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Abstract

Background: Osteosarcoma (OS) is well-known for poor prognosis due to its high incidence of proliferation and

metastasis. Researches have provided valuable insights into the tumorigenesis of ST00A9 in some cancers. We aimed
to understand the expression level, functions and mechanisms of STO0A9 in human osteosarcoma for the first time.

Methods: The expression of STO0A9 protein was detected in 120 human osteosarcoma tissues and 40 normal human
bone tissues using tissue microarrays analysis. The knockdown of ST00A9 induced by RNA interference (RNAI) method
in three osteosarcoma cell lines (U20S, 143B, MG63) was applied to analyze the effects of STOOA9 on cell proliferation,
cell cycle distribution, migration, invasion and xenotransplanted tumors. Moreover, MAPK-ERK1/2, MAPK-p38, NF-kB-p65,
NF-kB-p50, p21, p27, CDK2 and CDK4 were tested.

Results: The expression of STO0A9 was increased in human osteosarcoma issues and was positively correlated with
clinical classification and survival rate. Down-regulation of STO0A9 inhibited OS cellular proliferation, migration, invasion
and cell cycle S phase in vitro and suppressed tumor formation in vivo with the reduction on PCNA and Ki67 proliferation
index. Our data also demonstrated that knockdown of STO0A9 repressed the protein levels of phospho-ERK1/2,
phospho-p50, phospho-p65 except phospho-p38, and prompted up-regulation of p21 and p27 leading to inactivation

of cyclin dependent kinase 2(CDK2) and cyclin dependent kinase 4(CDK4).

Conclusions: ST00A9 might be a significant role for predicting osteosarcoma prognosis and down-regulation of

ST00A9 could be used as a potential target for gene therapy.
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Background

Osteosarcoma (OS) is one of the predominant bone
sarcomas [1] as well as the third most common primary
malignant bone tumor happened in children and ado-
lescents [2]. OS is commonly characterized by its ag-
gressive growth, high rate of local recurrence, and poor
long-term survival rates for the early frequent systemic
metastases, particularly for the lung metastasis [3]. Cur-
rently, the 5-year survival rate for patients with local
OS remains approximately 65-70 % and for patients
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with metastatic diseases merely remains 20 %. Over the
past 15 years, only a slight improvement was made in
terms of OS therapeutic effects [4]. The main clinical
treatment for OS patients includes wide surgical re-
moval of all detectable disease (including metastases)
and pre- or post-operative chemotherapy [5]. However,
current chemotherapies often result in systemic toxicities
(hearing loss, anemia, abnormal bleeding, and kidney/liver
damage) and chemoresistance [6, 7]. Thus, the OS treat-
ment requires the development of some new-targeted
therapies. Predicting the possibilities of proliferation or
metastases in the OS patients would offer more options
for doctors to make a suitable therapeutic strategy. A few
new biomarkers have been found, and these biomarkers
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can be considered as the targets for ensuring effectiveness
of the OS treatment, contributing to a better clinical man-
agement for OS patients.

S100A9 (calgranulin B or MRP-14), known as damage-
associated molecular pattern (DAMP) molecule, is secreted
by myeloid cells upon activation [8]. The intracellular and
extracellular functions of S100A9 include calcium sensing,
activation of NADPH oxidase and arachidonic acid trans-
port [9, 10], regulation of tubulin-dependent cytoskeletal
rearrangements [11] and effecting on cell migration and
adhesion [12]. SI00A9 was found in inflammatory condi-
tions as well [13, 14]. The relation between inflammation
and carcinogenesis has long been recognized [15]. Increas-
ing evidences affirmed that SI00A9 plays an important role
in tumorigenesis. The up-regulation of S100A9 has been
observed in colon, gastric, bladder, pancreatic, ovarian,
breast thyroid, and skin cancers [16], while SI00A9 is re-
duced in in esophageal squamous cell carcinoma [17].

Mitogen-activated protein kinase (MAPK) is an insulin-
mitogen activated protein (Ser/Thr) kinase [18]. It is associ-
ated with cellular growth, survival and migration through
regulating the signals from cell-surface to the nucleus by
phosphorylation [19]. NF-kB, a transcription factor-a cyto-
plasmic heterodimer or homodimer interacting with an in-
hibitory protein of the IkB family, plays a critical role in the
promotion of tumorigenesis [20, 21]. Some articles have re-
ported that the activation of MAPK and NF-«B signaling
pathways were detected in tumor cells and these two
signaling pathways could be significance directions for
oncotherapy [22, 23].

