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Abstract

Hyaluronidases are enzymes that mainly degrade hyaluronan, the major glycosaminoglycan of the interstitial matrix.
They are involved in several pathological and physiological activities including fertilization, wound healing,
embryogenesis, angiogenesis, diffusion of toxins and drugs, metastasis, pneumonia, sepsis, bacteremia, meningitis,
inflammation and allergy, among others. Hyaluronidases are widely distributed in nature and the enzymes from
mammalian spermatozoa, lysosomes and animal venoms belong to the subclass EC 3.2.1.35. To date, only five
three-dimensional structures for arthropod venom hyaluronidases (Apis mellifera and Vespula vulgaris) were
determined. Additionally, there are four molecular models for hyaluronidases from Mesobuthus martensii, Polybia
paulista and Tityus serrulatus venoms. These enzymes are employed as adjuvants to increase the absorption and
dispersion of other drugs and have been used in various off-label clinical conditions to reduce tissue edema.
Moreover, a PEGylated form of a recombinant human hyaluronidase is currently under clinical trials for the
treatment of metastatic pancreatic cancer. This review focuses on the arthropod venom hyaluronidases and
provides an overview of their biochemical properties, role in the envenoming, structure/activity relationship, and
potential medical and biotechnological applications.
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Introduction
Hyaluronidases are glycosidases that cleave preferentially
the hyaluronan in the extracellular matrix (ECM) found
in soft connective tissues. Hyaluronan is a linear polysac-
charide formed by repeating disaccharide units of N-
acetyl-β-D-glucosamine (GlcNAc) and β-D-glucuronic
acid (GlcUA) linked via alternating β-1,3 and β-1,4
glycosidic bonds (Fig. 1). It acts as an impact absorber
and lubricant in the articulations, playing a relevant
structural role in maintaining the architecture of the
ECM. This is rendered possible since hyaluronan inter-
acts with many water molecules, assuming great visco-
elasticity [1–3].
Hyaluronidases increase up to 20 times the infusion

rates and penetration of molecules up to 200 nm in

diameter because of the cleavage of hyaluronan, redu-
cing the obstacle that the interstitial matrix presents to
fluid and drug transfer [4].
The hyaluronidase activity was identified for the first

time by Duran-Reynals in 1928, but the term hyaluroni-
dase was introduced only in 1940 [5, 6]. These enzymes
are widely distributed in nature and have been reported
in animal venoms (such as snake [7, 8], wasp [9], scor-
pion [10, 11], bee [12], hornet [13], freshwater stingray
[14], fish [15], spider [16], lizard [17] and caterpillar [18,
19] venoms), human organs (testis, eye, skin, spleen,
liver, kidneys, uterus) and corporal fluids (placenta, tears,
blood, sperm) [20, 21], bacteria [22], hookworm [23],
fungi [24], bacteriophages [25], crustaceans [26], mol-
lusks [27], leeches [28], other animal tissues [29, 30] and
malignant tumors [31]. The first hyaluronidase was iso-
lated from bovine testis [29] and has been legally sold in
the USA since 1948 [32, 33]. However, the first venom
hyaluronidase was isolated only in 1973 from Dugesiella
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hentzi tarantula venom [34]. Usually, hyaluronidases are
present in venoms in such low proportion that they are
not detectable through proteomic analyses [35].
Hyaluronidases are classified into three major groups

[21, 36, 37]. They degrade preferentially hyaluronan,
though different reaction mechanisms are involved (Fig. 2).
The first group (EC 3.2.1.35) includes vertebrate enzymes
(e. g. mammalian and venom hyaluronidases) that are
endo-β-N-acetyl-D-hexosaminidases and hydrolyze the β-
1,4 glycosidic bond between GlcNAc and GlcUA residues
in hyaluronan to the tetrasaccharide (GlcUA-GlcNAc-
GlcUA-GlcNAc) as the main product. These enzymes are
also able to cleave chondroitin sulfate. The second group
(EC 3.2.1.36) is composed of hyaluronidases from anne-
lids, such as leeches and certain crustaceans. These
enzymes are endo-β-D-glucuronidases that degrade hya-
luronan to the tetrasaccharide (GlcNAc-GlcUA-GlcNAc-
GlcUA) by hydrolyzing the β-1,3 glycosidic bond between
GlcUA and GlcNAc residues in hyaluronan. The third one
(EC 4.2.2.1, former EC 4.2.99.1) is represented by bac-
terial N-acetyl-D-hexosaminidases that cleave the β-
1,4 glycosidic bond by a beta elimination reaction,
degrading hyaluronan, chondroitin sulfate and derma-
tan sulfate to disaccharides with a double bond be-
tween carbons 4 and 5.
The hyaluronidase activity is modulated by various ac-

