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ABSTRACT

High-throughput studies of protein interactions may
have produced, experimentally and computationally,
the most comprehensive protein—-protein interaction
datasets in the completely sequenced genomes. It
provides us an opportunity on a proteome scale, to
discover the underlying protein interaction patterns.
Here, we propose an approach to discovering motif
pairs at interaction sites (often 3-8 residues) that are
essential for understanding protein functions and
helpful for the rational design of protein engineering
and folding experiments. A gold standard positive
(interacting) dataset and a gold standard negative
(non-interacting) dataset were mined to infer the
interacting motif pairs that are significantly over-
represented in the positive dataset compared to the
negative dataset. Four negative datasets assembled
by different strategies were evaluated and the one
with the best performance was used as the gold
standard negatives for further analysis. Meanwhile,
to assess the efficiency of our method in detecting
potential interacting motif pairs, other approaches
developed previously were compared, and we found
that our method achieved the highest prediction
accuracy. In addition, many uncharacterized motif
pairs of interest were found to be functional with
experimental evidence in other species. This inves-
tigation demonstrates the important effects of a
high-quality negative dataset on the performance of
such statistical inference.

INTRODUCTION

With the advent of high-throughput technologies such as
yeast two-hybrid assays (1-5), and the development of
various computational methods, either by integrating the
vast amount of biological information contained in the

genomic datasets (6,7) or by mining from an existing
knowledgebase (8,9), rich data resources of interacting
proteins have been produced and stored in publicly
accessible databases (10-13). Constructing a map of
protein—protein interactions is essential not only from a
theoretical stance of studying cellular behavior and the
machinery of a proteome, but also in the light of potential
practical applications such as new drug design (14,15). By
intensive analysis and comparison of protein-interaction
networks, many studies have emerged to investigate the
large-scale biological properties buried in the networks
from functional and evolutionary aspects (16), for
instance, protein function annotation (17) and interaction
interface identification (18). To date, a variety of statistical
data analysis techniques have been applied to address
these issues, the capability of which depends largely on the
accuracy of the protein-interaction dataset (positives),
and equally importantly, the non-interaction dataset
(negatives).

Currently, high-quality positive datasets have been
assembled by combining multiple interaction datasets or
integrating additional genomic evidence (19,20). However,
the data collected by those methods are far from complete
compared with the vast number of possible interactions
(21). What makes things more complicated is how to
define and assemble a high-quality negative dataset for a
statistical analysis system. Negative datasets obviously
have a strong effect on the performance of comparative
statistical analyses, especially in machine-learning algo-
rithms. The problems induced by lacking negatives cannot
be addressed by fine-tuning parameters or finding better
statistical methods (22). Currently, two main strategies
employed in literatures for assembling negative examples
are selection of protein pairs from separate cellular
compartments (22) and random selection of protein
pairs (23-25). Either of the two strategies has its own
limitation. Two proteins localizing to different cellular
components could interact with each other (e.g. in the
nucleus and cytoplasm, respectively). The negative
examples selected by random scheme can be often
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contaminated with positive ones because of the incomplete
protein-interaction network.

To date, protein—protein interaction data do not
provide explicit information about the specific regions of
the proteins involved in binding or docking. These specific
regions, in general only a subset of residues or very short
and specific sequence segments (often 3-8 residues) within
both interacting proteins, are critical for the highly specific
recognition at the contact interface (referred to as the
interaction or binding sites) (26-28). Such binding sites are
implicated in many fundamental biological processes,
including phosphorylation, modification and disease path-
ways, especially in signaling networks (29-31). Therefore,
accurate identification of such interaction sites is essential
to understand protein function, and helpful to design
and rationalize protein engineering, folding experiments
(32-34). Many highly efficient computational methods
have been developed to assist the discovery of potential
binding sites, especially through mining those protein-
interaction datasets produced by high-throughput tech-
niques on a genome-wide scale. In the past few years, most
efforts for the prediction of interaction-site pairs were
concentrated on finding interaction correlations between
domain pairs by statistical analyses (35-43). Nonetheless,
it is well known that the actual interaction sites directly
responsible for protein binding are probably smaller than
the whole domains, and are just subregions of the
interacting domains. Recently, several studies have used
protein—protein interactions in conjunction with prior
biological knowledge to yield a set of putative interacting
motif pairs. Li and Li used protein—protein interactions
and protein complexes derived from Protein Data Bank
(PDB) to identify stable and significant binding motif
pairs that have unexpected frequency compared to
random in protein-interaction datasets (44). Later,
Li et al. mined all-versus-all interaction subnetworks to
discover motif pairs at interaction sites on a proteome-
wide scale (45). Tan et al. proposed a novel algorithm,
D-MOTIF, to infer correlated motifs from interaction
data (46). Yu et al. applied the AdaBoost algorithm to
predict motif pairs from known interactions and putative
non-interacting protein pairs (47). Wang et al. proposed
a modified model inspired by Deng et al. (36) and Riley
et al. (37) to predict interacting motif/domain pairs, and
in particular, the specific binding regions involved in
a certain protein interaction (43).