In this study, we investigated the expression of S100A9
protein in human osteosarcoma clinical samples and ana-
lyzed relevant clinicopathological characteristics. The func-
tions of SI00A9 were further understood in OS cells. Our
results demonstrated that the knockdown of S1I00A9 inhib-
ited human OS cellular growth in vitro and in vivo. To the
best of our knowledge, this is the first report stating that
over-expression of SI00A9 might be a prerequisite for de-
velopment and progression in human osteosarcoma.

Methods

Reagents

Fetal bovine serum (FBS) and Dulbecco’s modified
Eagle’s medium (DMEM) were purchased from Gibco (San
Francisco, California, USA). Primary anti-bodies: rabbit
anti-human S100A9 was bought from ABCAM (MA,
USA). Rabbit anti-human total ERK1/2 MAPK, rabbit
anti-human total p38 MAPK, rabbit anti-human total p50
NEF-«B, rabbit anti-human total p65 NF-kB and antibodies
against phospho-ERK1/2 MAPK, phospho-p38 MAPK,
phospho-p50 NF-«B, phospho-65 NF-kB were bought
from Cell Signaling Technology (Boston, Massachusetts,
USA). Rabbit anti-human p21 and p27 were purchased
from Anbo Biotechnology (San Francisco, California,
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USA). Rabbit anti-human Ki67 nuclear antigen, mouse
anti-human PCNA and mouse anti-human glyceraldehydes-
3-phosphate dehydrogenase (GAPDH) were purchased from
Santa Cruz Biotechnology (San Francisco, California, USA).
Horseradish peroxidase-conjugated goat anti-rabbit and
goat anti-mouse secondary antibodies were purchased
from Zhong Shan Golden Bridge Biotechnology (Beijing,
China).

Tumor samples

A total of 120 osteosarcoma (OS) patients who came
from the First Affiliated Hospitals of Chongqing Medical
University, Second Affiliated Hospitals of Chongqing
Medical University, Children’s Hospital of Chonggqing
Medical University (Chongqing, China) and Tumour
hospital of Guizhou (Guizhou, China) between 2005 and
2014 were enrolled in this study. All tumor biopsies
were collected at the time of initial diagnosis prior to
preoperative chemotherapy or radiotherapy, with informed
consent from patients/guardians. The patients were divided
into IA, IB, IIA, IIB and III grades according to the GTM
staging system (G-Histologic Grade, T-Anatomic site, M-
Metastasis). This study was approved by the ethics commit-
tee of the First Affiliated Hospitals of Chongqing Medical
University, Second Affiliated Hospitals of Chonggqing
Medical University, Children’s Hospital of Chongqing
Medical University (Chongqing, China) and Tumour
hospital of Guizhou (Guizhou, China).

Normal bone samples

A total of 40 normal bone tissues that came from the
First Affiliated Hospitals of Chongqing Medical University
were enrolled with consent from patients/guardians be-
tween 2012 and 2014. This study was approved by the eth-
ics committee of the First Affiliated Hospitals of Chongging
Medical University.

Tissue microarrays

Tissue microarrays (TMAs) were constructed from 120
paraffin blocks of tumor tissues and 40 normal bone tis-
sues using a tissue array device (Beecher Instruments,
Sun Prairie, WT).

Immunohistochemistry (IHC)

Antigen retrieval on the deparaffinized sections was per-
formed by immersing the samples in 0.1 M citrate buffer
(pH 6.0), boiling the sections in the microwave for
10 min, and then allowing the sections to cool down to
room temperature. Endogenous peroxidase activity was
blocked by immersing the sections in methanol contain-
ing 3 % hydrogen peroxide for 10 min. After blocked in
goat serum for 10 min at room temperature, the sections
were incubated with the S100A9 antibody (1:50) over-
night at 4 °C. Then, the sections were incubated with
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the secondary antibody at 37 °C for 30 min. Streptavidin
conjugated peroxidase was added and kept for 10 min at
room temperature. Diamino-benzidine substrate was
added and kept for 5 min for visualizing. Immunohisto-
chemical staining of S100A9 provided calculations of
both percentage of positive cells and color intensity. The
percentage of the positivity of staining was graded as
“0”(negative), “1”(<10 %), “2” (10-50 %), and “3”(>50 %).
The intensity of staining was scored as “0” (absent),
“1”(light yellow),“2”(yellowish brown) and “3”(brown).
The staining index(SI) was used for assessing the expres-
sion of S100A9 protein. According to SI=proportion
score x intensity score, 0 was categorized as negative(-);
1-2 as low expression(1+); 3—4 as moderate expres-
sion(2+); 6 and 9 as high expression(3+).