tivators (adrenalin, histamine and acid phosphatase
found in prostate, liver, kidney, erythrocytes and plate-
lets) and inhibitors (antihistamines, salicylates, heparin,
dicoumarin, vitamin C and flavonoids) [38, 39].
This enzyme has been used as an adjuvant to increase

the absorption and dispersion of injected drugs [32, 40],
to reduce edema [41, 42] and local side effects in tissues
[32], and as a healing-promoting agent for skin lesions
[43]. In 2005, a highly purified recombinant human

hyaluronidase (rHuPH20) was approved by the FDA [32,
44]. A phase IV clinical trial using this enzyme associ-
ated to insulin analogs is under study for the treatment
of type 1 diabetes [45, 46]. Additionally, a biopharma-
ceutical product containing rHuPH20 was approved for
the treatment of adult patients with primary immuno-
deficiency in 2014 [40], and another one containing a
PEGylated form of rHuPH20 (PEGPH20) has been
under a phase II clinical trial for the first-line treatment
of metastatic pancreatic cancer [47].
Many hyaluronidases (from prokaryotes and eukaryotes)

have been studied and a great diversity in their activity can
be observed among different species. Such diversity has
been demonstrated by the optimal pH, isoelectric point,
number of isoforms, molecular mass, substrate specificity
and sensitivity in the presence of various modulators [48].
Hyaluronidases are usually classified as acid-active

(maximum activity from pH 3 to pH 4) or neutral-active
enzymes (maximum activity from pH 5 to pH 6) [49]. Hy-
aluronidases isolated from snake, bee and scorpion
venoms are active in pH from 4 to 6 and present a mo-
lecular mass between 33 and 100 kDa [50–52]. Cevallos
et al. [50] observed that venom hyaluronidases from some
invertebrates (Dolichovespula maculata, Vespula germa-
nica, Pogonomyrmex rugosus and Centruroides limpidus
limpidus) presented less than 50 kDa, while those from
vertebrates (bovine, Heloderma horridum horridum, H.
suspectum suspectum, Lachesis muta, Crotalus basiliscus,
Bothrops asper and Micrurus nigrocinctus) are comprised
of hyaluronidases larger than 60 kDa and more than one
active isoform may be present. On the other hand, small
hyaluronidases (lower than 60 kDa) have already been
identified in vertebrate venoms [7] and enzymes present-
ing more than 50 kDa have already been isolated from in-
vertebrate ones [53].

Fig. 1 Structure of hyaluronan. The repeating disaccharide units of N-acetyl-β-D-glucosamine (GlcNAc) and β-D-glucuronic acid (GlcUA) linked via
alternating β-1,3 (highlighted in green) and β-1,4 glycosidic bonds (highlighted in red) are shown. The hyaluronidases EC 3.2.1.36 cleave the β-1,3
glycosidic bond, EC 3.2.1.35 the β-1,4 glycosidic bond and the EC 4.2.2.1 the β-1,4 glycosidic bond by elimination, yielding a double bond between
carbons 4’ and 5’
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About two-thirds of all named species in the world,
which corresponds to approximately 1,000,000 species,
belong to the phylum Arthropoda and the class Insecta
represents about 80 % of this phylum. The arthropods
have significant economic impact and affect all aspects
of the human life. Examples include the pollination of
crops and diseases spread by insects and ticks [54]. The
present paper reviews the hyaluronidases present in
arthropod venoms as well as their potential applications
in medicine and biotechnology.

