functions can be immediately affected, and this dysbiosis likely contributes to
the overall host stress response (65).

The toxicity of crude oils extracted from the Northwest Shelf of Australia has been
assessed for several temperate and tropical species (34, 66), yet the toxicity to sessile
tropical reef sponges is unknown. To comprehensively explore the impacts of oil
pollution on the larval sponge holobiont, we examined the acute toxicity of various
concentrations of (i) water-accommodated fractions (WAFs) of crude oil, (ii) chemically
enhanced WAFs (CWAFs) of crude oil, and (iii) dispersant to larvae of the abundant reef
sponge Rhopaloeides odorabile. To quantify the holobiont stress response, we applied
a multifaceted approach integrating standard ecotoxicological testing, larval settle-
ment assays, multiplexed reverse transcription-quantitative PCR (mRT-qPCR) host gene
expression analysis, and community profiling of the symbiotic microbial community.
Identifying sensitive biological indicators for sponge stress responses to hydrocarbons
will contribute to improving risk assessments and informing oil spill responses for the
oil and gas industry, regulators, and spill responders.

RESULTS

To determine the larval sponge holobiont response to hydrocarbon exposure, a
broad suite of response variables were measured, including survival, metamorphosis,
host gene expression, and microbiome composition. The sensitivity of each of these
parameters is summarized in Table 1. For ease of reference, the sensitivity of each of the
endpoints is reported throughout the text as percent WAF or percent CWAF and total
PAH (�PAH). The respective total petroleum hydrocarbons (TPH) and dispersant Corexit
EC9500A concentrations can be found in Table 1.

Larval survival and metamorphosis. Larval survival was 100% in control samples
and remained unaffected at all WAF concentrations including 100% (Table 1; Fig. 1A).
In contrast, all larvae exposed to �50% CWAF were killed, as were all larvae exposed
to �3.1% Corexit EC9500A (Table 1; Fig. 1A). Due to sharp drops from 100% to 0%
survival for both CWAF and Corexit EC9500A treatments, 50% lethal concentration
(LC50) values could not be calculated. The no-observed-effect concentration (NOEC)
and lowest-observed-effect concentration (LOEC) for each treatment are reported in
Table 2.

Metamorphosis of R. odorabile larvae was defined as the point at which the
planktonic larvae (Fig. 2A) attached to the surface and underwent flattening of the
entire body to form a disc-like morphology, with the center showing the remnants of
the posterior larval pole (Fig. 2C) (30). Larval metamorphosis was 31% � 6% in control
treatments (Fig. 1B). The 13% WAF treatment caused significant (P � 0.01; analysis of
variance [ANOVA], F9, 33 � 4.2) reductions in successful metamorphosis to 6.7% (Fig. 1B
and Table 1). The 50% effective concentration (EC50) value for �PAHs in the WAF was
12 �g liter�1 (95% confidence interval [CI], 6.8 to 18 �g liter�1) (Table 2; see also Fig. S1
in the supplemental material). Larval metamorphosis was significantly reduced at all
CWAF concentrations of �0.8% (P � 0.01; ANOVA, F9, 33 � 6.4) but the EC50 values for
CWAF could not be calculated as there were limited data between minimum and
maximum inhibition levels (Fig. S1). Larvae exposed to the higher CWAF concentrations
mutated into irregular shapes and did not successfully metamorphose (Fig. 2B and D).
The addition of Corexit EC9500A alone significantly inhibited larval metamorphosis to
5% at 38 mg liter�1 (P � 0.01; ANOVA, F9, 33 � 33.3), and this decreased to zero at
higher Corexit EC9500A concentrations (Table 1), but interestingly metamorphosis was
stimulated to 83% at 19 mg liter�1 (Fig. 1B; Table 1).