Cell culture

Human OS lines MG63,143B and U20S were recently
purchased from Shanghai Life Academy of Sciences cell li-
brary (Shanghai, China). The OS lines (MG63,143B,20S)
were maintained in DMEM containing 10 % fetal bovine
serum, 100U/ml penicillin and 100U/ml streptomycin
(Hyclone, Longan, Utah, USA) at 37 °C in 95 % air/5 %
CO, incubator,

Knockdown of ST00A9 in OS cells

The siRNA sequences targeting S100A9 (AGGAGTT
CATCATGCTGAT) were purchased from Invitrogen.
OS cells in the exponential phase of growth were plated
in six-well plates at 1 x 10° cells/well, incubated for 24 h,
then OS cells were transfected with 2 pg of each plasmid
for 6 h using Lipofectamine 2000 reagent (Invitrogen)
and OPTI-MEM reduced serum medium (Invitrogen).
The control OS cells were transfected with empty vectors.
After 48 h, the OS cells were incubated in a complete
medium containing puromycin dihydrochloride (Sigma-
Aldrich Co. St Louis, MO, USA; 2 pg/ml for 143B, MG63
and U20S cell lines) for 2 weeks and subcloned the indi-
vidual Puromycin-resistant cells in 6 well plates and ex-
panded the cells into puromycin-resistant sublines.

Measurement of cellular proliferation

OS cells were seeded in 96-well plates at a density of 2000
cells/well. 10ul CCK-8(Beyotime Institute of Biotechnology,
Beijing, China) was added to each well after 24 h, 48 h,
72 h and 96 h. The absorbance value was readable at
450 nm using an enzyme- labeled instrument.

Flow cytometry analysis (FCM) of cell cycle distributions

5x 10° cells were harvested and fixed in 70 % ice-cold
ethanol at 4 °C overnight. The cells were incubated with
10 mg/ml RNase (Sigma, St Louis, Missouri, USA) and
50 pg/ml propidium iodide(Sigma) at 37 °C for 30 min
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in the dark. The cell cycle was analyzed by flow cytometer
(BD Bioscience, Franklin Lakes, New Jersey, USA).

Cell migration assay

The migration of OS cells was assayed using the transwell
chambers (BD Biosciences, CA, USA). The back of cham-
bers was precoated with 5 mg/ml fibronectin (50 pl). The
layer of fibronectin should be dried for 1 h. The OS cells
(1 x 10°) were put in the upper side of the 8-um pore size
transwell chambers containing 0.1 ml DMEM without
serum and 500 pl DMEM containing 10 % FBS were
added in 24-well-plates. After incubation for 12 h, non-
migrated cells were removed by scraping. The cells were
fixed with 4 % paraformaldehyde for 30 min at 4 °C and
stained with crystal violet for 20 min at room temperature.
Then, a light inverted microscope (Nikon TE2000-U,
Tokyo, Japan) was used to observe the cell migration.

Cell invasion assay

The cell invasion assay was also conducted using the
transwell chambers. The back of chambers was precoated
with 5 mg/ml fibronectin (50 pl) and the upper compart-
ment of the polycarbonate filter was coated with Matrigel
(5 mg/mlL100 pl). The Matrigel matrix (BD Bioscience,
USA) formed a continuous thin layer after drying for 1 h
at 37 °C. The OS cells (1 x 10°) were put in the upper part
of chambers containing 0.1 ml DMEM without serum and
500 ul DMEM containing 10 % FBS were added in 24-
well-plates. After incubation for 12 h, non-invaded cells
were removed by scraping. The cells were fixed with 4 %
paraformaldehyde for 30 min at 4 °C and stained with
crystal violet for 20 min at room temperature. Then, a
light inverted microscope (Nikon TE2000-U, Tokyo,
Japan) was used to observe the cell invasion.

Real-time quantitative PCR

Total RNA was extracted using RNAiso Plus (Invitrogen,
Carlsbad, California, USA) and the RNA samples were
reverse-transcribed into cDNA using the Primescript RT
reagent Kit (TaKaRa Biotechnology, Dalian, China). The
primer sequence for S100A9 was 5'-TGGCTCCTCGGC
TTTGACA GAGT-3 (forward) and 5'-TGGGTGCCCC
AGCTTCACAGA-3'(reverse), and for GAPDH, 5'-
CTTTGGTATCGTGGAAGGACTC-3'(forward) and
reverse 5 -GTAGAGGCAGGGATGATGTTCT-3". Amp-
lification conditions were as follows: incubation at 95 °C
for 30s, followed by 40 cycles at 95 °C for 15 s, and fi-
nally 60 °C for 45 s. Data was normalized to GAPDH,
and mRNA abundance was calculated using the 27T
method [24].