Review
Role of arthropod venom hyaluronidases in envenoming
Hyaluronidases are not toxic by themselves, but they po-
tentiate the effect of other toxins present in venoms,
contributing to the local and systemic effects of enve-
noming [16, 55]. Furthermore, they are described as al-
lergens from arthropod venoms, being able to induce
severe and fatal anaphylactic IgE-mediated reactions in

humans [13, 56]. These enzymes are known as “spread-
ing factors”, a concept firstly introduced by Duran-
Reynals in 1933 [11, 57]. This action was experimentally
confirmed [17], resulting in the hydrolysis of hyaluronan
and chondroitin sulfates A and C, which promotes the
diffusion of toxins through the tissues and blood circula-
tion of the victim/prey [7, 8, 17, 58, 59].
The hyaluronidase plays a key role in the Pararama as-

sociated phalangeal periarthritis observed after the enve-
noming caused by the caterpillar Premolis semirufa [60].
The enzyme from the spider Hippasa partita indirectly
potentiated the myotoxicity of VRV-PL-VIII myotoxin
and the effect of hemorrhagic complex-I [16]. Similar re-
sults were observed with the recombinant hyaluronidase
from the spider Loxosceles intermedia, which increased
the effect of the recombinant dermonecrotic toxin LiR-
ecDT1 [55]. The enzyme from telmophage insects is re-
sponsible for extending the feeding lesion and diffusing
anti-hemostatic agents into the host tissue [61].

Fig. 2 The three major groups of hyaluronidases. The EC numbers, catalysis, substrates, main products and sources of each hyaluronidase group
are shown
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Additionally, the hyaluronidase from Tityus serrulatus
scorpion venom potentiates the activity of Ts1, the major
neurotoxin present in this venom, increasing the serum
levels of creatine kinase (CK), lactate dehydrogenase
(LD) and aspartate aminotransferase (AST) [10]. There-
fore, to assess the importance of hyaluronidase in the
scorpion envenoming process, the toxic effects of T. ser-
rultatus venom were evaluated after the in vitro and
in vivo inhibition and immunoneutralization of the hyal-
uronidase activity by anti-hyaluronidase serum produced
in rabbits [62]. In vivo neutralization assays using anti-
hyaluronidase serum inhibited or delayed death of mice.
The use of aristolochic acid, a pharmacological inhibitor
of hyaluronidase, also inhibited death. On the other
hand, the survival of mice was reversed after the
addition of native hyaluronidase to pre-neutralized
venom, showing that hyaluronidase plays a critical role
in systemic envenoming [62]. Therefore, inhibitors of
the hyaluronidase activity are potential first aid agents to
treat envenoming cases [62, 63].

Structure of hyaluronidases
There are 128 and 92 known primary sequences depos-
ited in the NCBI and UniProt databanks, respectively,
for hyaluronidases belonging to 53 genera divided into
the classes Arachnida, Chilopoda and Insecta from the
phylum Arthropoda (Table 1). All deposited sequences
were evidenced at transcript level, with the exception of
those from Phoneutria, Tityus and Dolichovespula, which
were evidenced at protein level.
The first three-dimensional (3D) structure reported for

a hyaluronidase belonging to the family 56 of glycoside
hydrolases was reported for the enzyme from Apis melli-
fera venom in 2000 [PDB: 1FCQ; 1FCU; 1FCV] [64].
The overall topology of hyaluronidases from this family
resembles a classical (β/α)n triosephosphate isomerase
(TIM) barrel, where n is equal to 8 in the hyaluronidase
from A. mellifera venom and 7 in those from Vespula
vulgaris [PDB: 2ATM] and P. paulista [Pp–Hyal, PMDB:
PM0077230] venoms [9, 64, 65].
Snake and human hyaluronidases present five disulfide

bonds [8, 66]. The disulfide bonds Cys332–Cys343,
Cys336–Cys371 and Cys373–Cys383 are part of the epi-
dermal growth factor-like (EGF-like) domain [62]. The
enzymes from A. mellifera, V. vulgaris and P. paulista
venoms show two disulfide bonds (Cys17–Cys307 and
Cys183–Cys196) [9, 64, 65], which are located in the
catalytic domain and well conserved in venom hyaluron-
idases [62]. On the other hand, the enzymes from T. ser-
rulatus venom (TsHyal-1 and TsHyal-2, whose numbers
of deposit were not stated) exhibit six disulfide bonds
common to all known Arachnida hyaluronidases [62].
The sixth disulfide bond (Cys172–Cys215), found only

