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A method for direct estimation 
of left ventricular global 
longitudinal strain rate 
from echocardiograms
Brett A. Meyers1, Melissa C. Brindise3, Shelby Kutty4 & Pavlos P. Vlachos1,2*

We present a new method for measuring global longitudinal strain and global longitudinal strain 
rate from 2D echocardiograms using a logarithmic-transform correlation (LTC) method. Traditional 
echocardiography strain analysis depends on user inputs and chamber segmentation, which yield 
increased measurement variability. In contrast, our approach is automated and does not require 
cardiac chamber segmentation and regularization, thus eliminating these issues. The algorithm 
was benchmarked against two conventional strain analysis methods using synthetic left ventricle 
ultrasound images. Measurement error was assessed as a function of contrast-to-noise ratio (CNR) 
using mean absolute error and root-mean-square error. LTC showed better agreement to the ground 
truth strain (R2

= 0.91) and ground truth strain rate (R2

= 0.85) compared with agreement to ground 
truth for two block-matching speckle tracking algorithms (one based on sum of square difference 
and the other on Fourier transform correlation; strain (R2

= 0.70) , strain rate (R2

= 0.70) ). A 200% 
increase in strain measurement accuracy was observed compared to the conventional algorithms. 
Subsequently, we tested the method using a 53-subject clinical cohort (20 subjects diseased with 
cardiomyopathy, 33 healthy controls). Our method distinguished between normal and abnormal left 
ventricular function with an AUC = 0.89, a 5% improvement over the conventional GLS algorithms.

Global longitudinal strain (GLS), average strain of the cardiac chamber wall measured using speckle tracking 
echocardiography (STE), is used for the quantification of left ventricle (LV) function. Because GLS is more robust 
to reader error than LV ejection  fraction1, 2, it is increasingly used more in clinical  practice3, especially for the 
detection of systolic  dysfunction4. Moreover, the global longitudinal strain rate (GLSr), which is computed by 
differentiating GLS  temporally5, quantifies the rate of LV contraction and relaxation, thus providing information 
on systolic and diastolic function.

Limitations of STE can impact GLS and GLSr measurement accuracy. In order to perform a GLS-STE meas-
urement, the user typically must provide an initial shape model of the LV boundary, introducing variability and 
reducing measurement  reproducibility6. Boundary tracking is subsequently performed using block-matching 
or cross-correlation  kernels7, 8, sensitive to image quality, spatial and temporal resolution, and signal  dropout9. 
Furthermore, commercial tools use proprietary tracking and post-processing algorithms, making cross-platform 
comparison  impractical6, 10. Collectively these limitations hinder wide-spread acceptance of GLS and GLSr as 
diagnostic parameters with established standard ranges for normal and abnormal  function1, 4, 11–13.

Commercial software marketed by companies including TomTec, Ultromics, and DiA provide automated 
strain analysis to overcome some of the above limitations. However, these software are not widely accessible. 
This limited access is driven by software costs and sufficient training to properly use and interpret strain outputs.

Here we present a novel algorithm for direct GLS estimation from echocardiograms that overcomes the issues 
mentioned above. Our approach does not require LV boundary initialization, regional smoothing, or assump-
tions of LV shape. The algorithm directly measures the GLSr of the entire LV, which is then integrated in time to 
provide the GLS. Hence, this method is robust to noise and image artifacts and minimizes user dependence by 
requiring only three initial feature points, one at the LV apex and two at the edges of the mitral annulus plane. 
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Error analysis was performed using synthetic ultrasound  images14 and clinical demonstration was performed 
with patient data from healthy and cardiomyopathy subjects. In both cases, we compared the results from our 
algorithm against conventional STE algorithms.

Materials and methods
Theory. During each heartbeat, the LV undergoes complex, three-dimensional motion as it contracts and 
relaxes. This motion is composed of a planar translation and deformation that relate how positions 

(

xn, yn, zn
)

 
along the LV move to 

(

xn+1, yn+1, zn+1

)

15,

−→
T  is the translation matrix, and F is the deformation gradient tensor, which is related to the displacement 

gradient tensor ∇ u, as,

where I is the identity matrix.
Lagrange strain, ε , is expressed as a function of ∇ u when motion and deformation are small, such that,

Equation (3) can be written as the Lagrange strain equation,

where l0 is the reference length and l  is the deformed length. The quantity ε is the accepted definition of  GLS10. 
As a result, GLS is a function of the deformation gradient tensor F. In the following sections, we describe how 
we estimate GLS from the cross-correlation of two consecutive images.