Western blotting
The cells were harvested and disrupted in lysis buffer
(Beyotime Institute of Biotechnology, Beijing, China)



Cheng et al. BMIC Cancer (2016) 16:253

containing phosphatase inhibitors and Phenylmethane-
sulfonyl fluoride (PMSF). An equal amount of each pro-
tein sample was separated by 8-12 % SDS-PAGE and
transferred to polyvinylidene fluoride (PVDF) mem-
branes. The membranes were blocked with 5 % Bovine
Serum Albumin (BSA) and incubated with primary anti-
bodies for overnight at 4 °C, including S100A9(1:800), total
ERK1/2 MAPK(1:800), phospho-ERK1/2 MAPK(1:1000),
total p38 MAPK (1:600), phospho-p38 MAPK(1:2000), total
p65 NF-kB(1:800), phospho-p65 NF-kB(1:1000), total p50
NF-kB(1:500), phospho-p50 NF-kB (1:1000), p21(1:500)
and p27(1:500). The membranes were rinsed 10 min for
three times with TBST buffer,and incubated with horserad-
ish peroxidase-conjugated secondary antibody (1:5000) for
1 h at 37 °C. Thenthe membranes were rinsed 3 more times
with TBST buffer and quantified by the Quantity One 4.6
computer software (Bio-Rad, Hercules, California, USA).

Enzyme activity assay

The activity assay (Genmed Scientifics Inc, Shanghai,
China) of ERK1/2, p38, p65, p50, CDK2 and CDK4 were
used to measure the intracellular activity. 50 ug of pro-
teins samples were added into the 96-well-plate and the
enzyme activities were determined using an enzyme-
labeled instrument at different wavelengths according to
the manufacturer’s instruction manual. The values are
presented as the percentage (%) of blank control.

Xenograft tumor model

The male nude mice (4 weeks) were obtained from the ex-
perimental animal center of Chongqing Medical University.
All mice experiments were approved by experimental ani-
mal center of Chongging Medical University. The OS cells
were injected subcutaneously into the nude mice at a dens-
ity of 5 x 10° cells per 100ul PBS. Tumor volume was mea-
sured at 7, 14, 21 and 28 days after injection. Mice were
killed at 28 days, the xenograft tumors were dissected and
embedded in paraffin for HE staining and IHC.

Proliferation index in xenograft tumor

IHC staining for the expression of Ki67(1:200) and Prolif-
erating cell nuclear antigen (PCNA)(1:200) in xenograft
tumor tissues were conducted. The proliferation index
(Ki-67 and PCNA index) was measured (the percentage of
positive cells from five randomly fields under a light mi-
croscopy at x 400 magnification).

Statistical analysis

Statistical analyses were performed using SPSS 19.0. Statis-
tical differences among groups were analyzed by ANOVA,
t-test or chi-square test. The data was presented as
mean * standard deviation (SD). All p values were two-
sided with statistical significance of p < 0.05.
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Results

Over-expression of ST00A9 in human OS tissues

In this study, we surveyed the expression of SI00A9 in hu-
man OS tissues and normal human bone tissues, 120 speci-
mens from OS patients and 40 normal human bone tissues
were evaluated by tumor tissue microarrays. The histologic
subtypes of all OS tissues were originated from osteoblast.
Our tissue microarray analyses demonstrated that 95 % of
the OS specimens(114 of 120) was positively stained for
S100A9 (Table 1). The distribution of S100A9 staining falls
into three patterns: nuclear (17.5 %), cytoplasma (20.0 %),
and both (57.5 %), but these distribution patterns failed to
show a statistical significance on the survival (p >0.05).
There were no statistical significances in gender, age, sites
according to the staining results (Table 1). Representative
specimens with different OS GTM grades staining for
S100A9 were shown in Fig. 1a. The data confirmed S100A9
was over-expression in OS and the high-grade tissues
presented a higher expression level of S100A9 than low-
grade tissues according to the GTM staging system, but
there was no statistical significance between Grade I and
Grade II (Fig. 1b). The mRNA levels of S100A9 in all tissues
were tested by real-time quantitative PCR (Fig. 1c), and the
results agreed with the immunohistochemistry. Due to the
low incidence of osteosarcoma, we only collected three fresh
osteosarcoma tissues to test by western blot (Fig. 1d). We

Table 1 Correlation expression of STO00A9 in osteosarcoma tissues
and normal human bone tissues

Groups S100A9 P-value
3+() 2+(M) 1+@0) -(n)

Tissue
Normal tissue (n = 40) 0 0 8 32 0.000
Osteosarcoma tissue (n=120) 6 73 35 6

Gender
Male (n=71) 4 46 17 4 0210
Female (n=49) 2 27 18 2

Age
>25(n=47) 1 28 16 2 0.378
<25(n=73) 5 45 19 4

Site
Femur (n=73) 4 46 20 3 0.086
Tibiofibula (n = 23) 2 15 5 1
Other sites (n=24) 0 12 10 2

