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Stem cells have provided great hope for the treatment of a variety of human diseases. However, the molecular mechanisms
underlying stem cell pluripotency, self-renewal, and differentiation remain to be unveiled. Epigenetic regulators, including histone
deacetylases (HDACs), have been shown to coordinate with cell-intrinsic transcription factors and various signaling pathways to
regulate stem cell pluripotency, self-renewal, and fate determination. This paper focuses on the role of HDACs in the proliferation
and neuronal differentiation of neural stem cells and the application of HDAC inhibitors in reprogramming somatic cells to
induced pluripotent stem cells (iPSCs). It promises to be an active area of future research.

1. Introduction

Stem cells have the ability to self-renew and differentiate
into multiple lineages. Identifying regulators that control
stem cell self-renewal and differentiation is essential for the
development of stem cell-based cell replacement therapies
for human diseases and injuries [1]. Epigenetic control,
including histone modification, has been shown to play an
important role in regulating both stem cell self-renewal and
pluripotency [2–5].

Histone modification by acetylation is the most well-
studied histone modification and has been shown to be an
important means of gene regulation [6]. In general, acety-
lation of histone tail disrupts the electrostatic interaction
between positively charged amino acids from the histone tail
and negatively charged phosphate group in DNA, leading to
decompression of chromatin structure. The open chromatin
allows for the access of transcription factors and ultimately
gene activation [7]. Acetylated histone tails may also serve
as docking sites for the recruitment of bromodomain
proteins, a class of transcriptional activator [8]. On the
other hand, histone deacetylation leads to gene repression
[9]. In addition, transcription factors themselves have also
been shown to be regulated by acetylation and deacetylation,

respectively [10]. The histone acetylation is mediated by
histone acetylases (HATs), while histone deacetylation is
catalyzed by histone deacetylases (HDACs). HDACs have
been shown to regulate many important biological processes,
including cell proliferation, differentiation, and develop-
ment, by forming complexes with various transcription
factors and transcriptional coregulators [8].

Neural stem cells are stem cells of neural origin. They
retain the ability to proliferate and self-renew and have the
capacity to give rise to both neuronal and glial lineages
[11–14]. A complete understanding of neural stem cells
and neurogenesis requires the identification of molecules
that determine the self-renewal and multipotent character
of these cells. These molecules likely include epigenetic
regulators, such as HDACs, that act to regulate stem cell self-
renewal and differentiation by controlling the activity of a
network of downstream target genes [15].

Recent breakthrough studies using retroviral transduc-
tion of a transcription factor quartet to reprogram human
somatic cells into induced pluripotent stem cells (iPSCs)
have led to an important revolution in stem cell research
[16–18]. Comparative analysis of human iPSCs and human
embryonic stem cells using assays for morphology, gene
expression profiles, epigenetic status, and differentiation
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potential have revealed a remarkable degree of similarity
between these two pluripotent stem cell types. These
advances in reprogramming will enable the creation of
patient-specific stem cell lines to study various disease mech-
anisms. The cellular models created will provide valuable
tools for drug discovery. Furthermore, this reprogramming
system provides great potential to design customized patient-
specific stem cell therapies with economic feasibility [19].
However, reprogramming by viral infection is a slow process
with very low efficiency. Recent progress in using HDAC
inhibitors to enhance reprogramming efficiency will be
discussed.

2. HDACs in Neural Stem Cells

Neural stem cell self-renewal and differentiation are the
result of transcriptional control in concert with chromatin
remodeling and epigenetic modifications. During central
nervous system development in vertebrates, neural stem
cell fate is strictly controlled under regional and temporal
manners, accompanied by precise epigenetic control [20].

We have shown that HDAC-mediated transcriptional
repression is essential for the proliferation and self-renewal
of neural stem cells (Figure 1) [21]. There are 11 HDACs in
the HDAC superfamily [8]. Among them, HDAC1, HDAC3,
HDAC5, and HDAC7 are highly expressed in neural stem
cells [21, 22]. The expression of these HDACs is reduced
upon differentiation. On the other hand, HDAC2 expression
is more widespread in the brain [22]. While HDAC2 is
expressed in proliferating neural progenitors, its expression
is upregulated as neurons differentiate [22]. HDAC11 is also
predominately expressed in mature neurons and minimally
expressed in neural precursors [23].

We showed that HDACs function in neural stem cells
through nuclear receptor TLX, an essential neural stem
cell regulator [24]. Both HDAC3 and HDAC5 have been
shown to be recruited to the promoters of TLX target
genes in neural stem cells. Recruitment of HDACs led to
transcriptional repression of TLX target genes, the cyclin-
dependent kinase inhibitor p21, and the tumor suppressor
gene pten. Disruption of the TLX-HDAC interaction led to
substantial induction of p21 and pten gene expression and
dramatic inhibition of neural stem cell proliferation [21].
The role of p21 as an HDAC target in cell proliferation was
also demonstrated in embryonic stem cells recently [25]. It
is worth noting that p21 has been identified as a target for
HDACs in earlier studies as well [26]. While most reports
point to p21 as a target for HDACs independent of p53 [27,
28], a direct role for p53 in the induction of p21 expression
has also been reported [29].