Pairwise Cross-Correlation. Image cross-correlation provides a statistical estimate of the translation of 
an image pattern between two frames. This method is used in image  registration16, speckle  tracking17, particle 
image  velocimetry18, and image  correlation19. The 2D discrete spatial cross-correlation between two images, In 
and In+1 , is expressed as,

where R
(

x, y
)

 is the correlation plane, (i,j) are the summation indices of the correlation, and N and M are the 
image height and width, respectively. The cross-correlation can be performed in the spectral domain, as,

where F  is the 2D Fourier transformation (FT) and F  is the complex conjugate of the FT. The expanded form 
of Eq. (6) is written as,

where (u, v) are wavenumbers proportional to positions 
(

x, y
)

 and G is the image FT.
The Fourier transform affine theorem stipulates that rotation, stretch, and shear occurs on the FT magnitude 

and  phase20. We use this to establish how the affine transform affects the rigid translation estimate by replacing 
Gn+1 in Eq. (7) with the relationship for Gn using Eq. (1),

Here, u′ = a11u+ a21v , v′ = a12u+ a22v , and |F| = det(F) . Equation (8) provides a correlation plane with the 
peak shifted from the plane center by 

(

�x,�y
)

 , directly related to the translations t1 and t2 and the local defor-
mation gradient tensor F. The correlation peak shifts are written as,

The deformation gradients aij produce the strain captured by the GLS measurement.

Translation-invariant FT magnitude correlation for GLS estimation. The components of F can be 
estimated separately of 

−→
T  using the magnitude, |G(u, v)| , of the  FT20, 21. The cross-correlation of the FT magni-

tudes is translation invariant yielding the terms of F with no contribution from 
−→
T  . The log-polar basis Fourier-

Mellin  transform22, 23, popular in image registration, decouples terms of F to estimate image rotation and stretch.
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Contraction and relaxation of the LV result in deformation akin to anisotropic image rescaling. By changing 
the FT magnitude image coordinates from cartesian (u, v) to orthogonal logarithmic coordinates 

(

logu, logv
)

 , the 
resulting displacements from the correlation between two FT magnitude images now correspond to horizontal 
�u and vertical �u rescaling such that,

This correlation is affected by rotation and shear based on the terms present in Eq. (8). However, if these 
terms are minimized beforehand, the correlation peak shift estimates (�u,�v) can be related to the terms a11 
and a22 from F through,

We substitute a11 and a22 from Eq. (11) into F in Eq. (2) and solve for ∇u such that,

Since deformation of the LV in long axis apical (ALAX) scans occurs along its length, we assume GLS occurs 
predominantly along the vertical direction, providing the GLS estimator,

Direct global longitudinal strain estimation algorithm. We now describe our algorithm using the 
translation-invariant FT magnitude correlation to estimate the GLS based on Eq. (13). A schematic of our algo-
rithm is provided in Fig. 1. The algorithm comprises two stages—the first performs an image registration to min-
imize shear and rotation that corrupt the correlation accuracy, while the second performs the GLS estimation.

The algorithm begins by selecting frames to analyze (Fig. 1a). Next, the user selects three points from the 
first frame (Fig. 1b), corresponding to approximate locations of the LV apex, the annulus septal, and annulus 
lateral positions. These points are tracked between consecutive frames using standard pairwise cross-correlation 
(Fig. 1c). For each frame, the geometric center from the tracked points is computed along with the vertical axis 
orientation angle for a line formed from the annulus center to the apex (Fig. 1d). Frames are then aligned based 
on the geometric center, and the orientation angle is corrected. A circular ROI for each frame is defined from 
the tracked points. This ROI is applied to filter out most of the tissue signal present from the right ventricle (RV) 
free wall and left atrium (LA).