In this study, we focused on identifying motif pairs at
interaction sites expected to mediate protein—protein
interactions by mining both gold standard positives
(GSPs) and gold standard negatives (GSNs) in yeast.
Because protein-interaction sites are more conserved
than the rest of the protein surface (48), we used short
linear peptide motifs to represent the interaction sites
(often 3-8 residues) where protein interactions take place.
The linear motifs conform to particular sequence patterns
indicative of a particular function. Currently, there are
several motif databases such as the Eukaryotic Linear
Motif (ELM) database (49), PROSITE (50), ScanSite (51)
and Minimotif Miner (MnM) (52). Of these, MnM is a
newly published motif database with a broad functional
spectrum, and its contents were complied from searching
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the literature or exploring other public databases includ-
ing PROSITE, ELM and Peptide Cutter. All motifs in
MnM have been published and validated with experi-
mental evidence. Because of its high quality, the motifs in
MnM were used to annotate the yeast proteins in our
study.

The GSP dataset was generated by measuring the
relationship strength (including the functional association
or the localization proximity) between two different
proteins using a relative specificity similarity method.
This was achieved by exploring the information buried in
the Gene Ontology (GO) and GO annotations in our
previous study (8,9). The reconstructed yeast protein—
protein interaction map was proved to have a high
confidence level when validated using the widely used
evaluation dataset compiled from MIPS (53). Four
negative datasets were generated by different methods,
including a dataset of randomly selected protein pairs, a
dataset of protein pairs with different cellular sublocaliza-
tions, and two datasets generated with different confidence
levels based on the RSS method designed in (9).
Furthermore, the quality of the four negative datasets
was evaluated and compared. Of these, the one with the
best performance was considered as the GSN dataset. To
identify putative interacting motif pairs that are statisti-
cally overrepresented in their occurrence in the GSPs
compared to the GSNs, two distinct statistical tests, the
exact binomial test and Fisher’s exact test, were inte-
grated. The performance of the predicted results was
validated by mapping the inferred motif pairs to three
widely used datasets including iPfam (54), DOMINO (55)
and the Yeast Core subset in DIP (56). Moreover, we also
compared our method with the previously developed
methods, and found our method outperformed the others
in terms of prediction precision and converge. These
results demonstrate that, by incorporating a high-quality
negative dataset, our method presents good capability in
identifying the interacting motif pairs mediating protein—
protein interactions.

MATERIALS AND METHODS
Motif assignments

The motif definitions were drawn from the MnM
database. The MnM motif database (the release of Jun
13, 2007) compiles 611 distinct motifs involved in a broad
range, such as posttranslational modifications; binding to
proteins, nucleic acids or small molecules; protein
trafficking; and so on. Information on the subcellular
localizations of a motif is also provided, and was utilized
as a criterion to filter the false positive motif assignments
in this study. We simply specified that if a motif and a
protein localize to different subcellular compartments, the
motif assignments to the protein be abandoned. We note
that the proteins without motif assignments were also
discarded. The filtering process is described as follows.
First, both the proteins observed in the GSPs and GSNs
and the motifs in MnM were annotated with one or more
GO cellular compartment (CC) terms. Only if there was
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a path between one CC term of a protein and one CC term
of a motif, was the motif assigned to the protein.

Positive- and negative-interaction datasets

In our previous work (9), we reconstructed a map of
potential protein—protein interactions by fully exploring
the information contained in the Biological Process (BP)
and CC annotations of GO for the yeast genome. The
premises of our method were: (a) interacting proteins
often function in the same biological process and (b)
interacting proteins should exist in close proximity. This
was achieved by comparing the relative specificity
similarity (RSS) of pairs of GO terms assigned to the
two proteins within a GO DAG. The RSS is a new metric
of semantic similarity used to score the degree of the
functional association or localization proximity between
two different proteins. The RSS values for CC and BP
ontologies are denoted as RSS“C and RSS®F. We created a
GSP dataset using protein pairs with values of RSS“¢
>0.80 and RSS®® >0.80 based on a new release of GO
(the March 2006 release) and the GO annotations derived
from SGD (submitted on March 31, 2006), which is now
stored in the SPIDer database (8). To improve the quality
of the GSP dataset, here we used the more stringent
criterion of RSSCC >0.85 and RSSPY >0.85 (referred to as
WGSPs). After motif assignments using a cellular
compartment filter (as described earlier), the WGSP
dataset consisted of 46 031 interacting protein pairs
encompassing 2678 proteins. To assess how likely a
protein pair in the WGSP dataset was to physically
interact with each other, we created a high-quality
validation dataset, called ‘valid experimental interactions’
(VEIs). VEIs combine the binary interactions from the
MIPS complexes, the MIPS small-scale physical interac-
tions, and the integrated interactions from de Lichtenberg
et al. (57). There were 12 345 unique binary interactions
among 1905 proteins in the VEIs. The MIPS complexes
and the MIPS physical interactions are often used as or as
part of the ‘gold standard positives’ to validate various
prediction methods (19,58,59) and are also used to assess
high-throughput interaction datasets (60,61). As a result,
the WGSP dataset covered about 81% of the VElIs,
proving that WGSPs had a high-confidence level.
Thereafter, we simply used GSPs to refer to this new
GSP dataset (WGSPs).