In addition to self-renewal, HDACs also regulate neural
stem cell differentiation. Treatment of adult neural stem
cells with HDAC inhibitors induced neuronal differentiation
and upregulated neuronal-specific genes, such as NeuroD,
neurogenin 1 (Ngn1), and Math1 (Figure 1) [30–34]. In vitro
treatment of adult neural subventricular zone precursor cells
with HDAC inhibitors also led to increased production of
neurons, with concomitant induction of NeuroD, cyclin D1,
and B-lymphocyte translocation gene 3 [33]. In addition

to its effect on adult neurogenesis, treatment of embryonic
neural stem cells with the HDAC inhibitor trichostatin A
(TSA) also led to increased neuronal differentiation, with
decreased astrocyte differentiation [30].

Genetic studies using knockout mouse models revealed
that HDAC1 is a major deacetylase in embryonic stem
cells. HDAC1-null embryonic stem cells exhibit proliferation
defects with increased expression of the cyclin-dependent
kinase inhibitors p21 and p27 [35]. Furthermore, HDAC1
and HDAC2 play redundant and essential role in the
progression of neuronal precursors to neurons. Deletion
of both HDAC1 and HDAC2 led to a failure of neuronal
precursors to differentiate into mature neurons [36]. On the
other hand, HDAC2 is required to silence neural progenitor-
specific gene expression during neuronal differentiation in
the neurogenic zones of adult brains, as revealed by studies
using either conditional deletion of HDAC2 or in mice
lacking the catalytic activity of HDAC2 [37].

A wide range of brain disorders have been shown to
be associated with the imbalance between the activity of
HATs and HDACs [38]. Therefore, HDAC inhibitors have the
potential to intervene neurodegenerative diseases. Indeed,
HDAC inhibitors have been shown to exhibit neuroprotec-
tive effect, induce neurotrophic factor expression, display
anti-inflammatory properties, and improve neurological
performance in animal models of neurological diseases [38].
Considering the important role of HDACs in controlling
neural stem cell proliferation and neurogenesis, HDAC
inhibitors may emerge as novel therapeutic tools for the
treatment of a variety of neurodegenerative diseases. As a
proof-of-principle, the HDAC inhibitor valproate has been
used as an anticonvulsant drug and mood stabilizer to treat
bipolar disorder, a manic-depressive illness [39].

3. HDAC Inhibitors in iPSCs

In addition to neural stem cells that have offered great poten-
tial for the treatment of neurological diseases, pluripotent
stem cells have also provided great hope for cell replacement
therapies for neurological disorders and other degenerative
diseases because of their ability to self-renew and their
potential to form all cell lineages in the body [40]. Recently,
an important revolution in stem cell research has been
undertaken. Using a cocktail of four factors, somatic cells
can be reprogrammed into iPSCs [16–18, 41–44]. iPSCs are
very similar to embryonic stem cells in that both have the
capability to self-renew and differentiate into all cell types,
but iPSCs are produced from epigenetic reprogramming
of somatic cells through the exogenous expression of four
pluripotency-related transcription factors [45, 46].

iPSCs were first generated by retroviral transduction of
four factors, Oct4, Sox2, Klf4, and c-Myc [17, 43]. Since
then, the technique has been optimized and conducted
in different ways, by selecting the cell types to be repro-
grammed, using different combinations of reprogramming
genes and improving the method for reprogramming factor
delivery [46]. One of the most common reprogramming
gene delivery methods is retroviral and lentiviral trans-
duction. However, the efficiency of reprogramming using
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Figure 1: HDACs in neural stem cell proliferation and neuronal differentiation. In proliferating neural stem cells (NSCs), transcription
factors (TF) recruit HDACs to the promoters of their downstream target genes, to repress the expression of cell cycle inhibitors, such as p21
and pten, and neuronal-specific genes, such as NeuroD, Neurogenin 1 (Ngn1), and Math 1, to maintain NSC proliferation and self-renewal.
In addition to promote NSC proliferation, HDACs also inhibit neuronal differentiation. Treatment of HDAC inhibitors leads to induced
neuronal differentiation, with increased expression of p21 and pten, and neuronal-specific genes. AC stands for histone acetylation.
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Figure 2: Treatment of HDAC inhibitors enhances reprogramming efficiency. When reprogramming somatic cells to iPSCs by ectopic
expression of the four transcription factors (Oct4, Sox2, Klf4, and c-Myc), the resulting reprogramming efficiency is low (iPSC: �HDACi).
But with the use of HDAC inhibitors (HDACi), the reprogramming efficiency can improve by more than 100-fold (iPSC: +HDACi), especially
when using the HDACi, valproic acid (VPA). Through this improvement, it is suggested that histone modification plays an important role
in inducing pluripotent stem cells.

viral vectors is extremely low and the overall process is
slow [47]. Several lines of evidence support the notion that
stochastic epigenetic events contribute to the low efficiency of
reprogramming [45]. The observation that reprogramming
is a slow and gradual process that takes several weeks further
supports this notion.

