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EditordCoronavirus disease 2019 (COVID-19) is a novel viral definition of ARDS, such discussions are to some degree aca-
respiratory disease that was declared a global pandemic by the

WHO on March 11, 2020. The pathophysiology of the disease

remains under investigation; however, a new perspective has

emerged that neutrophils may play a central role in the organ

damage and mortality associated with COVID-19.1

The most abundant leucocyte in peripheral blood, neutro-

phils play a crucial role in immune response to infection by

killing pathogens (bacteria, fungi, viruses) by means of

phagocytosis and oxidative burst. A third mechanism by

which neutrophils kill invading organisms was discovered in

2004: formation of neutrophil extracellular traps (NETs).2 NETs

are web-like structures of DNA studded with proteins that are

extruded from the nucleus of neutrophils and function to trap

and kill circulating pathogens. Like much of the immune

response, netosis (the process of forming NETs) functions well

as long as it is closely regulated.When dysregulation of netosis

occurs, collateral damage ensues. Excessive production of

NETS has been associated with disease progression in a range

of pathological conditions including pre-eclampsia, lupus

erythematosis, myocardial infarction, and sepsis.3e6 Interest-

ingly, the organ systems most commonly damaged by NETS,

the pulmonary, cardiovascular, and renal systems, are the

same organ systems that are most affected in severe COVID-

19.1
NETs and COVID-19

Elevated levels of citrullinated histone H3 (Cit-H3) have been

observed in hospitalised patients with COVID-19.7 Cit H3 is a

specific biomarker of the presence of NETs. Whether the

presence of markers of netosis bears clinical relevance is un-

known as no longitudinal cohort studies have been published.

However, in numerous disease models elevated Cit H3 is

associated with poor outcomes.8e10 Interestingly, serum from

COVID-19 patients triggered NET release from control neu-

trophils in vitro, suggesting COVID-19 creates a cellular envi-

ronment in which netosis is more likely to occur.
NETs and acute respiratory distress
syndrome

A subgroup of COVID-19 patients develops an acute respira-

tory distress syndrome (ARDS)-like state that frequently re-

quires ICU-level support. Although there is some

disagreement as to whether these patients fit the Berlin
demic.11 What is clear is that COVID-19 can cause a severe

viral pneumonia associated with profound hypoxaemia and

need for mechanical ventilation. NETs have been shown to

contribute to disease progression in pulmonary

infections,12e14 and animal models suggest that therapies that

reduce formation of or lyse NETs reduce lung injury and

mortality.15,16 Levels of NETs in the plasma and broncho-

alveolar lavage fluid correlate with disease severity in pa-

tients with pneumonia-induced ARDS.17
NETs and thrombosis

A hypercoagulable state has been described in COVID-19 pa-

tients resulting in a high incidence of venous thromboembolic

phenomena that contribute to the disease burden.18 NETs

activate the contact pathway of the coagulation system while

at the same time neutrophil elastase (a component of NETs)

degrades natural antithrombotic agents such as antithrombin

III and tissue factor pathway inhibitor.19 NETs are a prognostic

indicator of venous thromboembolism in cancer patients and

partly explain the hypercoagulable state associated with

cancer.20 An animal model has shown that aberrant produc-

tion of NETs causes microvascular thrombi particularly in the

lungs.21
NETs and the COVID-19 cytokine storm

A proportion of COVID-19 patients develop a dysregulated

release of pro-inflammatory cytokines that is termed a cyto-

kine storm. Onset of this disease state in COVID-19 patients is

associated with high mortality, and suppression of these

overactivated cytokines is a therapeutic target of current in-

terest. NETs have been shown to induce macrophages to

secrete interleukin-1 (IL-1), which in turn induces IL-6.22,23

Both these ILs are seen as key players of the cytokine

response, and antagonists to these cytokines (tocilizumab and

anakinira) are currently being investigated in COVID-19 pa-

tients. Decreasing NET formation may help to dampen the

upstream signal stimulating the release of these cytokines.
NETs as a therapeutic target