Four negative datasets assembled by different strategies
were constructed in this study. (i) RGSNs: random pairs
of proteins that are not known to interact. (ii) SGSNs: as
described in (19), the protein pairs in SGSNs were selected
from lists of proteins in separate subcellular compart-
ments (cytoplasm, nucleus, mitochondrion and exocytic
network) (62) according to the yeast localization data in
GO (the details of the construction of SGSNs are available
in the Supplementary Materials). According to the
distribution of RSS values in the CC and BP ontologies,
the RSS“C and RSS®" values were roughly divided into
three confidence levels, high (H), medium (M) and low (L)
confidence (see Supplementary Materials Figures S1 and
S2). Then the other two negative datasets, WIGSNs and
W2GSNs, were created based on different combinations

of RSSC and RSSPP. (iii) W1GSNs: protein pairs that
have both RSS““ and RSS®? values with low confidence
levels, namely the ones localizing in different cellular
components and involved in weakly related or unrelated
biolo%ical processes. (iv) W2GSNs: protein pairs that have
RSSPP values with low confidence level and RSSC values
with median or low confidence level. In contrast to
WI1GSNs, W2GSNs had a larger size by including protein
pairs localizing in relatively close cellular components
(RSSCC value with median confidence) but involved in
weakly related or unrelated biological processes (RSSEY
value with low confidence level). Because the number
of randomly selected protein pairs is very large, the size of
RGSNs was simply chosen to be equal to that of
W2GSNs. After motif assignments using the cellular
compartment filter, WIGSNs, W2GSNs, RGSNs and
SGSNs remained 66 183, 596 669, 645009 and 3815110
protein pairs, respectively. For fair comparison, the four
negative datasets were created from the same protein set
that comprised 3654 proteins.

Statistical analysis

To measure the overrepresentation of the occurrence of
motif pairs in positives compared to negatives, two
distinct statistical models for counting the occurrence of
motif pairs were adopted. Furthermore, the problem
of multiple testing was taken into account in the process of
statistical analysis.

One-tailed exact binomial test. The exact binomial test
uses the binomial distribution model to compare the rate
of the observed occurrence of a motif pair to the expected
rate. The motif pairs both significantly overrepresented in
the GSPs and significantly underrepresented in the GSNs
were determined to be putative interacting motif pairs.
Thus, using the R statistics package, for a given motif pair
two P-values were calculated, one corresponding to the
statistical significance in the GSPs and the other in the
GSNs. Three basic parameters are required for the exact
binomial test: the number of successes, the number of
trials and the hypothesized probability of success. For
a motif pair M in protein pair dataset / of size N
encompassing 7 proteins, the three parameters respectively
correspond to X; (the observed number of protein pairs
containing M, where one protein contains the motif i and
its partner contains the other motif j), N (the size of the
protein pair dataset /) and Ef}; (the expected frequency of
protein pairs containing M;). Ef;; was calculated as S;/C,
where (2 is the size of the universe of protein pairs
collected from the n proteins (homo-pairs were excluded)
and S is the number of all the protein pairs containing
M;; in the universe. The exact binomial test is performed
to evaluate significant differences in the rate of the
occurrence of motif pairs, and thus is particularly good
at detecting increased prevalence of common motif pairs.

One-tailed Fisher’s exact test. In contrast to the exact
binomial test, the Fisher’s exact test uses a hyper-
geometric distribution model to compare the proportion
of protein pairs containing a motif pair in the GSPs to that
in the GSNs, and therefore is good at detecting rare motif



pairs that occur less frequently in interacting protein
pairs. For the Fisher’s exact test, a 2 x 2 contingency
table of frequency is created for each motif pair, in
which the two rows represent the GSPs and GSNi,
respectively, and the two columns represent the numbers
of protein pairs containing the given motif pair and the
ones not containing the motif pair, respectively. Using the
R statistics package, each motif pair is assigned with a
P-value.