Clinical stage
IA (n=25) 0 6 15 4 0000
B (n=16) 1 8 5 2
1A (n=38) 2 30 6 0
IIB (n=32) 1 24 7 0
=9 2 5 2 0
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Fig. 1 The expression of STO0A9 was found in tissue microarrays. a. The immunohistochemical analysis of STOOA9 expression was performed in 120
human osteosarcoma samples and 40 normal bone samples. Representative cases of OS different grades were shown. b. Statistical quantification of Sl in
normal bone tissues and different grades of OS issues (*p < 0.05, ***p < 0,001, versus normal bone tissues; ###p < 0.001, versus OS Grade lll). c. The mRNA
levels of STOOA9 were tested by real-time Quantitative PCR in osteosarcoma tissues and normal bone tissues (n = 3, **p < 0.01, ***p < 0.001, versus normal

(h=120, p < 005)
A\

bone group; ##p < 0.001, versus OS Grade lll). d. The protein levels of STO0A9 were tested in three fresh osteosarcoma tissues and normal bone tissue.
Tumor 1 and tumor 2 belonged to grade I, tumor 3 belonged to grade lll. e. Relationship between overall survival and level of STO0A9 expression

also assessed the survival ratios with respect of S100A9
staining index (SI) in all the human OS patients. 76 of 120
OS patients died at the time of the latest follow-up. We lost
contact with 18 of the 120 patients during the follow-ups.
Figure le demonstrated the survival curves for the human
OS patients with SI00A9 expression. The risk ratios for
those patients with staining scores of moderate group and

strong group were greater than those with staining scores of
no staining group and weak group (p < 0.05).

Knockdown of S100A9 contributes to reducing OS
proliferation, migration and invasion in vitro

Three OS cell lines (U20S,MG63,143B) were transfected
with SI00A9-siRNA. Compared with cells transfected with
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empty vectors groups and blank control groups, the ex-
pression levels of SI00A9 protein and mRNA were ap-
parently reduced in the siRNA-S100A9 vectors groups
according to the results of western blot (Fig. 2a) and
real time PCR (Fig. 2b). CCk-8 assays demonstrated that
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down-regulation of SI00A9 reduced the proliferation of the
three OS cell lines in 1, 2, 3 and 4 days (Fig. 2¢). Flow cyto-
metric analysis was used for searching the reason why
down-regulation of S100A9 could inhibit OS proliferation.
The percentage of GO/G1 and S phase cells in each group
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Fig. 2 Knockdown of ST00A9 contributes to reducing OS proliferation, migration and invasion in vitro. a. Western blot was conducted to
determine STO00A9 protein in the three human OS cell lines (group1-blank control, group2-transfected with empty vectors, group3-transfected
with siRNA-S100A9 vectors; n =5, 'p < 0.05; “p < 0.01, versus empty vectors group). b. Real-time Quantitative PCR was conducted to determine
the mRNA levels of STO0A9 in the three OS cell lines (n=9, ""p < 0.001, versus empty vectors group). c. CCK-8 was used to assess the three OS
cell linesin 1,2, 3 and 4 days (n= 15,“p < 0.0];mp <0.001, versus empty vectors group at the same time points). d. Cell cycle distribution was
tested in the group1, 2 and 3 using flow cytometry; the histogram of cell cycle distribution was shown (=5, “P<0.01,”"P < 0.001, versus empty
vectors group at G0/G1 phase; *p < 0.01, " p < 0,001, versus empty vectors group at S phase). e. Cell migration assay were evaluated by transwell
chambers in group1, 2 and 3 (n=5, wp < 0.001, versus empty vectors group). f. Cell invasion assay were evaluated by transwell chambers in
group 1,2 and 3 (n= S,Wp < 0.001,versus empty vectors group)
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was shown in Fig. 2d. It was revealed that knockdown of
S100A9 could contribute to accumulation of OS cells in
GO/G1 phase in comparison with empty vectors groups
and blank control groups (Fig. 2d). Next, we assessed
the effects of SI00A9 knockdown on migration and in-
vasion capacity. The number of cells migrated across
the polycarbonate membrane was also reduced after si-
lence of S100A9 (Fig. 2e), while the invasion of tumor
cells was significantly inhibited (Fig. 2f). The migration
assay and invasion assay proved S100A9 posed a great
influence on the metastasis in human OS cell lines.