In the second stage, for each pair of sequential registered images, t and t + 1 (Fig. 1e), their FT and FT magni-
tude is computed. The FT magnitudes are interpolated from the image grid onto a logarithm-scale grid (Fig. 1f). 
Because the FT logarithm transformed images are symmetric about the image diagonals, they are separated 
into four quarters to improve measurement accuracy. Each sub-image is  filtered24 to further minimize the influ-
ence of tissue signal that may remain from the RV free wall and LA, preserving the signal content from the LV 
septal wall and LV free wall, and their FT is computed (Fig. 1g). The FT sub-images are then correlated using 
the spectral cross-correlation kernel and ensemble-averaged to provide the displacements 

(

�x,�y
)

 (Fig. 1h). A 
dynamic phase-filtered kernel is applied to the cross-correlation to improve estimate  accuracy25–27. The displace-
ments 

(

�x,�y
)

 are adjusted based on the logarithm-scale grid, becoming 
(

�x′,�y′
)

 . The GLSr between frames 
is computed using �y′ and Eq. (13). Finally, GLSr across each frame pair is integrated in time using 4th-Order 
Runge–Kutta to obtain GLS (Fig. 1i). The integral operator provides inherent smoothing, which suppresses noise 
in the GLS measurements. Drift correction is applied to ensure the measurement returns to an undeformed state. 
We will hereafter refer to this method as the Logarithm-Transform Correlation (LTC) method.

Speckle tracking strain. This study uses two standard STE algorithms against which we benchmark our 
method. One algorithm uses the spatial cross-correlation kernel introduced in Eq. (5)17, referred to herein as 
the Direct Cross-Correlation or DCC method. The second uses the spectral cross-correlation (Eq. 6), hereafter 
referred to as the Fourier Transform Correlation or FTC method.

Boundary tracking is performed by propagating the segmented boundary of the initial frame through the esti-
mated displacement fields using 4th-Order Runge–Kutta. GLS is estimated as the measured change in arc-length 
between the segmented and the tracked boundary from each frame. Image co-registration is not performed, 
as it is not required to obtain a consistent GLS measurement based on the arc-length change calculation. Drift 
correction is applied to ensure the measurement returns to an undeformed state.

Artificial echocardiograms. Error analysis was performed using synthetic LV ALAX echocardiograms 
generated by and made publicly available from the Laboratory on Cardiovascular Imaging and Dynamics at 
KU  Leuven14, 28. The synthetic echocardiograms mimic images acquired from Genera Electrics (GE) Vivid E9, 
Hitachi-Aloka Prosound α 7 CV, Philips iE 33, Siemens SC2000, and Toshiba Artida vendor machines. The data-
sets provide error sources from vendor realistic noise and tissue speckle signal loss due to out of plane  motion14. 
Frame rate was varied to match the specific vendor machine. Two-chamber (A2C), three-chamber (A3C), and 
four-chamber (A4C) LV ALAX views were provided in the dataset for one normal and four ischemic conditions. 
The specific occlusions include distal and proximal left anterior descending artery, left circumflex artery, and 

(10)|G
(

logu+ log�u, logv + log�v
)

|.

(11)a11 = �u ∼= e�x , a22 = �v ∼= e�y .

(12)∇u =
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≈ edy − 1.
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right coronary artery. Ground truth boundaries, displacements, and strains for each dataset were included with 
the synthetic images.

Mean absolute error (MAE) and root-mean-square error (RMSE) for GLS and GLSr were quantified as a 
function of contrast to noise ratio (CNR) for all LV ALAX views under all ischemic or normal conditions. A 
GLS and GLSr measurement was obtained for each of the frames in every echocardiogram analyzed. A total of 
4,380 measurements were examined for each of the different measurement methods. The MAE and RMSE were 
calculated based on a ground truth GLS value for each frame which was quantified from the average segmental 
strain around the LV boundary using the first frame in each echocardiogram as the reference or zero-strain frame.