Multiple testing problem. The g-value method proposed
by Storey (63,64) was employed to control the false
discovery rate (FDR). The g-value measures the expected
proportion of false positives incurred when a test is called
significant. Similar to a P-value, the g-value can be
considered a measure of statistical significance. We used
QVALUE software, which takes a list of P-values
resulting from the simultaneous tests as input and
estimates their g-values (63). The g-value can be calculated
for each test and ranked in ascending order. In practice, a
cutoff for null hypothesis rejection was set to 0.05 to
ensure a 5% FDR.

Validation datasets

Currently, comprehensive interacting motif pair data do
not yet exist and are difficult to assemble. Fortunately,
there are several high-quality databases of interaction
sites, such as iPfam, DOMINO and the Saccharomyces
cerevisiae core subset in DIP (Yeast Core). Here, we
defined a pair of sequence segments with exact start and
end positions to represent an interaction-site pair. iPfam is
a popular database of domain—domain interactions
derived from the protein complexes in PDB (54). It
contains 3020 domain—domain interactions (version 20).
DOMINO is a database of domain—peptide interactions
storing more than 3900 annotated interactions with
experimentally verified evidence (55), from which only
the segment pairs with both exactly annotated start and
end positions were used in this study. In addition, a high-
confidence Yeast Core dataset of protein interactions in
DIP generated by merging several high-quality subsets
from experimental and computational validation (56) was
used. The sequences of proteins composing the interacting
protein pairs could be regarded as the maximal potential
interaction regions. The core dataset (the release of
7 January 2007) contains 17420 protein—protein interac-
tions encompassing 4909 proteins. Note that for iPfam
and DOMINO, only the segment pairs in S. cerevisiae
were chosen.

We defined that a motif can be mapped to a sequence
segment if one instance of the motif is nested by the
segment. Then we defined that a motif pair can be mapped
to a segment pair if both members of the motif pair can be
mapped to those of the segment pair. Finally, after motif
assignment using the cellular compartment filter, the
respective numbers of segment pairs for the iPfam,
DOMINO and Yeast Core datasets were 351, 392 and
12 680, respectively.

The validation of the inferred motif pairs was
performed by estimating their positive predictive values
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(PPVs) and sensitivities (SNs). The PPV was calculated
as TP/(TP + FP), where true positives (TP) and false
positives (FP) were estimated with respect to each
validation dataset. As negative datasets of motif pairs do
not yet exist, we simply defined PPV as the proportion of
the inferred motif pairs overlapping with each validation
dataset. The SN, calculated as TP/P (P being the size of
the validation dataset), was simply defined as the
proportion of the segment pairs in each validation dataset
overlapping with the inferred motif pairs.

Randomizing simulation

Obviously, a good prediction system should contain more
inferred motif pairs mapped to the validation datasets
than expected at random. For evaluating the enrichment
of our inferred motif pairs in the validation datasets, we
attached a measure of statistical significance to the
overlaps. As the distribution of the overlaps is unknown,
we estimated the significance by randomizing the simula-
tion process. To do so, for each validation dataset, we
randomly generated 1000 datasets of segment pairs
collected from the segments composing the validation
dataset. The size of each randomly generated dataset is the
same as that of the validation dataset. Both the PPVs and
SN of the inferred motif pairs with the validation datasets
were assigned empirical P-values. The empirical P-value
was calculated as the proportion of the simulated datasets
with an equal or larger PPV (or SN) than the observed
one.

RESULTS
Assessment of four negative datasets

To evaluate the effect of the four negative datasets
(RGSNs, SGSNs, WIGSNs and W2GSNs) on identifying
interacting motif pairs, we compared their respective
inferred motif pairs with interaction-site pairs derived
from the three reference databases, iPfam, DOMINO and
the Yeast Core in DIP. We used the exact binomial test to
predict the putative interacting motif pairs mining from
each negative dataset. It should be noted that as the
interaction sites in Yeast Core were roughly defined as the
whole protein sequences, iPfam and DOMINO have more
accurate definitions of interaction sites than Yeast Core.
Therefore, the evaluation of the different negative datasets
(and the assessments thereafter) depended mainly on the
validation results derived from iPfam and DOMINO,
while the validation results from DIP can be considered as
auxiliary evidence.

The respective numbers of the inferred motif pairs
mining from RGSNs, SGSNs, WIGSNs and W2GSNs
were 38, 4593, 3684 and 1762. Tables 1 and 2 list
validation result statistics of the four negative datasets.
Surprisingly, only a small number of motif pairs were
predicted by RGSNs, much fewer than from the other
negative datasets. Although the PPVs of RGSNs were
highest (Table 1), the SNs were much lower than those of
the other datasets (Table 2). Moreover, its SN with
DOMINO and PPVs with iPfam and Yeast Core were not
significant. The reason may be that, because of a lack of
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Table 1. Positive predictive values (PPVs) of the motif pairs inferred by the exact binomial test from the four negative datasets

WI1GSNs SGSNs W2GSNs RGSNs

PPV (%) P-value PPV (%) P-value PPV (%) P-value PPV (%) P-value
DOMINO 15.61 0.006 13.52 0.013 9.36 0.018 78.95 0.025
iPfam 14.69 0.032 12.61 0.014 11.80 0.012 81.58 0.957
Yeast Core 98.24 0.930 95.17 0.085 96.54 0.059 100.00 1.000

PPV was calculated as TP/(TP + FP), where true positives (TP) and false positives (FP) were estimated with respect to each validation dataset. Here,
PPV was defined as the proportion of the inferred motif pairs overlapping with each validation dataset.