Knockdown of ST00A9 gene inhibits OS growth in vivo

Furthermore, we established the effects of S100A9 on
OS growth in vivo using a xenograft model (Fig. 3a). OS
cells treated with siRNA- S100A9 vectors groups or
empty vectors groups were implanted in subcutaneous
tissues of nude mice, and corresponding neoplasm volumes
were measured every 7 days. Figure 3b showed that down-
regulation of S100A9 in OS cells significantly decreased
tumor sizes, compared with empty vectors groups. The
proliferating cell nuclear antigen (PCNA) and ki67 prolifer-
ation index for these solid tumor masses were calculated
after 28 days implantation, the proliferation index of the tu-
mors obtained from siRNA-S100A9 vectors groups was
lower than that from the empty vectors groups (Fig. 3c).

Reduced S100A9 down-regulates MAPK signaling and
NF-kB signaling in OS cells

To probe the molecular events after silence of S100A9
in OS cells, we tested the phosphorylation of MAPK and
NF-kB signaling pathways by western blot analysis and
enzyme activity assay. Western blot analysis revealed
that the protein levels of phospho-ERK1/2 MAPK,
phospho-p50 NF-kB and phospho-p65 NF-kB in siRNA-
S100A9 vectors groups were lower than those in empty
vectors groups and blank control groups in OS cell lines
(Fig. 4a). Enzyme activity assay also confirmed the above
conclusions (Fig. 4b). However, the protein level and en-
zyme activity of phospho-p38 MAPK in siRNA-S100A9
vectors groups presented no substantial changes com-
pared with the other two groups (Fig. 4a and b)

Reduced S100A9 up-regulates the cell cycle-related proteins
p21 and p27 causing the inactivation of CDK2 and CDK4

The inhibition of cell-cycle progression at the G1 check-
point by cell-cycle regulators p21 and p27 [25] became a
considerably attractive mechanism for targeting cancers
[26, 27]. Thus, we wondered whether SI00A9 modulated
the expression of p21 and p27 as well. Western blot
quantification revealed an increasing expression of p21
and p27 in siRNA-S100A9 vectors groups (Fig. 5a). In
parallel, the enzyme activity assay of cyclin dependent
kinase 2(CDK2) and cyclin dependent kinase 4(CDK4)
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were suppressed in the three OS cells transfected with
siRNA-S100A9 (Fig. 5b).

Discussions

The recent accumulative studies have demonstrated that
the S100 family members, notably S100A9, played a crit-
ical role in tumor development and progression due to
their involvement in survival, growth and metastasis of
tumor cells [28]. Nevertheless, little is known concerning
the role of S100A9 in human osteosarcoma. In this study,
it was the first report that SI00A9 was considerably over-
expressed in OS patient samples and its expression level
in the OS cells was statistically correlated with neoplastic
growth. PCNA and ki67 proliferation index would also
support these conclusions. Reports showed that the two
proteins (PCNA and ki67) have emerged in the S phase
and participated in cell proliferation [29]. With the above
information, we concluded that the expression level of
S100A9 in OS cells could be an independent factor for the
patients’ prognosis. All these studies proved that SI00A9
was involving in the OS progression.

S100A9, one member of the family of low-molecular-
weight intracellular EF-hand motif calcium-binding pro-
teins, is abundantly expressed in cells of the myeloid
lineage, including cytoplasmic proteins in neutrophils,
macrophages at early-differentiation states and a smaller
extent in monocytes [30]. SI00A9 which shares a lot of
similar characteristics with other S100 proteins locates
on a cluster of human chromosome 1q21, where several
chromosomal abnormalities have been found to be linked
with neoplasia [31-33]. In our study, S100A9 independ-
ently promoted the tumor growth, migration and invasion
in vitro. But in fact it may be not the only pathway in vivo,
the cancer microenvironment might be a critical reason.
The composition of tumor microenvironment is very com-
plicated. Infiltrating inflammatory cells have been identified
as one important componet. Inflammatory mediators
induce the accumulation of myeloid cells, including
myeloid-derived suppressor cells (MDSC). They have
the potent immunesuppressive effects that could promote
tumor growth by inhibiting T-cell-driven anti-tumor im-
mune responses and support immune evasion through the
release of reactive oxygen species (e.g. nitric oxide), cyto-
kines, and arginase [34]. Over-expression of S100A9 could
increase MDSC recruitment [35]. SI00A9 knockout mice
are better able to reject EL4 lymphomas compared to wild
type mice for inhibiting the recruitment of MDSC [36]. An-
other example, CD11b(+)Gr1(+) cells are classical markers
of murine MDSC which have been identified in tumor-
bearing mice [37, 38]. Mice lacking S1I00A9 have apparently
reduced infiltration of CD11b(+)Grl(+) cells within tumors
and pre-metastatic organs showed lower tumor inci-
dence, growth and migration [23]. It has been reported
that S1I00A9 not only induce the accumulation of MDSC,
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but it is also secreted by MDSC and tumor cells, and bind
to cell surface receptors (such as RAGE) leading to MDSC
migration [39]. So the autocrine feedback loop is created
between S100A9 and MDSC that have significant influ-
ence on the inflammatory tumor environment.