Host gene expression. Larval gene expression was significantly affected by petro-
leum hydrocarbons after only 2 h exposure (permutational multivariate analysis of
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variance [PERMANOVA], pseudo-F9,20 � 4.31, P � 0.001) (Fig. 3A). The ordination dem-
onstrates two clear patterns: first the separation of the 1.6% Corexit EC9500A (38 mg
liter�1) treatment from all other samples and, second, a notable separation of samples
in the 25% (18.1 �g liter�1 �PAH) and 50% (36.2 �g liter�1 �PAH) CWAF treatments
from the controls (Fig. 3A). After 24 h, larvae from the 1.6% (1.7 �g liter�1 �PAH) WAF
and 1.6% (1.2 �g liter�1 �PAH) CWAF treatments were not significantly different from
those of the controls (P � 0.05); however, a significant difference was detected at 25%
WAF (26.8 �g liter�1 �PAH; Monte Carlo P value [P(MC) � 0.012]) and 25% CWAF
[18.1 �g l �1 �PAH; P(MC) � 0.001], also clearly separated in the ordination (Fig. 3B).
Similarity percentage (SIMPER) analysis of samples from the 24-h exposure revealed
that increased expression of heat shock protein 70 (HSP70) (29.56%), actin-related
protein 2/3 (ARP2/3) complex (6.97%), profilin (6.13%), actin (5.57%), ferritin (5.57%),
and HSP90 (5.26%) contributed most to the dissimilarity in expression profiles between
samples in the control and 25% WAF (26.8 �g liter�1 �PAH) treatments (Table S1).
Increased expression of HSP70 (26.38%), polyubiquitin (11.35%), ferritin (10.11%), pro-
filin (6.92%), and HSP90 (6.82%) also contributed most to the dissimilarity in gene
expression profiles between samples in the control and 25% CWAF (18.1 �g liter�1

�PAH) treatments after 24 h (Table S1). No significant differences in gene expression
levels were evident between 25% WAF (26.8 �g liter�1 �PAH) and 100% WAF (107.2 �g
liter�1 �PAH) (P � 0.05).

TABLE 1 Summary of response variables for each petroleum product treatment concentrationa

Treatment
and concn (%)

�PAH
(�g/liter)

TPH
(�g/liter)

Corexit
EC9500A
(mg/liter)b

Survival
(%)c

Metamorphosis
(%)c

Gene
expression

Sponge
microbiome

WAF
0 0 0 ND 100 31 � 6 ND ND
0.8 0.86 32.5 ND 100 25 � 6 ND ND
1.6 1.7 65.0 ND 100 28 � 5 X ✓
3.1 3.3 126 ND 100 24 � 8 ND ND
6.3 6.8 256 ND 100 28 � 2 ND ND
13 13.9 528 ND 100 6.7 � 3.9 ND ND
25 26.8 1,015 ND 99 � 1 8.0 � 3.3 ✓ ✓
50 53.6 2,030 ND 100 1.3 � 1.1 ND ND
75 80.4 3,045 ND 100 4.0 � 1.9 ND ND
100 107.2 4,060 ND 100 2.7 � 1.1 ✓ ✓

CWAF
0 0 0 0 100 31 � 6
0.8 0.58 273.6 19 100 2.7 � 2.2 ND ND
1.6 1.2 547.2 38 100 9.3 � 4.4 X ✓
3.1 2.2 1,060 74 100 1.3 � 1.1 ND ND
6.3 4.6 2,155 149 100 4.0 � 1.9 ND ND
13 9.4 4,446 308 100 2.7 � 1.1 ND ND
25 18.1 8,550 593 100 1.3 � 1.1 ✓ ✓
50 36.2 17,100 1,186 0 0 ✓	 X
75 54.2 25,650 1,779 0 0 ND ND
100 72.3 34,200 2,373 0 0 ND ND

Corexit
0 ND ND 0 100 31 � 6 ND ND
0.8 ND ND 19 100 82.7 � 4.4 X ND
1.6 ND ND 38 100 5.3 � 1.1 ✓	 ND
3.1 ND ND 74 4.0 � 3.3 0 ND ND
6.3 ND ND 149 0 0 ND ND
Otherd ND ND �308 0 0 ND ND

aPetroleum hydrocarbon analysis for total polycyclic aromatic hydrocarbons (�PAH) and total petroleum hydrocarbon (TPH) analysis can be found in Table S1 in the
supplemental material. Light gray shading and X denote no significant difference; dark gray shading and a check mark (✓) denote a significant difference relative to
levels in the control samples of the corresponding treatment (P � 0.05). ND, not done; 	, gene expression change observed at 2 h, with no samples remaining to
test at 24 h.