Table 2. Sensitivities (SNs) of the motif pairs inferred by the exact binomial test from the four negative datasets

WI1GSNs SGSNs W2GSNs RGSNs

SN (%) P-value SN (%) P-value SN (%) P-value SN (%) P-value
DOMINO 75.77 <0.001 75.77 <0.001 5.87 1.000 1.79 0.750
iPfam 95.16 <0.001 95.16 <0.001 60.40 <0.001 45.30 <0.001
Yeast Core 97.93 <0.001 98.23 <0.001 87.82 <0.001 53.24 <0.001

The SN, calculated as TP/P (P being the size of validation dataset), was simply defined as the proportion of the segment pairs in each validation

dataset overlapping with the inferred motif pairs.

biological significance, compared with other methods the
random selection method would be more likely to choose
positive examples or protein pairs with similar attributes
as positives (e.g. with close proximity or related biological
process).

Figure 1 shows a comparison of the PPVs and SNs
(defined in ‘Materials and Methods’ section) of SGSNs,
WI1GSNs and W2GSNs. We observed that W1GSNs
generally outperformed SGSNs and W2GSNs both in
terms of PPVs and SNs, and SGSNs came second. The
superior performance of WIGSNs to SGSNs is due to
WIGSNs’ stricter generation criteria (involved in both
different biological processes and different cellular com-
partments) than for SGSNs (only considering different
cellular compartments). Compared with W1GSNs (or
SGSNs), the lower performance of W2GSNs may be due
to the inclusion of the protein pairs with median-
confidence RSS®C, implying the main effect of the
localization proximity on the capability of negative
datasets in identifying interacting motif pairs.
Comparison of the four negative datasets based on the
motif pairs inferred by the Fisher’s exact test was also
performed. We obtained the similar results that generally
WIGSNs performed the best (see Supplementary
Materials Tables S2a and S2b, Figure S3). Finally,
considering that WI1GSNs were generated using the
most stringent criteria and produced in the same system
as WGSPs, we chose W1GSNSs as the GSNs for predicting
interacting motif pairs. Thereafter, we simply used GSNs
to refer to WIGSNS.

In addition, we found that for the four negative
datasets, the PPV values of Yeast Core were not
significant. A plausible explanation may be that as the
definition of interaction sites of Yeast Core is rather
general (the whole protein sequence), while linear motifs
are short and less specific in contrast to domains, it would
lead to frequent nonfunctional (or random) motif
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Figure 1. Comparison of the (A) positive predictive values [PPVs,
defined as TP/(TP + FP)] and (B) sensitivities (SNs) of the three
negative datasets W1GSNs, W2GSNs and SGSNs. WIGSNs and
W2GSNs were generated using our previously described RSS method
(9). The RSS is a new metric of semantic similarity used to score the
degree of the functional association or localization proximity between
two different proteins. WIGSNs comprised protein pairs with low-
confidence RSSP” and low-confidence RSSCC; W2GSNs comprised the
protein pairs with low-confidence RSSB® and low- or median-
confidence RSSCC values. SGSNs were generated using the method of
selecting protein pairs with different subcellular localizations.

assignments along proteins; consequently a number of
motif pairs may appear randomly in the simulation
datasets of Yeast Core, which would make the validation
results of Yeast Core non-significant.
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Figure 2. A Venn diagram of the numbers of motif pairs inferred by
the exact binomial test and the Fisher’s exact test. These motif pairs
can be divided into three data groups: (A) the intersection between the
dataset inferred by the exact binomial test (EBT) and the dataset
inferred by the Fisher’s exact test (FET); (B) the portion inferred only
by the Fisher’s exact test and (C) the portion inferred only by the exact
binomial test.

Table 3. Statistical analysis of the validation results of the motif pairs
inferred by the Fisher’s exact test

PPV (%) P-value® SN (%) P-value®
DOMINO 16.13 0.027 89.54 <0.001
iPfam 31.90 0.190 99.15 <0.001
Yeast Core 98.41 0.506 99.95 <0.001

“The empirical P-value for the PPVs with the validation datasets.
"The empirical P-value for the SNs with the validation datasets.