In most cases, SI00A9 is usually as a ligand. The main
receptors for S100A9 are the receptor for advanced gly-
cation mend-products (RAGE) and toll-like receptor 4
(TLR4) [40]. RAGE is a type I transmembrane protein, and
a signaling receptor of the immunoglobulin superfamily.

Mounting studies have implicated that RAGE involved in
many pathologies (diabetes, inflammation, neuronal degen-
eration and cancers) are regard as a receptor and effector of
intracellular responses mediated by DAMPs [41, 42]. Toll-
like receptor 4(TLR4) is one of the transmembrane re-
ceptors that enable cells of the innate immune system
to mount inflammatory responses against pathogen [43].
S100A9 and serum amyloid A3(an important down-
stream molecule of SI00A9) were bound to TLR4 [44].
RAGE and TLR4 are both implicated in S100A9-mediated



Cheng et al. BMC Cancer (2016) 16:253 Page 9 of 12
a
U208 U208 U208 Uu20s
p-ERK12 p-p38 : P-p6s P-pS0
— - CERKIZZ sl e am® 38 _W 1-p65 —— W S0
1 2 3 1 2 3 1 2 3 I ) 3
143B 143B 143B 143B
— - — p-ERK1/2 p-p38 - p-pbs > "y p-ps0
—— v — iz (D N W e TR 65 e e e SO
! 2 3 1 2 3 I 2 3 ! 2 3
MG63 MG63 MG63 MG63
= p-ERK1/2 - p-p38 p-p6S - p-ps0
— A L S S e DS — — - - -p65
. 1 2 3 1 2 3 1 2 3
'é 15 j 15 :E g 15
£ E =
S 3 2 - - I - ; H H
= 1NNz IS :"INNE NKA NN@ 3"
£ N N 2 | [ INE | INE| % Z
& 05 § % & 05 s s o 2 205
= NE | [N H o | INE NE H
00 % % 3w R B % % | =, T
123 123 123 & 123 123 123 & i
U208 143B  MG63 U208  143B  MG63
b

g

- £

‘EEI” E].‘O

T 100 E“E 1

= o > 5 = = Q ] ]

<2 I|IN& [N [INa 22 [ INE| (INE | INE

23«1 INB | INg | N =2 91N NE | INE

22| [NALLIN INR 22 0N [N LN

o N b Ni: 0 N = N N

123 123 123 123 123 123
U208 143B MG63 U208 143B MG63

assay (1=9,"'p <0.001, versus empty vectors group)

Fig. 4 Reduced S100A9 down-regulates MAPK signaling and NF-kB signaling in OS cells. a. Three OS cell lines were pretreated with
empty vectors and siRNA-ST00A9 vectors, and then were tested by western blot in terms of their phosphorylation of ERK1/2 MAPK,
p38 MAPK, p50 NF-kB and p65 NF-kB. Total ERK1/2 MAPK, total p38 MAPK, total p50 NF-kB and total p65 NF-kB were used as loading
controls (n1=5, "p<0.01; " p<0.001, versus empty vectors group). b. The activity of ERK1/2 MAPK, p38 MAPK, p50 NF-kB and p65
NF-kB in the OS cells of blank groups, empty vectors groups and siRNA-ST00A9 vectors groups were quantified by spectrophotometric

3 3
g 1= HL]
2 2
,E': 10 _.E‘: 190 = 5 8
UM MR TR 227108 Mz N
-: s =29 % T % % i
£ 2 1IN NE | [N
123123 123 123 123 123
U208 143B MG63 U208 143B  MG63

tumor-associated pathological effects. It has been reported
that SI00A9 could recruit additional MDSC into the tumor
microenvironment by binding to RAGE [45] and S100A9
interaction with TLR4 is critical for tumor growth in
lymphoma [46]. Besides RAGE and TLR4, extracellular
matrix metalloproteinase inducer (EMMPRIN), known
as CD147, has been found as a new receptor which spe-
cifically bound to S100A9 [47]. The carcinogenicity of
EMMPRIN might be related to matrix metalloprotein-
ases (MMPs) [48].