in the Arachnida hyaluronidases, may reinforce the sta-
bility of their catalytic site [62].
On the basis of N-glycosylation, the recombinant hyal-

uronidase from L. intermedia presents four putative N-
glycosylation sites in its structure; the enzyme from A.
mellifera venom shows one of four possible sites [55, 64].
The one from V. vulgaris venom has three of five possible
sites, the one from P. paulista venom shows three putative
glycosylation sites, the BmHYI from Mesobuthus marten-
sii venom presents five potential N-glycosylation sites (the
number of deposit for the molecular model was not
stated), while TsHyal-1 and TsHyal-2 from T. serrulatus
venom has seven and ten putative glycosylation sites, re-
spectively [9, 62, 65, 67].
Besides the fact that N-glycosylation sites are not con-

served between TsHyal-1 and TsHyal-2, the isoforms
from T. serrulatus venom show a variation in the active
site groove in position 219. TsHyal-1 has a tyrosine (Y),
while TsHyal-2 has a histidine (H) at the same position,
which may cause different substrate specificity [62]. A
mutation in the positioning residue Y247 in human
Hyal-4 (equivalent to Y219 in TsHyal-1) altered the sub-
strate specificity [68]. Among the known primary se-
quences of hyaluronidase, only TsHyal-2 has a histidine
(H) in the position 219 [62].
The residues Ser299, Asp107, and Glu109, located at

surface-exposed regions of the Pp-Hyal (P. paulista
hyaluronidase) structure, on opposite sides of the cav-
ity, interact with the polar hydroxyl nitrogen atoms of
hyaluronan and with potential antibody-binding sites
(five conformational and seven linear epitopes located
at surface-exposed regions of the structure) [9]. These
residues are of great importance for substrate trans-
port into the active site through electrostatic interac-
tions with the carboxylic groups of hyaluronan. Three
amino acid residues (Asp107, Phe108, Glu109, accord-
ing to the Pp-Hyal sequence) are extremely conserved
and present in the active sites of all hyaluronidases [9].
Only the 3D-structure from A. mellifera hyaluronidase
(Api m 2) was solved with the substrate hyaluronan,
enabling the identification of the active site and points
of contact with the substrate [9]. In Api m 2, the
residues Asp111 and Glu113 are highly conserved in
the substrate-binding site and are proton donors es-
sential for the catalysis [64]. The structure of the
complex enzyme-substrate suggests an acid–base cata-
lytic mechanism, in which Glu113 is the proton
donor and the N-acetyl group of hyaluronan acts as
the nucleophile [64].
The residues Asp111, Tyr184, Trp301 are essential for

the positioning of the substrate’s carbonyl of the aceta-
mido group [21]. Tyr227 is responsible for the specificity
for hyaluronan and Cys227 substitution is responsible
for the chondroitinase function [21].
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Table 1 Hyaluronidases from the phylum Arthropoda

Class Order Members Family Genus Number of entries (NCBI; UniProt) Ref.

Arachnida Araneae Spiders Ctenidae Phoneutria 1; 1 - Fa —

Sicariidae Loxosceles 2; 1 [55]

Theraphosidae Brachypelma 1; 1 - F [82]

Scorpiones Scorpions Bothriuridae Cercophonius 1; 1 - F [129]

Buthidae Hottentotta 1; 1 - F [130]

Isometroides 1; 1 - F [129]

Mesobuthus 3; 1 [76]

Tityus 5; 5 - F*(2) [62, 74, 131]

Urodacidae Urodacus 1; 1 - F [129]

Chilopoda Geophilomorpha Centipedes Linotaeniidae Strigamia 0; 2 —

Insecta Blattodea Termites Rhinotermitidae Coptotermes 1; 1 —

Coleoptera Beetles Curculionidae Dendroctonus 2; 2 - F [132]

Tenebrionidae Tribolium 2; 1 [133]

Diptera Biting horseflies Tabanidae Tabanus 1; 1 [134]

Biting midges Ceratopogonidae Culicoides 4; 4 [135–138]

Black flies Simuliidae Simulium 1; 1 [139]