Inference of putative protein interacting motif pairs

We implemented both the exact binomial test and the
Fisher’s exact test to assess the statistical significance of
the overrepresentation of co-occurring motif pairs in the
GSPs compared to the GSNs. For the exact binomial test
with g-value <0.01, 3684 putative interacting motif pairs
both significantly overrepresented in the GSPs and
underrepresented in the GSNs (referred to as the EBT
dataset) were detected. For the Fisher’s exact test with
g-value <0.01, 33 341 putative interacting motif pairs
(denoted as the FET dataset) were obtained. And 3665
motif pairs overlapped between EBT and FET, whereas,
29 695 were inferred solely by the Fisher’s exact test and
19 were inferred solely by the exact binomial test.
Thereafter, these three groups of inferred motif pairs are
denoted as A, B and C, respectively (Figure 2).

We found that FET contained a much larger number of
motif pairs than EBT. The reason is that the Fisher’s exact
test can detect both common and rare motif pairs and
therefore be more sensitive (higher SN) than the exact
binomial test as shown in Tables 2 and 3. Although the
PPVs of FET were higher than EBT, the empirical
P-values for the PPVs with iPfam and DOMINO were
less than those of EBT, especially for iPfam, the result was
not significant (Tables 1 and 3). These results indicate that
the higher sensitive of FET may be accompanied with
higher false positives. As shown in Tables 1 and 3, we
noted that the PPVs for iPfam and DOMINO were at a
low level compared with the Yeast Core dataset.
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A plausible explanation may be that these two datasets
are relatively incomplete, for the domain—domain inter-
actions in iPfam are observed in the protein complexes
with known 3D structures, and DOMINO only collects
interactions with experimentally verified evidence. As
expected, only a small fraction of biologically occurring
interaction-site pairs was sampled.

Assembly of an interacting motif pair dataset
with high confidence

As the exact binomial test does well in detecting common
motif pairs, and the Fisher’s exact test is effective for
detecting rare motif pairs, the two interacting motif pair
datasets inferred by the distinct statistical methods were
combined. Before doing this, we defined that a motif pair
can be assigned with one of the three evidence types
corresponding to the three validation databases, iPfam,
DOMINO and Yeast Core, if it can be mapped to one of
the validation datasets. According to the number of
evidence types, motif pairs can be divided into four
groups: no evidence (evi0), exactly only one evidence type
(evil), two evidence types (evi2) and three evidence types
(evi3). Intuitively, the larger the number of evidence types
a motif pair has, the greater the confidence level for the
motif pair.

First, as 99.48% (3665 out of 3684) of the motif pairs in
EBT were also predicted by FET method, we assembled
EBT into the final interacting motif pair dataset. To
increase the coverage of the interacting motif pair dataset,
the motif pairs solely inferred from the Fisher’s exact test
(group B) were also considered as a candidate set
(Figure 2). Because of the propensity of FET to contain
more false positives as described earlier, we were interested
in those motif pairs that appear underrepresented with
significance in the GSPs and overrepresented in the GSNs
(but without significance), where the statistical significance
was according to the g-values derived from the exact
binomial test. We defined that a motif pair M is
‘overrepresented in the GSPs but without significance’ if
Nobs;> Nexp; and g-value >0.01, where Nobs; is the
observed number of protein pairs containing M; and
Nexp;; is the expected number of protein pairs containing
M. Nexp; is calculated as Ef; x N, where Ef; is the
expected frequency of protein pairs containing M;;
(defined in the ‘Materials and Methods’ section) and N
is the size of protein pair dataset. As a result, 5731 motif
pairs (denoted as filtered group B) were extracted and
assembled into the final interacting motif pair dataset.

Therefore, two groups of motif pairs, EBT and filtered
group B, were incorporated into the set of high-confidence
interacting motif pairs [denoted as Interacting Motif Pairs
(IMP)]. IMP contained 9415 motif pairs in total. We
found that only 2.25% (212/9415) of motif pairs in IMP
had no evidence (Figure 3), and IMP covered 96.01, 78.57
and 98.51% of iPfam, DOMINO and Yeast Core,
respectively.

Ranking the inferred motif pairs with high confidence

We ranked the motif pairs according to the g-values
from the exact binomial test in GSPs and the g-values
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Figure 3. The distribution of the inferred motif pairs (IMPs) with
different numbers of evidence types.
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Figure 4. The distribution of the inferred motif pairs in different
cumulative ranks. The number of the inferred motif pairs is plotted
against their cumulative ranks. At the various rank cutoffs, the
numbers of the motif pairs with no evidence (evi0) and with three
evidence types (evi3) were counted, respectively.