bNominal concentration.
cSurvival and metamorphosis were scored after 48 h (mean � standard error).
dConcentrations of 13, 25, 50, 75, and 100%.
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Microbial community analysis. The R. odorabile microbiome is dominated by
Gammaproteobacteria, Thaumarchaea, Acidobacteria, Gemmatimonadetes, Chloroflexi,
PAUC34f, and Actinobacteria (Fig. 4). The microbiome was significantly affected by
hydrocarbon treatment (PERMANOVA, pseudo-F6 � 1.655, P � 0.0438) (Fig. 4 and 5),
with the microbial communities of sponge larvae exposed to WAF treatments of 1.6%
(P � 0.0378), 25% (P � 0.0325), and 100% (P � 0.0258) all significantly different from
those of the control samples. In contrast, the microbiome of CWAF-exposed larvae was
only significantly different from that of the controls at 1.6% (P � 0.0171) and 25%
(P � 0.0383) CWAF. While samples exposed to 50% CWAF were not significantly differ-
ent, they clustered further from control samples in the ordination than the other two
CWAF treatments (Fig. 5). The nonsignificant result likely reflects lower replication with
this treatment (n � 4) (Table S2). A significant difference between time points was also
observed (PERMANOVA, pseudo-F6 � 2.9448, P � 0.01), but no interaction between
treatment and time was identified (PERMANOVA, pseudo-F6 � 0.9951, P � 0.1734), with
treatment differences more distinct than those of time (Fig. 5). A previously described
R. odorabile thaumarchaeal symbiont (sub-operational taxonomic unit 137 [sOTU137])
(67) also significantly decreased in abundance across all hydrocarbon treatments
(ANOVA, F6 � 2.45, P � 0.04). A decrease in the relative abundances of Thaumarchaea
was evident in sponges exposed to treatments of 25% CWAF and above, and a decrease
in Gammaproteobacteria was detected at 50% CWAF (Fig. 4). In contrast, an increase in

FIG 1 Mean survival (A) and metamorphosis success (B) of sponge larvae exposed to WAFs, CWAsF, and
Corexit EC9500A after 48 h versus concentrations of the treatments in percentages (n � 3 replicates per
concentration � standard error). Results are presented relative to percent treatment solution as the three
solutions were prepared identically (corresponding �PAH, TPH, and Corexit EC9500A concentrations for
each dilution are listed in Table 1).

TABLE 2 Concentrations of total PAHs and dispersant with effects on survival and metamorphosis

Response variable and parametera

WAF �PAH CWAF �PAH Corexit EC9500A

Concn (�g/liter) Treatment (%)d Concn (�g/liter) Treatment (%)d Concn (mg/liter) WAF treatment (%)

Survival
LOEC 18.1 25 38 1.6
NOEC �107 100 36.2 50 19 0.8

Metamorphosis
LOEC 14 13 0.58 0.8 38 1.6
NOEC 6.8 6.3 �0.1 19 0.8
EC50 12 6.3–13b NAc NA

aLowest-observed-effect concentration (LOEC) and no-observed-effect concentration (NOEC) for �PAH were calculated from one-way ANOVA (P � 0.01). EC50

settlement in sponge larvae was calculated from four-parameter logistic models (see Fig. S1 in the supplemental material).
bValues represent the 95% confidence interval.
cNA, not available. The EC50 could not be calculated due to limited data points on the slopes of dose-response curves.
dCorresponding TPH concentrations can be read from Table 1.

Effects of Crude Oil on the Sponge Larval Holobiont

November/December 2019 Volume 4 Issue 6 e00743-19 msystems.asm.org 5

https://msystems.asm.org


the relative abundance of Acidobacteria was evident in the microbiome of sponges
exposed to the 50% CWAF treatment (Fig. 4). To identify specific microbial sOTUs
primarily responsible for driving differences in community composition between con-
trol and WAF- and CWAF-treated samples, Cytoscape network analysis was performed
using the 100 most abundant sOTUs in each treatment data set (i.e., control, WAF, and
CWAF). While many of the dominant sOTUs were present across all treatments, seven
OTUs were exclusively present in control samples, eight OTUs were exclusive to
samples in the WAF treatment, and eight were exclusive to samples in the CWAF
treatment, with an additional eight OTUs being shared between the WAF- and CWAF-
treated samples but absent from the controls (Fig. 6; see Table S3 for sOTU details).
Treatment-specific OTUs spanned multiple bacterial phyla and classes (Fig. 6; Table S3).

FIG 2 Planktonic larvae in control (A) and 25% CWAF (B) treatments after 24 h of treatment exposure.
Larvae under control conditions successfully settle and metamorphose (C), whereas larvae treated with
25% CWAF were deformed and did not successfully metamorphose (D). Approximate larval length is
270 � 4.17 �m (113).

FIG 3 PCO based on the Bray-Curtis similarity of gene expression values from 26 selected host genes after 2 h (A) and 24 h (B).
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DISCUSSION
General. Sponges perform a range of important functional roles in marine systems

(15), particularly on coral reefs where they process large volumes of seawater and
efficiently remove the particulate and dissolved organic carbon (68, 69). The current
study showed that R. odorabile larvae can survive high concentrations of petroleum

FIG 4 Stacked bar chart depicting the relative abundance of each bacterial phyla, plus class for Proteobacteria, associated with each
treatment.
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hydrocarbons, but their ability to undergo successful settlement, crucial for recruit-
ment, is affected at moderate concentrations of PAHs. This effect was exacerbated by
the addition of the dispersant Corexit EC9500A. Effects on host gene expression and the
associated microbiome were evident at sublethal concentrations of PAHs, in both the
presence and absence of dispersant, providing valuable insights into stress response
pathways. Considering the sensitivity of the symbiotic microbial community, assess-
ment of the microbiome represents a promising indicator for monitoring sublethal
stress responses in this sponge species.