Figure 1.  Illustration of the direct global longitudinal strain estimation algorithm. (a) Frames for a single 
beat are selected from an input echocardiogram. (b) User inputs for the apex and annulus positions from a 
reference frame are provided. (c) The inputs are tracked temporally. (d) Frame co-registration is performed. 
(e) The LV is cropped from each frame, and these sub-images are Fourier-transformed. (f) The FT magnitude 
is calculated, interpolated onto a logarithm-basis, and separated into four sub-images. (g) Each sub-image is 
Fourier-transformed and convolved with a phase filter. (h) Ensemble phase correlation is performed, producing 
a correlation plane with a peak shifted from the plane center. This shift corresponds to a frame pair strain rate. 
(i) Strain is computed by temporally integrating the strain rate estimates.
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CNR was defined as the ratio between the difference of the means and the variance between the tissue signal 
and the signal inside the  LV29,

where µV and µT are the mean of the signal intensity inside the ventricle and throughout the myocardial tissue, 
respectively, and σV and σT are the standard deviation of the signal inside the ventricle and through the myocar-
dial tissue, respectively. Boundaries for the ventricle and myocardium are included with the ground truth data 
and were used here to perform the CNR calculation for each frame in the artificial echocardiograms.

Error quantities were normalized by the peak GLS or peak GLSr.

Clinical imaging. The method’s clinical capabilities were demonstrated using a cohort of pediatric patients 
with confirmed cardiomyopathy and age-matched controls collected from a study conducted at the University 
of Nebraska Medical Center in Omaha, Nebraska, USA. The Institutional Review Boards of Purdue, Nebraska, 
and Johns Hopkins Universities each approved the study protocol. All procedures were performed in accordance 
with relevant guidelines and regulations. Informed written consent was obtained from study subject guardians 
for those under age 18 or from the subject themself for those over age 18.

Each patient underwent a routine echocardiogram study on an iE33 ultrasound system (Philips Health-
care, Andover, MA, USA). Studies were collected based on the American Society of Echocardiography 
 recommendations30. The 53-subject cohort included 4 patients with confirmed dilated cardiomyopathy (DCM), 
16 patients with confirmed hypertrophic cardiomyopathy (HCM), and 33 age-matched controls. Information 
on the cohort demographics is provided in Table 1 and heart function indices in Table 2.

Doppler measurements were collected in the ALAX A4C view. B-mode ALAX A2C, A3C, and A4C view 
scans were performed conventionally, not explicitly collected for strain measurements. B-mode scan frame rates 
varied between 29 frames per second (FPS) and 100 FPS, with a median of 50 FPS. Images were stored in Digital 
Imaging and Communications in Medicine (DICOM) format for post-processing. Ventricle dimension measure-
ments were computed by the Simpson biplane method using the GE EchoPAC software. Data were classified into 
control (CTRL) and cardiomyopathy (CM) groups.

Peak absolute GLS  (GLSP) and peak absolute systolic GLSr (GLSrs) were computed for each patient across 
all ALAX views. When appropriate, repeated measurements within each ALAX view were averaged.  GLSP and 
GLSrs are reported as the average of the three standard ALAX  views6. Patient data was similarly evaluated using 
commercially available software (Image-Arena Version 4.6 Build 4.6.2.12, TomTec, Germany). Only one scan 

(14)CNR =
|µV − µT |
√

σ 2
V + σ 2

T

,

Table 1.  Demographics of the study cohort for each disease state.

Characteristics
Control
(n = 33)

DCM
(n = 4)

HCM
(n = 16) p

Age (years) 17.98 ± 8.86 14.50 ± 6.24 18.74 ± 10.47 0.718

BSA  (m2) 1.66 ± 0.56 1.52 ± 0.64 1.81 ± 0.69 0.592

Height (cm) 159.25 ± 29.11 147.90 ± 57.60 159.81 ± 30.86 0.766

Weight (kg) 63.50 ± 30.42 57.60 ± 35.65 75.71 ± 41.03 0.436

Heart rate (bpm) 67.47 ± 17.26 92.50 ± 33.81 72.88 ± 18.78 0.057

Table 2.  Indices for LV dimensions and functional parameters.