from the Fisher’s exact test in ascending order, respec-
tively. Then we compared the performance of the two
ranking methods. The g¢-value of the Fisher’s exact
test had the better performance and was used as our
ranking scheme (see Supplementary Materials Figure S4).
The reason may be that some specific and rare motif pairs
that are likely to be true interacting motif pairs would be
assigned a higher rank in the Fisher’s exact test. We
expected that motif pairs with more evidence types, which
are more likely to interact with each other, should rank
higher. This can be determined by analyzing the distribu-
tion of the frequency of the motif pairs in IMP with
different evidence types. As shown in Figure 4, at the
various rank cutoffs, the numbers of motif pairs within
evi0 and evi3 were counted. Intuitively, the motif pairs
within evi0 and evi3 can be regarded as the least and the
most reliable, respectively. The motif pairs within evi0
appear seldom among the top ranks, of which the highest
rank is 2972; while the majority of the motif pairs
within evi3 are top-ranked (i.e. about 50% are among
the top 216).

Interesting motif pairs inferred with no validation evidence

Because of the incompleteness of the validation datasets,
motif pairs inferred without evidence might truly bind to
each other to mediate protein—protein interactions. In
order to find whether there is evidence to indirectly

Y-D/K/N-H/F/R-P/V/L

FGRA

Figure 5. Three-dimensional structure of a motif pair without evidence
in yeast but found in the physical interacting regions of DNA-binding
protein in Methanopyrus kandleri [PDB:1fle].

support their binding function, we mapped the 212 motif
pairs without evidence in IMP to the datasets of
interaction-site pairs in the other species. To this end,
three confidence datasets were adopted, iPfam, DOMINO
and the dataset compiled from Pawson lab (http://
pawsonlab.mshri.on.ca/). As a result, 93 motif pairs
have been mapped to the interaction-site pairs of the
other species. For instance, the motif pair composed of the
motif FGRA [MnM:PBMDNAO0004A] and the motif
Y-D/K/N-H/F/R-P/V/L [MnM:PBMSH200020B], occurs
in the physical interacting regions of a DNA-binding
protein in  Methanopyrus  kandleri  [PDBID:1fle]
(Figure 5). Another instance is that the motif V/Y/F-?-I/
V/A> [MnM:PBMPDZ00002A], a PDZ Class II binding
motif, was predicted to interact with the Motif CPV
[MnM:PBMMHLO00001A] occurring in a PDZ domain in
Mus musculus (65).

DISCUSSION
Comparison with previously developed methods

MLE (36), DPEA (37) and a simple association method
were compared with our method. The measure of the
simple association method is defined as the fraction of the
interacting protein pairs among all of the protein pairs
containing a given motif pair M;. The measure of the
MLE method is the estimated value of the probability of
an interacting motif pair Pr(M; = 1) by using the
expectation maximization algorithm (EM) to maximize
the expectation of observing a given protein interaction
network. We calculated it as Deng et al. (36). We also used
an extended measure of MLE provided by Lee et al. (41),
the expected number of occurrences of motif pairs. It is
defined as N;; x Pr(M;; = 1) where N is the number of all
protein pairs containing a motif pair M;. The DPEA
method is based on computing an E-value, which measures
how disallowing the given motif pair reduces the like-
lihood of a protein—protein interaction network (37). The
four measures are referred to as Frequency, Probability,
Expectation and E-value, respectively. The measure of our
method is referred to as Qvalue. The power of the different
methods was evaluated by plotting the curves of their PPV
values versus the top percent rank in the validation
datasets iPfam and DOMINO (Figure 6). We observed
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Figure 6. The relationship between the top percent rank versus the
positive predictive value (PPV) estimated by iPfam (A) and DOMINO
(B). Five measures of prediction methods were assessed. ‘Frequency’ is
the measure of a simple association method that scores the fraction of
the interacting protein pairs among all of the protein pairs containing a
given motif pair. ‘Probability’ is the measure of the MLE method to
score the probability of an interacting motif pair (36). ‘Expectation’ is
an extended measure of the MLE provided by Lee et al. (41) that scores
the expected number of occurrences of motif pairs. ‘E-value’ is the
measure of the DPEA method that measures how disallowing the given
motif pair reduces the likelihood of a protein—protein interaction
network (37). The measure of our method is referred to as the ‘Qvalue’,
which is calculated using the Fisher’s exact test.

that the Qvalue outperformed the other methods in the
two validation datasets. The E-value and Expectation had
similar performance and came second, and the Probability
and Frequency performed the worst, which were also
observed in (37,40,41). A plot similar to Figure 6,
depicting the relationship between SN versus the top
percent rank is available as Supplementary Materials
Figure S5. Similar results were obtained.