Larval survival and settlement. Although concentrations of PAHs are low in
pristine coral reef ecosystems (70), the concentrations found in tropical and subtropical
marine environments can be as high as 34.4 �g liter�1 in areas with no obvious signs
of contamination (71–73). However, after large-scale accidental releases, such as the
Deep Water Horizon spill, PAH concentrations reached �189 �g liter�1 (74), and even
higher levels have been detected following bilge water discharges (e.g., 13,700 �g
liter�1) (72). While R. odorabile larvae in this study were able to survive high concen-
trations of petroleum hydrocarbons, they lost the ability to settle and metamorphose
at environmentally relevant concentrations (e.g., 13.9 to 26.8 �g liter�1).

The high tolerance of R. odorabile larvae to light crude WAFs from the Northwest
Shelf of Australia is consistent with previous work showing high survival of the same
species to WAFs of condensate (derived from a lighter Western Australian condensate)
(29). Larval metamorphosis was more sensitive to the light crude oil in the present
study (NOEC � 14 �g liter�1 �PAH) than to condensate exposures (NOEC � 121 �g
liter�1 �PAH). These concentrations of PAHs (�189 �g liter�1) were less than the
concentrations identified in seawater following the Deep Water Horizon spill (74).
However, comparing sensitivities of marine species to petroleum hydrocarbons be-
tween studies is notoriously difficult due to differences in exposure methodologies and
in the ways in which hydrocarbon concentrations are measured and expressed (75, 76).
For instance, the discrepancy in sensitivities between the two R. odorabile studies could
be attributed to the WAFs from the current study having been prepared with more

FIG 5 CAP analysis based on Bray-Curtis similarity of the OTUs derived from 16S rRNA gene sequencing of the
Rhopaloeides odorabile larval microbiome from each treatment after 2 and 24 h.
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energy (a greater vortex), which would result in more whole-oil droplets in suspension
(entrained oil, measured as TPH). These higher-energy WAF preparations are generally
considered more toxic than lower-energy WAF preparations (77). The only other study
to examine effects of PAHs on sponges found inhibition of metamorphosis of Crambe
crambe larvae at only 0.5 �g liter�1 �PAH (25). The sensitivity of R. odorabile is more
consistent with the sensitivity of coral larvae to condensate/light crude (29, 33), fuel oil
(39), and individual PAHs (78); however, the disparate sensitivities of the only two
sponge species analyzed to date highlight the need for standardized and comparative
studies to establish relative species sensitivities of sponge larvae to oil pollution.

Chemical dispersion of the light crude oil by the dispersant Corexit EC9500A
markedly increased the apparent toxicity of the treatments, causing total larval mor-
tality and reduced metamorphosis at 50% and 13% CWAFs, respectively (compared
with �100% and 50% for WAFs). This increase in toxicity is likely due to changes in the
chemical composition of the test solutions, with CWAF containing �10-fold more TPHs
than WAF, as well as the Corexit EC9500A itself. The lowest CWAF concentration 0.8%
(0.58 �g liter�1 �PAH; 19 mg liter�1 Corexit) caused significant inhibition of metamor-
phosis, while metamorphosis was reduced at only 1.6% (38 mg liter�1) Corexit EC9500A
solution alone, indicating that the combined effect of oil and dispersant was
responsible for this higher larval sensitivity. Similar increases in toxicity of oil in the
presence of dispersant have been observed for other marine species, including
corals (34, 79–81). Sponge larval metamorphosis had a similar sensitivity to Corexit
E9500A (LOEC � 38 mg liter�1) as larvae from multiple coral species (LOEC of 5 to
70 mg liter�1) (33, 82–84) (EC50 � 14 mg liter�1) (85). Intriguingly, the lowest exposure
of Corexit EC9500A (19 mg liter�1) caused a large increase in settlement and meta-
morphosis (Table 1 and Fig. 1B). The most parsimonious explanation for this result is
that, at this concentration, the dispersant mimics an external chemical inducer or
internal signaling molecule that initiates metamorphosis. However, it may also be a
sublethal stress response as thermal stress has been shown to increase settlement in

FIG 6 Cytoscape networks created using the 100 most abundant OTUs from each treatment.
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this species (86). This type of response has not been reported for coral larvae over a
wider range of exposures to five dispersants, including Corexit EC9500A (85), and
further investigation is warranted as control of larval settlement in sponges may be
useful for in vitro studies or reef restoration practices.