Control
(n = 33)

DCM
(n = 4)

HCM
(n = 16) p

Ventricular dimensions

End diastolic
volume (ml) 98.85 ± 39.19 178.75 ± 83.92 96.28 ± 37.66 0.003

End systolic
volume (ml) 37.80 ± 15.84 117.75 ± 60.31 36.03 ± 18.40 < 0.001

Stroke volume (ml) 61.29 ± 24.39 61.00 ± 33.32 59.44 ± 21.24 0.983

Ejection fraction (%) 62.16 ± 3.50 34.25 ± 14.93 63.06 ± 6.01 < 0.001

Functional parameters

E-wave velocity (cm  s−1) 82.20 ± 19.70 102.25 ± 29.80 83.19 ± 19.59 0.201

A-wave velocity (cm  s−1) 42.84 ± 10.95 61.25 ± 34.74 61.13 ± 33.65 0.023

e’ velocity (cm  s−1) 17.58 ± 3.22 11.38 ± 2.63 10.51 ± 3.04 < 0.001

E/A ratio 2.00 ± 0.59 2.24 ± 1.62 1.55 ± 0.50 0.061

E/e’ ratio 4.06 ± 1.21 8.22 ± 4.30 7.34 ± 2.58 < 0.001
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from each ALAX view was analyzed per Nebraska’s standard clinical practices. Statistical significance was tested 
by one-way analysis of variance (ANOVA) and Tukey Honestly Significant Difference (HSD). Receiver operat-
ing characteristic (ROC) curves and area under the curve (AUC) were computed by repeated measurement 
random sampling from each view to report curves with 95% confidence intervals. The ROC performance was 
characterized by quantifying the Youden Index and distance to corner parameters. The Youden Index (YI) is a 
measure of informedness, or how well informed a classification test would be based on predictions, defined as

with a range of 0 to 1, where 0 is no predictive ability and 1 is perfect predictive  ability31. Distance to corner 
is a measure of the ROC curve at its optimal threshold to a perfect prediction at a sensitivity of 1, or perfectly 
predicting true positive class, and 1-specificity of 0, or perfectly predicting the true negative class.

Results
Error analysis results. Figure 2 presents error analysis results. Error as a function of CNR was binned from 
1 to 8 dB in 0.5 dB increments. Each bin spanned a range of 0.5 dB. Marker bin sizes varied from a minimum of 
285 measurements to a maximum of 1260 measurements. Each marker represents the average MAE or RMSE of 
the error that fall within each CNR bin. The shaded regions on the plot represent the standard deviation of the 
absolute error measurements that fall within each CNR bin.

The GLSr estimates (Fig. 2a-1) yielded a linear regression fit with slope and bias of mDCC = 0.65s · s−1 
and bDCC = 0.03s−1 for the DCC method, mFTC = 0.70s · s−1 and bFTC = 0.02s−1 for the FTC method, and 
mLTC = 0.92s · s−1 and bLTC = 0.02s−1 for the LTC method. Regression fit qualities of R2

DCC = 0.72 , R2
FTC = 0.76 , 

and R2
LTC = 0.85 were measured. GLSr, as a function of CNR, is shown in Fig. 2a-2 (values are normalized by 

(15)YI = sensitivity + specificity − 1,

Figure 2.  (Left) Direct comparison of measurements to ground truth values and (right) normalized mean 
absolute error (MAE) and root mean square error (RMSE) as a function of contrast-to-noise ratio (CNR) for 
(a) GLSr and (b) GLS quantities. Measurements were performed using the Direct Cross-Correlation method 
(DCC), Fourier Transform Correlation (FTC), and Fourier-based Logarithm Transform Correlation (LTC). 
Standard deviation of the absolute error measurements are provided as the shaded regions around the MAE 
curves.
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GLSr = 0.95s−1 ). LTC showed a 1.5 to 2-fold improvement in accuracy than DCC and a 1.5-fold improvement 
compared to FTC. Additionally, the LTC method is unaffected by CNR. In contrast, the FTC and DCC methods 
show a CNR dependence, albeit less for the FTC method.

GLS estimates (Fig. 2b-1) yielded a linear regression fit with slope and bias of mDCC=0.60 and bDCC = 0.30% 
for the DCC method, mFTC=0.65 and bFTC = 0.33% for the FTC method, and mLTC = 0.92 , bLTC = 0.09% for 
the LTC method. Regression fit qualities of R2

DCC = 0.71 , R2
FTC = 0.74 , and R2

LTC = 0.91 were measured. The 
LTC method shows more than 200% improvement in measurement accuracy compared against the DCC and 
FTC methods as a function of CNR (Fig. 2b-2), where values are normalized by GLS = 8.47%. The error analy-
sis demonstrates that the LTC method is unaffected by CNR, while the DCC and FTC methods are affected by 
signal quality.