Our Qvalue method is an association method. The
dominance of the Qvalue method over the others could be
attributed to two main reasons. First, compared with the
simple association method, Frequency, the Qvalue method
uses more stringent statistical tests to find motif pairs with
significant occurrence. Second, an advantage of the
complicated methods (MLE and DPEA) is that they
take into account the mutual impact of multiple motif
pairs coexisting in an interacting protein pair on the
interaction of the protein pair. However, in contrast to
domains, motif assignments may introduce much more
noise because of the lower specificity of linear motifs, so
the advantage of the complicated methods in considering
the mutual effect of multiple motif pairs may be impaired.
Moreover, the complicated methods have so many
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Figure 7. Comparison of the promiscuity of the motif pairs among the
three datasets: ‘Inferred’—the motif pairs were both significantly
overrepresented in the GSPs and underrepresented in the GSNs,
‘Eliminated’—the motif pairs were significantly overrepresented in the
GSPs but did not satisfy the criterion of ‘significantly underrepresented
in the GSNs’ and ‘Background’—the motif pairs were significantly
overrepresented in the GSPs. The promiscuity of a motif pair was
measured by #Pairsopserved/ #HPAITS pogsivie; Where  #PairS,pgervea 15 the
number of the observed interacting protein pairs containing the motif
pair, and #Pairs,ogpe 18 the number of all the possible protein pairs
containing the motif pair.

parameters to be tuned that they are more likely to be
affected by this noise. In such a situation, a simple model
with strict statistical analysis may be more suitable.
However, we should note that because we have not
compared our method with these complicated methods in
predicting domain—domain interaction, the results can
only suggest that our method performs better than the
complicated methods when identifying interacting motif
pairs.

The effectiveness of a high-quality negative dataset
on inference performance

We took the exact binomial test as an example to investi-
gate the effectiveness of a high-quality negative dataset.
A serious problem underlying methods of inferring interac-
ting motif pairs is that promiscuous motif pairs are scored
highly because of the frequency of their occurrence, but not
to because of the specific topology of the network (37). We
wondered, by using a high-quality negative dataset,
whether the overprediction of promiscuous interactions
could be controlled. This is based on the assumption that
through incorporating high-quality negatives, some false
positives could be reduced by eliminating the motif pairs
significantly overrepresented in both the GSPs and GSNss,
and that these eliminated motif pairs usually occur
promiscuously in many if not most interacting proteins.
In total, there were 5101 motif pairs overrepresented in the
GSPs regardless of their occurrences in the GSNs (called
‘Background’), and 1417 (about 27%) were eliminated by
the GSNs (called ‘Eliminated’). To this end, we tested this
assumption by comparing the promiscuity of motif pairs
among the three datasets, ‘Background’, ‘Inferred’ (EBT)
and ‘Eliminated’. As shown in Figure 7, the promiscuity
of ‘Inferred’ was significantly less than that of ‘Eliminated’
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(Mann—Whitney U-test, P-value <2.2e-16) and that of
‘Background’ (P-value <?2.2e-16), and the promiscuity of
‘Eliminated’ was significantly higher than that of ‘Back-
ground’ (P-value < 2.2e-16), suggesting the data eliminated
by the GSNs contain the most promiscuous interactions.
In addition, we also mapped these eliminated motif pairs to
the validation datasets (see Supplementary Materials
Table S3). We found that the PPVs and SNs of these
eliminated motif pairs were much less than PPVs and SNs
of those mining from both the GSPs and GSNs (EBT
dataset, Tables 1 and 2), indicating these eliminated motif
pairs may contain high false positives (for details see
Supplementary Materials). These results suggest that a
high-quality negative dataset has a large effect on
decreasing motif pairs with promiscuous interactions,
and plays a critical role in the inference of interacting
motif pairs with high confidence.

Caveats on our method

There are several underlying limitations in our approach.
(i) In contrast to domains, linear motifs are difficult to
detect experimentally or computationally because of their
short length and some degree of degeneracy. Therefore,
existing motif databases are far from comprehensive, and
thus the use of these predefined patterns will reduce the
motif search space to enable motif pair mining in large
interaction networks. (ii) Another problem is non-func-
tional false positive assignments, which is a serious
consideration in motif assignments. In this study, we
used information regarding subcellular components to
filter out putative false positive assignments, but the
effectiveness of such a strategy may be still limited. We
expect to integrate other information such as species
information and evolutionary conservation to reduce false
positive rates in our future work. (iii) As our work was
only based on S. cerevisiae, some motif pairs specific to
other species or those appearing rarely in yeast could not
be detected by our method. Thus, in the future, our
interacting motif pair mining method will be extended to
other organisms, and thus both the accuracy and coverage
of our prediction system should be improved greatly.
Finally, we should note that the statistical significance
used in our method is not equivalent to biological
function. Not every protein with one motif of our inferred
interacting motif pair is expected to interact with another
protein with the other motif of the pair. The inferred motif
pairs may indirectly mediate protein interactions, or help
shape the structure of proteins. In any case, the motif pairs
predicted by our method can be used to direct new
experimental interaction screens, in both yeast and other
species, through which the search space of putative
interacting protein pairs would be greatly reduced.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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