Small molecules involved in epigenetic regulation, such
as DNA methyltransferase inhibitors [48, 49], histone
deacetylase inhibitors [47, 48], and histone methyltransferase
inhibitors [50], have been shown to improve the efficiency of
reprogramming substantially. The histone deacetylases have
been shown to enhance the efficiency of reprogramming
mediated by somatic cell nuclear transfer up to 5-fold in a
concentration- and time-dependent manner [51, 52].

Researchers speculated that reprogramming using de-
fined reprogramming factors may follow a similar mecha-
nism of action to that of reprogramming using somatic cell
nuclear transfer. By using an Oct4-GFP reporter gene, scien-
tists determined whether small molecules involved in chro-
matin modification, such as HDAC inhibitors, played a role
in reprogramming mouse embryonic fibroblasts to iPSCs

[48]. Indeed, HDAC inhibitors, including suberoylanilide
hydroxamic (SAHA), TSA, and valproic acid (VPA), all
increased the efficiency of reprogramming greatly (Figure 2)
[47, 48]. Among these HDAC inhibitors, VPA exhibited
the most potent effect and enhanced the reprogramming
efficiency more than 100-fold [48]. It is still unclear why
VPA effect on reprogramming efficiency is significantly
stronger. Suggested ideas include that the toxicity of the other
chemicals at tested concentrations may be higher or that VPA
may have roles beyond HDAC inhibition [48]. In addition
to improving the efficiency of reprogramming four factor-
transduced mouse embryonic fibroblasts, VPA also improved
the efficiency of iPSC colony formation dramatically even
without transduced Klf4 and c-Myc [48]. The effect of VPA
on reprogramming efficiency suggests that VPA may influ-
ence a crucial step in turning somatic cells into iPSCs. Using
the information found, we can infer that chromatin modifi-
cations, specifically histone acetylation status, play a critical
role in reprogramming and that HDAC inhibitors can signif-
icantly improve reprogramming efficiency [48]. However, it
is worth noting that many HDAC inhibitors identified so far
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have low specificity [53, 54]. Moreover, each HDAC may be
involved in multiple pathways. Therefore, it is important to
search for more specific HDAC inhibitors and to understand
the modes of action of each HDAC and HDAC inhibitor, in
order to account for any unexpected side effects [53].

Recently, a simple and nonintegrating method for repro-
gramming has been developed by using synthetic mRNAs
of the reprogramming factors, Oct4, Sox2, Klf4, c-Myc, and
Lin28 [55]. This method allowed up to 36-fold increase
of reprogramming efficiency, compared to the retroviral
approach of delivering reprogramming factors [55]. More
recently, it has been shown that the expression of the
microRNA cluster miR-302/367 allowed rapid and efficient
reprogramming of both mouse and human somatic cells
to iPSCs without exogenous transcription factors [56]. The
development of transgene-free iPSCs with high efficiency
may allow patient-specific regenerative medicine within
grasp.

4. Conclusions

An emerging regulatory network controlling neural stem
cell self-renewal and differentiation is defined by integration
of epigenetic regulators with other cell-intrinsic regulators
and cell-extrinsic signals from stem cell niches. Unraveling
how HDACs function within this network to regulate neural
stem cell self-renewal and neurogenesis is essential to better
understand neural stem cell biology. It will facilitate the
development of new and targeted therapies using neural stem
cells for a host of neurological disorders, including neu-
rodegenerative diseases, such as Alzheimer’s and Parkinson’s
diseases, and brain injuries.

The success in iPSC derivation has brought the real-
ization of the therapeutic potential of stem cell technology
closer than ever to us. However, to reach the full potential
of iPSC application, it will be essential to improve the
methods for iPSC generation by avoiding viral integration
and enhancing the reprogramming efficiency. The recent
achievement in enhancing reprogramming efficiency using
HDAC inhibitors may build a foundation for future studies
by allowing scientists to delve deeper into understanding the
complexity of epigenetics in reprogramming and to develop
even more strategies to further improve reprogramming
efficiency. With the ability to generate iPSCs with increased
efficiency, a huge step is taken in the branch of regenerative
medicine, in addition to disease modeling, and drug devel-
opment. There is no doubt that iPSC technology will have a
positive impact on stem cell therapies in the future.
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