Midges Chaoboridae Corethrella 1; 1 [140]

Mosquitos Culicidae Aedes 6; 4 [141]

Anopheles 4; 2 [142, 143]

Culex 9; 5 —

Psorophora 1; 1 - F [144]

Moth flies Psychodidae Lutzomyia 2; 2 —

Phlebotomus 4; 4 [145–147]

Hemiptera Aphids Aphididae Acyrthosiphon 1; 1 —

Assassin bug Reduviidae Rhodnius 0; 3 - F —

Triatoma 1; 1 - F —

Hymenoptera Ants Formicidae Acromyrmex 1; 1 [148]

Atta 0; 1 [149]

Camponotus 1; 1 [150]

Cerapachys 1; 1 [151]

Harpegnathos 1; 1 [150]

Solenopsis 1; 1 - F [152]

Bees Apidae Apis 13; 3 [64, 118]

Bombus 2; 0 —

Megachilidae Megachile 1; 0 —

Parasitoid wasps Braconidae Chelonus 4; 4 - F —

Glyptapanteles 5; 5 —

Meteorus 1; 1 —

Microplitis 3; 3 —

Pteromalid parasitoid wasps Pteromalidae Nasonia 1; 0 —

Spider wasps Pompilidae Anoplius 1; 1 —

Wasps Vespidae Dolichovespula 3; 1 - a [13]

Eumenes 1; 1 [153]
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Arachnida venom hyaluronidases
Scorpion venom hyaluronidases
Scorpion venom hyaluronidases were first identified in
1975 in the venom of the South Indian scorpion Hetero-
metrus scaber [69]. Although several studies have dem-
onstrated the presence of hyaluronidases in scorpion
venoms, few studies have reported their isolation from
these sources [70–72]. This may happen because hyal-
uronidases are difficult to isolate, only small amounts of
them are found in venoms (when compared to other
toxins) and their enzymatic activity is abolished very eas-
ily [73]. These enzymes were isolated for the first time in
1990 from the venom of H. fulvipes in two chromato-
graphic steps: molecular exclusion and cation-exchange
chromatography [53]. Six hyaluronidases were isolated
from H. fulvipes [53], T. serrulatus [10, 62], Palamneus
gravimanus [11], T. stigmurus [74] and M. martensii
[75] venoms and had their biochemical and structural
characterization performed.
Currently, the application of “omics” techniques has

enabled the identification of new compounds present in
animal venoms. There are 12 and 10 known primary se-
quences deposited in the NCBI and UniProt databanks,
respectively, for scorpion hyaluronidases (Table 1). Only
two of them correspond to complete sequences: one
from T. serrulatus venom [Swiss-Prot: W0HFN9] and the
other from M. martensii venom [Swiss-Prot: P86100] [62,
76]. These protein sequences were deduced from cDNA
sequences.
The molecular mass of scorpion venom hyaluronidases

may range from 45 to 82 kDa [10, 53, 62]. Generally,
they show maximum activity in pH between 4 and 6 and
temperatures from 30 to 37 °C. Considerable loss of the
hyaluronidase activity is observed at temperatures above
40 °C [10, 11, 53, 75]. The hyaluronidase activity can
also be inhibited by heparin, as reported for the enzyme
from the scorpions H. fulvipes, P. gravimanus and M.
martensii [11, 53, 75]. Furthermore, dithiothreitol (DTT),

some ions such as Cu2+ and Fe3+, and flavonoids are also
able to inhibit the hyaluronidase activity [10, 53, 75]. Inter-
estingly, the activity of these enzymes may vary among dif-
ferent species and changes may occur in a diet-dependent
manner [77, 78]. However, distinct geographical areas had
no influence on the enzyme activity [79].