Clinical analysis results. Results comparing the LTC method against conventional GLS methods and 
TomTec are presented in Fig. 3a-1,b-1. The LTC median  GLSP are higher compared to the conventional methods 
 (GLSP,LTC-CTRL = 15.84% ,  GLSP,LTC-CM = 10.00% ;  GLSP,FTC-CTRL = 9.59% ,  GLSP,FTC-CM = 6.25% ;  GLSP,DCC-CTRL = 8.07% , 
 GLSP,DCC-CM = 5.47% ), but lower compared to TomTec  (GLSP,TT-CTRL = 18.19% ,  GLSP,TT-CM = 13.86% ). Significance 
tests by ANOVA indicated the  GLSP group means are significant (F-value = 90.02; p < 1× 10−5 ). Post-hoc anal-
ysis by Tukey HSD indicated the group means between health states were significant ( p < 0.05) for all methods. 
Furthermore, the LTC method was statically significant ( p < 0.05) compared to the conventional methods for 
both health states. Differences were not statistically significant between the FTC and DCC methods.

Similarly, for the GLSrs measurements, the LTC medians are higher than compared to the conventional 
methods  (GLSrsLTC-CTRL = 0.75s−1 ,  GLSrs,LTC-CM = 0.54s−1 ;  GLSrsFTC-CTRL = 0.51s−1 ,  GLSrs,FTC-CM = 0.38s−1 ; 
 GLSrsLTC-CTRL = 0.50s−1 ,  GLSrs,LTC-CM = 0.36s−1 ) but lower compared to TomTec  (GLSrsLTC-CTRL = 0.86s−1 , 

Figure 3.  Distribution of measurements and significance tests for each GLS measurement method on 
observing (a-1) peak absolute GLS  (GLSP) and (b-1) peak absolute systolic GLSr (GLSrs). (2) Receiver operating 
characteristic (ROC) curves displaying the ability for the LTC method estimated parameters to distinguish 
between normal and abnormal cardiac disease states based on (a-2)  GLSP and (b-2) GLSrs. The analysis was 
performed on a set of control subjects (CTRL) and subjects with cardiomyopathies (CM). The LTC method 
was compared with the conventional STE methods, FTC and DCC, as well as with the commercially available 
TomTec software. The bounded regions about the ROC curve provide the 95% confidence interval over which 
sensitivity and specificity are measured, contingent on the beat records and scans analyzed within subjects.
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 GLSrs,LTC-CM = 0.69s−1 ). Significance tests by ANOVA indicated the GLSrs group means are significant 
(F-value = 44.35; p < 1× 10−5 ). Tukey HSD post-hoc analysis indicated the group means between health states 
were significant ( p < 0.05) for the LTC and TomTec methods, but were not significant for the conventional 
methods. Moreover, the LTC method was statically significant ( p < 0.05) compared to the conventional methods 
for both health states. Results were not significant between the FTC and DCC methods.

ROC curves are presented in Fig. 3a-2, b-2. The  GLSP ROC curves (Fig. 3a-2) show AUCROC values of 
 GLSP,LTC-AUCROC = 0.89 ;  GLSP,FTC-AUCROC = 0.83 ;  GLSP,DCC-AUCROC = 0.84 ; and  GLSP,TT-AUCROC = 0.86 . The LTC ROC 
confidence interval indicated this method at the low end performed as well as TomTec when classifying patients, 
but could improve classification by 10% based on the beats analysed. The FTC and DCC methods show increased 
confidence intervals, but consistently performs worse than the LTC method. The LTC ROC performance was 
marginally better than the other methods based on performance metrics  (YILTC = 0.79 ,  CDLTC = 0.22 ;  YILTC = 0.42 , 
 CDLTC = 0.36 ;  YIDCC = 0.54 ,  CDDCC = 033 ;  YITT = 0.72 ,  CDTT = 0.25).