Gene expression. Larval gene expression patterns were significantly affected at
26.8 �g liter�1 �PAH in the WAF treatment and at 18.1 �g liter�1 �PAH in the CWAF
treatment. Host gene expression was disrupted by WAF and CWAF concentrations 2- to
4-fold lower than those causing larval mortality. Heat shock protein 70 (HSP70) con-
tributed most to the differences between the control and the WAF and CWAF treat-
ments, and HSP70 and HSP90 combined were responsible for 35% of the variation in
expression, a stress response consistent with what has been observed for this species
following exposure to elevated temperature (45). A similar molecular-level response has
also been observed in corals, with increased expression of both HSP70 and HSP90 in
Acropora tenuis larvae exposed to anthracene (78). Similarly, HSP70 was significantly
upregulated in the coral Pocillopora damicornis when it was exposed to WAFs (87); and
although expression levels were not quantified, HSP70 was identified via RT-PCR in the
adult coral Stylophora pistillata exposed to five different WAF concentrations yet was
undetectable in the control treatment (88). Other toxicants, such as heavy metals,
induce a similar cellular stress response in reef taxa, with an upregulation of HSP70
identified in corals (89), ascidians (90), and sponges (91). Here, we observed changes in
host gene expression profiles at sublethal concentrations of both WAFs and CWAFs.
Given the sensitivity of HSP70 in multiple taxa exposed to various contaminants (78,
87), this gene represents a strong general bioindicator candidate for use to detect
sublethal stress responses in marine species exposed to oil and pollution generally.

Sponge microbiome. The R. odorabile larval microbiome was highly sensitive to
hydrocarbon exposure, with a shift in the microbiome occurring at concentrations as
low as 1.7 �g liter�1 �PAH in the WAF treatment and 1.2 �g liter�1 �PAH in the CWAF
treatment. Sponge symbionts undertake a broad range of metabolic functions, includ-
ing carbon, nitrogen, and sulfur metabolism, vitamin synthesis, production of bioactive
metabolites, and nutrient transport (92–94); hence, microbial shifts or loss of key
symbionts can have adverse impacts on the holobiont (52, 65, 95). Of particular interest
for R. odorabile larvae exposed to hydrocarbons was the significant reduction in a
putatively ammonia-oxidizing thaumarchaeal symbiont (67). The sensitivity of the R.
odorabile thaumarchaeal symbiont is consistent with recent analyses showing that
ammonia-oxidizing archaea are �1,000 times more sensitive to hydrocarbon contam-
ination than heterotrophic bacteria (96). However, it could also be that this symbiont is
particularly sensitive to environmental perturbation as previous research has demon-
strated that it is highly sensitive to heavy metal contamination (60). Several microbial
OTUs were identified as being exclusive to WAF (n � 8) or CWAF (n � 8) treatments,
and these OTUs spanned multiple taxa, including Gammaproteobacteria, Alphaproteo-
bacteria, Chloroflexi, Gemmatimonadetes, Poribacteria, and Actinobacteria (see Table S3
in the supplemental material). Interestingly, OTUs exclusive to WAF or CWAF treatments
shared highest percent similarity to other sponge- or coral-associated bacteria. How-
ever, despite being among the 100 most abundant OTUs, taxa that were exclusive to
the WAF and CWAF treatments comprised �1% of the total microbial community. It is
likely that these OTUs are exceptionally rare (and therefore undetectable) in the sponge
microbiome under control conditions but become selected for in the WAF and CWAF
treatments. Alternatively, these novel microorganisms may have been acquired from
the surrounding seawater as a low abundance of sponge-specific microbes has been
previously detected within the rare seawater biosphere (97). Future studies should
employ metagenomic approaches to determine whether these symbionts have the
genomic potential to degrade hydrocarbons as previous studies of seawater (98–100),
sediments (101–103), sand (104), biofilms (98), phytoplankton (105), mussels (106),
sponges (106), and corals (107) have all shown increased relative abundances of
putative hydrocarbon degraders following oil exposure.
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Several recent studies have highlighted the potential for microorganisms to act as
sensitive markers for environmental disturbance in reef ecosystems (reviewed in refer-
ence 108). In particular, sponge symbionts have been described as sublethal stress
indicators for elevated seawater temperature (52, 53, 65) and copper contamination
(60). This high environmental sensitivity supports the diagnostic value of the sponge
microbiome and highlights how coral reef monitoring initiatives could be enhanced by
incorporating assessments of sponge symbionts. The coral microbiome has also been
shown to shift after exposure to crude oil, including higher relative abundances of
putative hydrocarbon degraders such as Pseudomonas, Pseudoalteromonas, and Altero-
monas versus a dominance of Vibrio in corals not exposed to oil (109). However, given
Santos et al. used a longer exposure time (4 to 16 weeks) and did not perform chemical
analysis, it remains unknown whether the coral microbiome is as responsive to WAFs as
the sponge-larval microbiome.