Spider venom hyaluronidases
The first spider hyaluronidases, that are similar to the
testicular enzyme, were reported in the venoms of the
Brazilian species Lycosa raptoral and Phoneutria nigri-
venter in 1953 [80]. However, the first spider venom hy-
aluronidase was only isolated in 1973 from the tarantula
Dugesiella hentzi (Girard) and was reported as the major
constituent of this venom [34]. Other spider venom hy-
aluronidases were isolated from Loxosceles reclusa [81],
Hippasa partita [16], Bracchypelma vagans [82] and
Vitaluis dubius [83]. Additionally, the hyaluronidase ac-
tivity was detected in several other spider venoms [84–
89]. Moreover, three spider venom hyaluronidases from
L. leata [90], Bracchypelma vagans [82] and L. inter-
media [55] were expressed in heterologous systems.
There are four and three known primary sequences

deposited in the NCBI and UniProt databanks, respect-
ively, for spider hyaluronidases (Table 1). The complete
sequence of the enzyme from L. intermedia [Swiss-Prot:
R4J7Z9] was obtained from its venom gland transcrip-
tome [55]. The enzyme from P. keyserlingi [Swiss-Prot:
P86274] had the first 32 amino acid residues from its N-
terminal identified by Edman degradation [91].
Spider venom hyaluronidases present a molecular

mass that ranges from 33 to 47 kDa in their monomeric
form [16, 34, 55, 81–83] and maximum enzymatic activ-
ity at 37 °C in pH from 4 to 6 [16, 34, 83, 92]. Spider
venom hyaluronidases also show high specificity to hya-
luronan, weak activity upon chondroitin sulfate A and
an almost absence of activity upon chondroitin sulfates
B and C [55, 82, 83]. The activity of these hyaluronidases

Table 1 Hyaluronidases from the phylum Arthropoda (Continued)

Orancistrocerus 1; 1 [154]

Polistes 2; 1 - F —

Polybia 2; 2 - F [9]

Rhynchium 1; 1 —

Vespa 2; 1 [155]

Vespula 12; 6 [65]

Isoptera Dampwood termites Termopsidae Zootermopsis 1; 1 - F [156]

Lepidoptera Butterflies Nymphalidae Danaus 2; 2 [157]

Silkmoths Bombycidae Bombyx 1; 1 [158]

Phthiraptera Lice Pediculidae Pediculus 8; 4 [159]

TOTAL 128; 92
aEvidence at protein level (all the others at transcript level); F: fragment; —: unpublished
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is inhibited by metal ions, such as Fe3+ and Cu2+, diva-
lent cations, temperatures above 60 °C and extreme
levels of pH (under 4 and over 8) [16, 81, 83]. The pro-
cesses of thawing and freezing do not seem to influence
the stability of the enzyme from D. hentzi and H. par-
tita, whereas the enzyme from V. dubius venom had
its activity decreased after a series of thawing and
lyophilization cycles [16, 34, 83, 89].

Chilopoda venom hyaluronidases
Centipedes contain a venom gland connected to a pair
of forcipules which are used to capture preys. Centipede
bites usually cause burning pain, paresthesia, edema and
lead to superficial necrosis in human victims [93]. The
hyaluronidase activity has also been detected in the sco-
lopendrid centipede venoms [94]. The venoms from
Otostigmus pradoi and Scolopendra viridicornis showed
hyaluronidase-active bands of 40–66 kDa and an add-
itional band of 32 kDa was detected in the first venom
[93, 94]. There are two complete primary sequences de-
posited to the Strigamia genus in the Uniprot databank
(Table 1) although no paper has been published yet.

Insecta venom hyaluronidases
Caterpillar venom hyaluronidases
The larvae of butterflies and moths are called caterpil-
lars. They produce venom in order to protect themselves
against predators that are envenomed upon touching
them. The composition of the venom is not well known
and it varies among different species of caterpillars [95].
The presence of hyaluronidases has been reported in the
venoms of Lonomia obliqua, Premolis semirufa and
Megalopyge urens [18, 19, 60]. The hyaluronidase activity
of the P. semirufa venom was measured in the presence
of hyaluronan [60]. A hyaluronidase was suggested as
the factor behind the Pararama associated phalangeal
periarthritis, a serious public health problem among the
Brazilian tappers (rubber plantation workers). It is a dis-
ease associated with joint immobilization, loss of the car-
tilage and bone structure and is known to be caused by
the P. semirufa envenoming [60].
Additionally, lonoglyases are two hyaluronidases found

in the L. obliqua venom that present 49 and 53 kDa
[19]. These enzymes are endo-β-N-acetyl-D-hexosamini-
dases able to degrade hyaluronan and chondroitin sul-
fate. Lonoglyases show optimal activity from pH 6 to 7
and no activity was detected below pH 5 and over pH 8.
Gouveia et al. [19] suggest that the ability of cleaving
hyaluronan and chondroitin sulfate linked to the extra-
cellular matrix could explain the effects of the venom,
changing the cell adhesion and migration events. Some
researchers have speculated that the degradation of the
extracellular matrix results from the synergistic effect

with other L. obliqua venom toxins, leading to local
hemorrhage and renal failure [19].