The GLSrs ROC curves (Fig. 3 b-2) show the LTC AUCROC is consistently higher compared to the other 
methods  (GLSrsLTC-AUCROC = 0.84 ;  GLSrsFTC-AUCROC = 0.77 ;  GLSrsDCC-AUCROC = 0.80 ;  GLSrsTT-AUCROC = 0.76 ). The 
confidence interval for the LTC method was reduced compared to the conventional strain methods and shows 
at the low end that LTC is comparable to TomTec but can offer a 15% improvement overall. Additionally, the LTC 
ROC performance was better than the other methods based on performance metrics  (YILTC = 0.62 ,  CDLTC = 0.27 ; 
 YILTC = 0.45 ,  CDLTC = 0.39 ;  YIDCC = 0.49 ,  CDDCC = 037 ;  YITT = 0.56 ,  CDTT = 0.36).

Discussion
This study presents a new algorithm, the LTC method, for computing GLS and GLSr estimates from ultrasound 
scans. Error analysis using synthetic ultrasound images quantified the LTC method’s improvement over two 
conventional STE methods. A clinical cohort was analyzed using the LTC method, the two conventional STE 
methods, and a commercial software method. The LTC method does not rely on LV shape assumptions and 
avoids the use of boundary segmentation. Furthermore, because LV segmentation is not required, regularization 
to preserve the segmentation shape is avoided. Moreover, the entire image of the LV is used to compute strain 
which minimizes out-of-plane motion correlation loss.

These claims are supported by basic principles derived in particle image velocimetry (PIV), another FFT-
based cross correlation application. In PIV, fluid tracing particle motion is measured between  frames32. Out-
of-plane motion in PIV images, which are speckle-like in nature, is a function of sample volume and out-of-
plane velocity  gradients33. PIV frame rates are high (greater than 100 FPS) and the illumination volume is thin 
(approximately 1 mm). In B-mode imaging, the sample volume is thicker (upwards of 10 mm) and frame rates 
are sufficiently high (more than 30 FPS) relative to cardiac tissue velocity gradients (on the order of 100 mm/s, 
or roughly 3 mm/frame at the lowest frame rate settings). Thus, speckle pattern losses in the LTC should not be 
significant, more so with additional signal content provided from the whole LV image.

The LTC method is novel by directly computing the GLSr between sequential frames, ensuring a reliable 
rate measurement. Computing GLS by integrating the GLSr provides a smoothing operation that reduces noise. 
Commercial GLS algorithms have constraints that enforce tracked boundaries that are smooth in space and time, 
providing measurements that appear physically consistent, but become a function of the regularization  process10, 

34, 35. Thus, the GLS measurements do not adhere to the underlying deformation that occurs between frames.
The error analysis presented in Fig. 2 demonstrated that the DCC and FTC methods are dependent on CNR. 

As CNR approaches 1, the mean pixel intensity of the LV wall and the mean pixel intensity of speckle noise 
are almost equal. This means the speckle noise cannot be differentiated from the LV wall, making the physical 
features ambiguous. Both methods underestimated the GLS, supporting the notion that it may be best to avoid 
such  computation6. In contrast, the LTC method enables robust GLS computation even with noisy images, as 
supported by the MAE and RMSE plots in Fig. 2.

For demonstration purposes, example images from two test subjects’ clinical data are provided to show the 
quality differences that affect CNR, provided in Fig. 4. These subjects are of the same gender and similar ages. 
In, one scan (Fig. 4a) the LV interior is clear of noise and the myocardium can be clearly delineated, providing a 
CNR of greater than 8 dB. The other scan (Fig. 4b) has increased noise within the LV interior and signal loss in 
the LV myocardium, resulting in a CNR of less than 2 dB. These differences for the latter case can greatly impact 
conventional STE method measurement accuracy.

Comparison of each method for all health states, presented in Fig. 3a-1,b-1, provides the measurement dis-
tributions and their statistical significance. For each method, the variance of the CTRL and CM distributions 
overlapped while statistical significance of the means was observed. Between methods, statistical significance 
was observed for the LTC method compared to the conventional STE methods. These results indicate larger 
 GLSP and GLSrs values for normal function than for abnormal function, but establishing improvement of the 
LTC method through this analysis alone is not possible.

The ROC curves, presented in Fig. 3a-2,b-2, are used to determine if clinical separation is possible. The 
LTC method  GLSP ROC curve showed marginal classification improvement compared to the conventional STE 
methods and the commercially available method. However, GLSrs ROC curve shows a nearly 10% improvement 
in classification. Both tested parameters show improved correct diagnosis rates.