Larval R. odorabile can survive high concentrations of WAFs; however, a loss of
critical biological function is detected at spill-relevant �PAH concentrations, as evi-
denced by adverse effects on metamorphosis, settlement, host gene expression, and
the microbiome. Clearly, exposure to petroleum hydrocarbons from accidental releases
or spills has the potential to negatively impact sponge recruitment to adult popula-
tions, which can have adverse consequences for the ecology of reef systems. The
identification of toxic thresholds (NOEC � 6.9 �g liter�1 �PAH) and effective concen-
trations (EC50 � 12 �g liter�1 �PAH) for sponge larval settlement for light crude oil
adds to the very limited data available on coral reef-associated taxa. This study also
revealed changes in sponge larval gene expression upon PAH exposure, particularly,
increased expression of the HSP70 and HSP90 genes, which is consistent with reports
for other marine species (78, 87). Importantly, the sponge microbiome proved to be the
most sensitive indicator of sublethal stress following exposure to petroleum hydrocar-
bons and Corexit EC9500A. To better understand the consequences of this microbial
dysbiosis (such as the reduced relative abundance of the dominant thaumarchaeal
symbiont in PAH exposed sponges), future research should employ metagenomic and
metatranscriptomic approaches to validate the link between disruption of key microbial
pathways and host health. Finally, the clearly distinct microbial communities that
develop in sponge larvae from the WAF, CWAF, and Corexit EC9500A treatments
highlight the diagnostic utility of the R. odorabile microbiome as a sensitive in situ
marker for exposure to hydrocarbon contamination. Monitoring of the R. odorabile
microbiome has the potential to provide regulators and industry with an early indica-
tion of oil contamination on coral reefs.

MATERIALS AND METHODS
Preparation of WAFs and CWAFs. A sample of light crude oil (36.1° American Petroleum Institute

[API] gravity) from Barrow Island (northwest Western Australia) was provided by Chevron Australia, and
the dispersant Corexit EC9500A was provided by the Australian Maritime Safety Authority. Water-
accommodated fractions (WAFs) and chemically enhanced water-accommodated fractions (CWAFs) were
prepared from the crude oil as previously described (110, 111). Briefly, the WAF was prepared by adding
1,600 ml of filtered (0.45-�m pore size) seawater (36 practical salinity units [PSU], pH 8.1) to a solvent-
rinsed 2-liter glass aspirator bottle and mixed using a magnetic stirrer to generate a 20 to 25% vortex.
Crude oil (40 ml) was subsequently added to the center of the vortex to achieve a concentration of 25 ml
liter�1, the aspirator was loosely capped, and fluids were mixed for 18 h in darkness. To prepare CWAF,
4 ml of the dispersant Corexit EC9500A (1:10 dispersant/oil) was gently added to the top of the vortexing
mixture described above and allowed to mix for 18 h (112). The WAFs and CWAFs were allowed to settle
for 6 h before immediate water sampling for chemical analyses and applications in the larval assays.
Dilutions of the 100% WAF and CWAF (100, 75, 50, 25, 12.5, 6.25, 3.13, 1.56, 0.78, and 0 % [vol/vol]) were
prepared using filtered (0.45-�m pore size) seawater to mimic dilution in the water column (112). A
separate solution of Corexit EC9500A was prepared in the same way by applying 4 ml of dispersant to
1,600 ml of filtered seawater, mixing, settling, and diluting as described above. Total petroleum hydro-
carbons were analyzed by gas chromatography flame ionization detection (Queensland Government
Forensic and Scientific Services [QHFSS] method 16308), and PAHs were analyzed by gas chromatography-
mass spectrometry (QHFSS method 16647) at the National Association of Testing Authorities (NATA)-
accredited Queensland Government Forensic and Scientific Services (Archerfield, Queensland, Australia).
The 100% WAF and 100% CWAF contained 107 and 72 �g liter�1 total polycyclic aromatic hydrocarbons
(�PAHs), respectively, and the total petroleum hydrocarbon (TPH) concentrations in the 100% WAF and
the 100% CWAF were 1 and 2 orders of magnitude higher than the concentration of �PAHs, respectively
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(Table 1; see Table S4 in the supplemental material), indicating the presence of oil droplets in both
preparations.