Diptera venom hyaluronidases
Hyaluronidase is related to the hematophagic habit of
telmophage insects, being found in the saliva of species
of the genera Phlebotomus and Lutzomyia (Table 1).
This enzyme extends the feeding lesion and diffuses
anti-hemostatic agents into the host tissue, resulting in
a microhemorrhage caused by the bite and facilitating
the acquisition of blood by the insect [61]. The salivary
hyaluronidase may facilitate the spreading of vector-
borne microorganisms transmitted by blackflies (Simu-
liidae), biting midges (Ceratopogonidae) and horse flies
(Tabanidae) [61].

Hymenoptera venom hyaluronidases
Proteins from social Hymenoptera (bees, wasps, and
ants) venoms can trigger serious allergenic reactions in
humans, such as pain, itching, inflammation and irrita-
tion, which in some cases may lead to death [96]. The
hyaluronidase is among the best-studied components
from the Apis genus [96]. The apian hyaluronidase is a
basic glycoprotein (pI 9.0) of 41 kDa rich in aspartic and
glutamic acids, containing 7.24 % carbohydrate [12].
Pp-Hyal (P. paulista hyaluronidase) is a glycosyl hydro-

lase comprised of 338 amino acids and shares high
sequence identity (80 to 90 %) with wasp venom hyaluron-
idases of the Northern hemisphere. The mature enzyme
presents a theoretical pI of 8.77 and mass of 43,277 Da
determined by mass spectrometry analysis [9]. Four iso-
forms of hyaluronidase were identified in the P. paulista
venom by two-dimensional SDS-PAGE followed by mass
spectrometry [97]. A 3D structural model of the most
abundant isoform (Hyal III) was constructed. This isoform
contains 288 amino acid residues, 44,340 Da and pI of 9.5
[98]. The comparison between the Hyal III and Pp-Hyal
also showed differences in 27 amino acid residues, in the
number of disulfide bonds and in the tertiary structure
[9]. The levels of hyaluronidase activity in Hymenoptera
venoms vary in response to physiological and environ-
mental factors and the presence of isoforms may be an
important strategy to mislead the immune system [9]. The
absence of carbohydrate moieties in the bee recombinant
hyaluronidase polypeptide chain did not change its
antibody binding. On the other hand, this structural
difference causes protein aggregation due to the partial
destabilization of the molecule [99]. A heterogeneous
pattern of N-glycosylation of the hyaluronidase Ves v 2
from V. vulgaris was shown by mass spectrometry, dis-
closing peptides with three different patterns of glyco-
sylation sites: one with glycosylation in the positions
Asn79 and Asn127; another in the positions Asn79 and
Asn99 and the third one with only one glycosylation
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site in the position Asn99. Because of this variation, the
in vitro diagnosis of allergic individuals to wasp venom
is quite complex [100].

Heterologous arthropod venom hyaluronidases
Hyaluronidases from different organisms have been
expressed in various expression systems such as bacteria,
yeast, plants, insects and mammalian cells [28, 55, 65,
82, 101–108].
The first recombinant hyaluronidase ever produced

was the Dol m 2, one of the major allergens from the
white face hornet Dolichovespula maculata [13]. The re-
combinant Dol m 2 compared to a native hyaluronidase
from the bee venom showed a common T cell epitope,
which may be one of the reasons why some patients
have sensitivity after bee and hornet envenoming [13].
The bee venom enzyme is the most well-characterized
hyaluronidase from venoms. It was expressed in 1998 by
Soldatova et al. [109] in insect cells, making possible the
determination of the first venom hyaluronidase crystal
and the characterization of N-glycans by mass spectrom-
etry [64, 110].