A recombinant DNAase (Dornase Alfa) is currently licensed for

use in cystic fibrosis patients where it functions to dissolve

NETs present in sputum and hence reduce the associated
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viscosity.24 Its use has been suggested in COVID-19 patients

who may also have thick gelatinous airway secretions.1

Colchicine is currently being trialled in COVID-19 patients

with a hypothesis that it may reduce neutrophil recruitment

and hence NET formation (ClinicalTrials.gov identifiers:

NCT04326790, NCT04328480, NCT04322565, NCT04322682).
Lidocaine as a potential therapy

The local anaesthetic drug lidocaine has been shown to reduce

markers of netosis.25 This prospective RCT looked at the in-

fluence of anaesthetic interventions on netosis expression in

patients undergoing breast cancer surgery. Subjects who

received a lidocaine infusion, commencing at induction and

continuing for 24 h postoperatively, had lower levels of Cit-H3

detected in plasma compared with well-matched control

subjects who did not receive lidocaine. This is the first trial to

show that lidocaine can positively influence the development

of NETs in patients undergoing surgery. A mechanism for how

lidocaine could suppress the formation of NETs has not been

described but could be partly explained by its known anti-

inflammatory properties.26

The evidence that lidocaine can suppress development of

netosis in perioperative patients raises the possibility of

repurposing it for use in COVID-19 patients. As evidence

mounts that NETs play an important role in the pathological

process of COVID-19, an agent that suppresses this could bring

potential therapeutic benefits. Although lidocaine would not

have a direct effect on the SARS CoV-2 virus, it may help to

temper the immunological storm that is triggered in patients

with severe disease (Fig. 1).

Lidocaine infusions have a strong record of safety in clinical

medicine. They are frequently used in chronic pain conditions

and in gastrointestinal surgery where they have been shown
Fig 1. Proposedmechanismof lidocaine suppressionofnetosis. Purple cell

stimulating factor; G-CSF R, granulocyte colony stimulating factor recepto
to reduce postoperative opioid requirements and enhance

bowel recovery.27,28 We hypothesise that lidocaine infusion in

COVID-19 patients may decrease the formation of NETs and

modulate the severity of disease.

Apart from its primary role as a local anaesthetic agent,

lidocaine exhibits cytoprotective properties. Its ability to delay

the onset of ischaemia-related potassium efflux may explain

its benefit in animal models of brain injury.29 In addition,

lidocaine has been shown to exhibit a number of anti-

inflammatory properties. The ability of lidocaine to inhibit

high mobility group box-1 (HMGB-1),30 and granulocyte colony

stimulating factor (G-CSF) merits further research as both

HMGB-1 via Toll-like receptor 4 (TLR-4)31 and G-CSF32 are key

mediators in the initiation of netosis.33

Triggering of netosis is a complex process that can occur

through a variety of mechanisms. The generation of reactive

oxygen species (ROS) is a well-described pathway with some

evidence suggesting that commonly used anaesthetic drugs

such as propofol may suppress ROS and subsequent NET for-

mation in healthy volunteers.34 However, netosis can also

occur through ROS-independent pathways such as the HMGB-

1 and G-CSF pathways. The primary pathway of netosis in

COVID-19 patients is not currently known.

Important limitations should be highlighted with this pro-

posal. The current evidence for lidocaine in suppressing

netosis is in the perioperative setting. Here it is the surgical

stress response that triggers formation of NETs. The mecha-

nisms by which netosis occurs are not fully understood and

possibly differ between patients undergoing surgery and those

with viral pneumonia.

The optimum timing and duration of administration of

lidocaine with a view to suppressing netosis is unknown.

Furthermore, it is not known if this results in longer-term

clinical benefits once the infusion is stopped. The work by

Galoș and colleagues25 showed that lidocaine can suppress a
represents aneutrophil undergoingnetosis.G-CSF, granulocyte colony

r; HMGB-1, highmobility group box-1; TLR-4, Toll-like receptor-4.
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biomarker of netosis at 24 h after surgery, but whether this

translates into meaningful clinical benefits for patients was

not answered. However, we do know that higher levels of NETs

in the postoperative setting correlate with disease progression

in cancer surgery and a higher incidence of venous

thromboembolism.35,36
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