In some tumors, SI00A9 mediates proliferative and
invasive signals and enhances the MAPK or NF-«kB sig-
naling pathway [49]. The aberrant activations of MAPK
and NF-«B signaling pathways both have critical effects

on tumor growth and migration [50-53], which was
found in OS cells according to previous studies [54]. Al-
though some components about the downstream of
MAPK or NF-«B signaling pathways have been dis-
cussed, there were many disputes which genes could
control the activity of two signaling pathways. According
to our reports, we observed that the suppression of
S100A9 caused decreases in the phosphorylation activity
of ERK1/2, NF-kB-p50, NF-kB-p65 as well as no detect-
able phosphorylation of MAPK-p38. This indicated that
S100A9 might mediate the tumor progression in OS
cells by promoting cellular migration and invasion,
which was linked to MAPK and NF-«B signaling path-
ways. Interestingly, our conclusion was consistent with
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the findings that SI00A9 activated phosphorylation of
ERK1/2 but not phosphorylation of MAPK-p38 signaling
pathway [23]. Instead, it has been found that SI00A9 in-
creased phosphorylation of MAPK-p38 , but inhibited
phosphorylation of ERK1/2 in gastric cancers [55]. There-
fore, the actions of S100A9 through MAPK signals could
be depend on the different types of cancer cells. The MAPK
signaling pathways might be act as a various role in differ-
ent cancerous tumors.

Conclusions

To sum up, we have evidenced the involvement of SI00A9
in OS pathology, showing that knockdown of S100A9 can
reduce OS development through inactivation of MAPK
and NF-«B signaling pathways. Therefore, we prone to put
S100A9 as a significant parameter for predicting human

osteosarcoma patients’ prognosis and S100A9 might be
used as a potential target for cytokine therapy.
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Additional file 1: FigureS1 The knockdown of ST00A9 had no effect
on the cell apoptosis, RAGE or TLR4. A. The apoptosis was tested after
knockdown of STO0A9 (n=3). A histogram about the sum of the upper
right quadrant(Q2) and the lower right quadrant(Q3) was shown in
Supplement fig.1A. Q2 represents late apoptotic cells, Q3 represents early
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apoptotic cells. B. The protein levels of RAGE and TLR4 were tested by
western blot in three OS cell lines (group1-blank control, group2-
transfected with empty vectors, group3-transfected with siRNA-ST00A9
vectors; n=3). (TIFF 5193 kb)

Additional file 2: FigureS2 The up-regulation of ST00A9 enhanced
osteosarcoma proliferation, migration and invasion.AThe protein levels of
S100A9 were tested by western blot in the three OS cell lines (group1-
blank control, group2-transfected with empty vectors, group3-transfected
with STO0A9 vectors; n=3, ***P < 0.001,versus empty vectors group). B.
The mRNA levels of ST00A9 were tested by real-time Quantitative PCR in
the three OS cell lines (n=9, ***P < 0.001, versus empty vectors group). C.
CCK-8 was used to assess the three OS cell lines in 1, 2, 3 and 4 days
(n=15, *p < 0.05, **P < 0.01; ***P < 0.001, versus empty vectors group at
the same time points). D. Cell cycle distribution was tested in the groupl,
2 and 3 using flow cytometry; the histogram of cell cycle distribution was
shown(n=3, **P < 0.01, versus empty vectors group at GO/G1 phase; ##P
<0.01, versus empty vectors group at S phase). E. The histogram of cell
migration assay were evaluated by transwell chambers in group1, 2 and
3(n=5*P < 0.001, versus empty vectors group). F. The histogram ofcell
invasion assay were evaluated by transwell chambers in group1, 2 and 3
(n=5, ***P < 0.001, versus empty vectors group).(TIFF 10616 kb)

Additional file 3: FigureS3 AThe mRNA levels of STO0A9 were tested
by real-time Quantitative PCR in osteosarcoma tissues andnormal bone
tissues(n=3, **p < 0.01, **P < 0.001, versus normal bone group; #i#p <
0.001, versus OS Grade lll). BThe protein levels of STO0A9 were tested in
three fresh osteosarcoma tissues and normal bone tissue. Tumor 1 and
tumor 2 belonged to grade |, tumor 3 belonged to grade IIL(TIFF 1805
kb)

Additional file 4: FigureS4 A The photos of immunofluorescence for
observing in the OS cell lines were shown. B. CCK-8 was used toassess
the three OS cell lines in 1, 2, 3 and 4 days (n=15, group1-blank control,
group2-transfected with empty vectors, group3-transfected with siRNA-
TLR4 vectors). C. CCK-8 was used to assess the three OS cell lines in 1, 2,
3 and 4 days (group1-blank control, group2-transfected with empty vec-
tors, group3- 10.1186/512885-016-2294-1transfected with siRNA-EMMPRIN
vectors; n=15, **P < 0.01; ***P < 0.001)(TIFF 4998 kb)
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