Potential medical and biotechnological applications of
arthropod venom hyaluronidases
There are some reports on the medical applications and
off-label use of hyaluronidase in several medical fields
[32, 40]. Additionally, some hyaluronidases have been
studied to enhance the therapeutic index and the local
diffusion of anticancer drugs into tissues and tumors
[38, 75, 111–117]. Among the arthropod venom hyal-
uronidases, BmHYA1 (a hyaluronidase isolated from
Buthus martensi scorpion venom) reduced the expres-
sion of CD44 variant 6 in the breast cancer cell line
MDA-MB-231 [75].
Furthermore, a hyaluronidase from bee venom was

complexed with IgG antibody, which allows the hyal-
uronidase’s epitope to be recognizable by the antibody
and may contribute to the development of novel pro-
teins with reduced immunogenicity to be used as a safer
allergen-specific immunotherapy [118]. Recombinant al-
lergens have been used for diagnostic and therapeutic
purposes since they are obtained with consistent quality
and unlimited amount [119]. Besides that, they can be
modified to reduce their allergenicity and to promote
beneficial immunologic properties with the aim of redu-
cing IgE-mediated side effects after immunotherapy
[119–121]. Distinct allergens which are absent or under-
represented in therapeutic venom preparations may play
a key role for the success of immunotherapy [122]. The
immunoglobulin E (IgE), present in the serum of allergic
patients to the Polybia paulista wasp venom, can
recognize the recombinant hyaluronidase from P. pau-
lista (Pp-Hyal-rec) expressed in E. coli system [123]. A

heterologous glycosylated hyaluronidase, rVes v 2 from
Vespula species, expressed in insect cells system, was
used to identify wasp venom allergic patients. The spe-
cific diagnosis of allergic patients was improved using
the basophil activation test (BAT) with the allergen rVes
v 2 when compared to the respective specific IgE detec-
tion in vitro [124]. Moreover, the carbohydrate epitopes
present in the glycosylated insect cell-expressed Api m 2
are responsible for antigenic cross-reactivity to bee and
wasp venoms [104, 125]. On the other hand, the nongly-
cosylated E. coli-expressed Api m 2 enabled the serologic
discrimination of bee and wasp allergy, allowing the cor-
rect prescription of venom immunotherapy [125]. These
reports demonstrate that recombinant antigens, such as
hyaluronidases, have a great immunogenic potential in
allergy diagnosis and immunotherapy [123]. In the fu-
ture, molecules consisting of allergen-derived peptides
bound to a viral carrier might be used for prophylactic
and therapeutic allergy vaccination, since they are prom-
ising vaccines free of IgE- and T cell-mediated side ef-
fects [126].
The intranasal administration of hyaluronidase (bovine

or isolated from T. serrulatus venom) stopped bleomycin-
induced lung injury and fibrosis, and decreased the TGF-β
production and collagen deposition, which makes hyal-
uronidase a promising tool for the recruitment of autolo-
gous MSC-like cells to the lungs in the treatment of
pulmonary fibrosis [127]. This effect could be improved
with the use of a delivery system of poly (D,L-lactide-co-
glycolide) (PLGA) microparticles (MPs) loaded with hyal-
uronidase (HYAL-MP) [128].
Finally, inhibitors of the hyaluronidase activity may be

used as potential first aid agents in antivenom therapies
since the enzyme has a relevant role in systemic enve-
noming [62].

Conclusions
Hyaluronidases are a frequent component from Arthro-
pod venoms. They hydrolyze hyaluronan from the extra-
cellular matrix, facilitating toxin diffusion into the tissues
of the prey/victims. Although they are not toxins, they in-
directly potentiate the toxicity of venoms. Arthropod
venom hyaluronidases are potential adjuvants of antican-
cer drugs and promising tools for the recruitment of au-
tologous MSC-like cells to the lungs in the treatment of
pulmonary fibrosis and for the development of novel pro-
teins to be used in allergy diagnosis and immunotherapy.
The isolation and characterization of novel arthropod
venom hyaluronidases can unravel much more about the
role of these enzymes, which justifies the increasing
interest on them and on the development of new
hyaluronidase-containing drugs and biopharmaceutical
products. Moreover, these studies can contribute to the
development of more effective antivenom therapies.
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