Sponge collection and larval culture. Rhopaloeides odorabile is a common gonochoristic Great
Barrier Reef (GBR) sponge that broods tufted parenchymella larvae that are released during the Austral
summer (113). Seven female sponges were collected from Davies Reef, central GBR, Australia
(18°50.558=S, 147°37.618=E) and transported to the Australian Institute of Marine Science (AIMS). Sponges
were maintained in flowthrough aquaria which allowed the controlled collection of larvae over several
hours during their afternoon release. Larvae were collected using larval traps according to established
methods (30, 114) and were pooled prior to being used in experimental assays.

Larval settlement assays. Static WAF and CWAF exposures were conducted in 7-ml glass vials made
up to 6.5 ml with 10 dilutions of either WAF, CWAF, or Corexit EC9500A and containing 25 larvae. Three
replicate vials were used for each of the treatment concentrations. Vials were sealed with caps leaving
an �0.5-ml headspace that enabled oxygen exchange (O2 concentrations maintained at �7.5 mg liter�1

over the 24-h exposure). Vials were transferred to an incubator shaker with 40 �E of light over a
12-h/12-h cycle at �60 rpm to maintain gentle water movement. Vials were removed after 24 h of
exposure, and the larvae and treatment solutions from individual vials were transferred directly into
individual six-well cell culture plates (12 ml; Nunc, NY, USA) that had been immersed in flowthrough
aquaria for 48 h to develop an early microbial biofilm required for successful settlement (115). Meta-
morphosis was assessed after 48 h and scored as positive if larvae had firmly attached to the surface and
undergone flattening of the body to form a disc-like morphology, with the center showing the remnants
of the posterior larval pole (Fig. 2C) (30).

Additional experiments were completed to examine changes in host gene expression and the
symbiotic microbial community following exposure to hydrocarbon treatments during the larval swim-
ming phase. This series of exposures included a control and three WAF/CWAF treatment dilutions (100%,
25%, and 1.6%), with three replicate vials maintained for each concentration. In addition, due to
insufficient larval numbers, microbial assays did not contain the Corexit EC9500A treatment. Experimen-
tal hydrocarbon treatments were prepared, and treatment exposures were conducted, according to the
same procedures outlined above, excluding the settlement assays. Gene expression and microbiome
changes were assessed 2 h and 24 h after treatment exposure. At the end of each exposure period, larvae
were removed from the treatments, rinsed in filtered seawater, immersed in liquid nitrogen, and stored
at – 80°C.

Host mRT-qPCR analysis. To investigate the expression profiles of 26 selected host genes in larvae
exposed to three concentrations of WAF, CWAF, and Corexit EC9500A, we developed a multiplexed
reverse transcription-quantitative PCR (mRT-qPCR) assay using a GenomeLab GeXP Genetic Analysis
System (Beckman Coulter, Fullerton, CA). Experiments were conducted on pooled larvae for each
treatment replicate, as previously described (45). Briefly, this method allows the sensitive and simulta-
neous detection of target genes in multiplexed reactions, with cDNA synthesis performed with target-
specific primers and subsequent amplification with universal primers, removing the documented bias of
PCR efficiency variation between genes. The set of 26 genes were selected based on their known or
putative roles in the cell stress response and cellular homeostasis-related processes as previously
described (44) (Table S5). Kanamycin (Kanr) was used as an internal control. Following the procedures of
Webster and colleagues (45), mRNA was extracted from all larval sponge samples using a Dynabeads
oligo(dT) kit (Invitrogen). Integrity of the mRNA was measured using an ND-1000 spectrophotometer
(NanoDrop Technologies) with ratios of 260 nm/280 nm between 1.8 and 2 as the criteria. mRNA was
reverse transcribed into cDNA and PCR amplified in 20-�l reaction mixtures containing 4 �l of PCR buffer
(5
), 4 �l of MgCl2 (25 mM), 0.7 �l of Thermo-Start DNA polymerase (ABgene), 8.7 �l of cDNA, and 2 �l
of forward primer (200 nM). The PCR thermal cycling protocol included 10 min at 95°C followed by 35
cycles of 30 s at 94°C, 30 s at 55°C, and 1 min at 70°C. PCR products were analyzed on an automated
capillary electrophoresis sequencer CEQ 8800 Genetic Analysis System (Beckman-Coulter). Electrophero-
grams were inspected for erroneous amplification products with a GenomeLab 178 Genetic Analysis
System, version 10.0.29, software, and reproducibility was assessed by overlaying graphs from indepen-
dent runs. Automatic filters were created to exclude false signals due to shoulder peaks, high homology,
or alternative transcripts. Filtered positive data were imported and binned following a range extension
of 2 bp in GenomeLab eXpress Profiler software. Finally, an expression stability measure according to
Vandesompele et al. (116) for each of the 26 genes of interest was established in the GeNorm VBA applet
for Microsoft Excel, and all positive amplicons were normalized against the geometric mean of the most
stable pair of reference genes (RGs) (YWHAY and YWHAZ) in Excel. The geometric mean was calculated
by averaging the Kanr normalized peak area of the RG pair, and peak areas of all other genes of interest
were divided by this geometric mean. Gene expression data for both time points can be found in Data
Set S1.

DNA extraction, sequencing, and processing for microbial community profiling. Genomic DNA
was extracted from pooled larvae using a PowerSoil high-throughput 96-well DNA isolation kit (MoBio
Laboratories, Inc.), according to the manufacturer’s protocol. As part of the Earth Microbiome Project
(EMP) (117), samples were sent to the University of Colorado, Boulder, CO, where 16S rRNA genes were
PCR amplified and sequenced on an Illumina HiSeq 2500 platform using bacterial primers 515F/806R and
standard protocols (118).

Quality-filtered, demultiplexed fastq sequences were denoised by collaborators at the sponge
microbiome project using Deblur (119). Briefly, to create the deblurred BIOM table input, sequences were
trimmed to 100 bp, and the number of minimum reads was 25. Taxonomy was added using Qiime,
the Ribosomal Database Project (RDP) Classifier, and Greengenes, version 13.8 (120). Samples from the
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current study (Table S1) were extracted from the larger BIOM table, and sOTUs were reclassified using the
SILVA database (version 132), using a minimum cutoff of 60% similarity. Singletons and doubletons, i.e.,
sOTUs formed by one or two sequences, respectively, across all samples, were removed from the data
set. Several samples were removed from the analysis due to low numbers of sequence reads, resulting
in �3 replicates per time point for some treatments (Table S2).

Data analyses. Inhibition of metamorphosis (inhibition percent relative to 0% WAF control) was
calculated from treatment data as follows: inhibition (%) � 100 
 [(% metamorphosiscontrol � %
metamorphosistreatment)/% metamorphosiscontrol]. The concentrations of PAHs and TPHs that inhibited
50% of metamorphosis (EC50) were calculated from concentration-response curves (four-parameter
logistic models) fitted to the percent inhibition and from concentration data of each treatment using the
program GraphPad Prism (version 6; San Diego, CA, USA). Analysis of variance (ANOVA) was performed
to identify treatments which caused significant (P � 0.05) inhibition of metamorphosis in comparison to
that of control treatments (NCSS, version 9; NCSS, Kaysville, UT).

Principal coordinate analysis (PCO) was used to visually compare larval gene expression patterns among
treatments, and canonical analysis of principal coordinates (CAP) was used to visually compare microbial
community patterns among treatments and time points. PERMANOVA, using 9,999 permutations, was used
to test differences in both gene expression levels and microbial community structures between treatments.
Samples from the two time points were combined for the microbial analysis due to the low replication levels
with some treatments, with time included in the model. Where pairwise comparisons resulted in insufficient
unique permutations, Monte Carlo P values were used. Similarity percentage (SIMPER) analysis was used to
determine genes that contributed to differences in expression patterns and OTUs that contributed to
differences in microbial community structure. The distribution of the 100 most abundant sOTUs across larval
treatments was visualized using Cytoscape, version 3.2.1 (www.cytoscape.org) (121). To minimize the
number of nodes in the Cytoscape network, 0 and 1.6% WAF treatments were pooled and assigned to
the control group, and 25 and 100% WAF treatments were pooled and assigned to the WAF group. Given
the increased toxicity of CWAFs, the control group was made up only of the 0% CWAF treatment,
whereas the CWAF group was made up of the 1.6, 25, and 50% CWAF treatments combined. All statistical
analyses were based on Bray-Curtis distances of square root-transformed data and were performed using
PRIMER 6/PERMANOVA�, version 1.0.2 (Plymouth, United Kingdom).

Data availability. Gene expression data for both time points can be found in Data Set S1. Processed
sequences and metadata are available at http://qiita.microbio.me/ under study identification number
10793, and the deblurred BIOM table can be accessed through the GigaScience repository (https://doi
.org/10.5524/100332) using sample identification numbers from Table S2.
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