The LTC method  GLSP and GLSrs measurements were below nominal ranges reported from literature (peak 
GLS > 18%; peak GLSrs > 1  s−1)36. Commercial methods rely on regularization steps, which force the measure-
ments to fit in LV shape  models6, 10, thereby causing the GLS measurements to be a function of the regularization 
instead of the actual underlying deformation, possibly leading to  overestimation37, 38.

LTC algorithm limitations stem from the assumption that GLS and GLSr can be reliably measured from 
the septal and lateral walls, ignoring shortening near the apex and possible effects of signal loss, attenuation, 
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and phase aberration along the myocardium. Furthermore, the algorithm assumes that reorientation has been 
performed correctly with no misalignment. If misalignment exists, the measurements will be a combination of 
GLS and off-axis strain. Out-of-plane motion in the artificial dataset is modelled, but may cause speckle signal 
dropout, requiring a correction step to mitigate gaps in the  images14. Thus, a correction step is used which 
may minimize out-of-plane motion and reduce influence of this error component. Frame rate is also known to 
affect strain measurement accuracy, with a typical operating range of 50–80  FPS9, 10. The LTC method should be 
evaluated in future work to determine if this optimal range is suitable for application or if lower or higher frame 
rates must be maintained for accurate measurements. Robustness of the LTC correlation to noise and out-of-
plane correlation loss should be tested in greater detail in a future study, however this does require rigorous and 
controlled test conditions which is not trivial. Finally, this study was limited by its clinical validation, which was 
performed using retrospective pediatric data. Pediatric echocardiograms are typically of good quality, without 
significant attenuation, clutter noise, or phase aberration which are common in adult echocardiograms for 
patients with cardiovascular disease. A dataset optimized for GLS estimation would help further substantiate 
findings. Future work will apply the LTC algorithm to study patient populations with ischemic heart disease and 
cardiotoxicity-related heart failure.

We presented a new correlation kernel, the logarithm transform correlation or LTC, for quantifying GLS and 
GLSr from echocardiography scans. Our LTC-based algorithm does not use LV shape assumptions, is machine-
agnostic, automated, and free of heuristic inputs. We compared the LTC against STE algorithms using artificial 
scans, analyzing error against ground truth GLS and GLSr values, and validated using clinical data from a study 
of pediatric cardiomyopathies. Results showed that the LTC method is unaffected by the image quality, provid-
ing improved measurement accuracy against the STE methods for both the synthetic data and clinical cohort.

Received: 20 May 2021; Accepted: 31 January 2022

References
 1. Kalam, K., Otahal, P. & Marwick, T. H. Prognostic implications of global LV dysfunction: A systematic review and meta-analysis 

of global longitudinal strain and ejection fraction. Heart 100, 1673–1680 (2014).
 2. Stanton, T., Leano, R. & Marwick, T. H. Prediction of all-cause mortality from global longitudinal speckle strain: Comparison with 

ejection fraction and wall motion scoring. Circ. Cardiovasc. Imaging 2, 356–364 (2009).
 3. Lang, R. M. et al. Recommendations for chamber quantification. Eur. J. Echocardiogr. 7, 79–108 (2006).
 4. Smiseth, O. A., Torp, H., Opdahl, A., Haugaa, K. H. & Urheim, S. Myocardial strain imaging: How useful is it in clinical decision 

making?. Eur. Heart J. 37, 1196–1207 (2016).
 5. D’Hooge, J. et al. Regional strain and strain rate measurements by cardiac ultrasound: Principles, implementation and limitations. 

Eur. J. Echocardiogr. 1, 154–170 (2000).
 6. Lang, R. M. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the 

American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 28, 
1-39.e14 (2015).

 7. Amundsen, B. H. et al. Noninvasive myocardial strain measurement by speckle tracking echocardiography. J. Am. Coll. Cardiol. 
47, 789–793 (2006).

 8. Helle-Valle, T. et al. New noninvasive method for assessment of left ventricular rotation: speckle tracking echocardiography. 
Circulation 112, 3149–3156 (2005).

Figure 4.  Demonstration of contrast-to-noise (CNR) differences for echocardiogram scans from clinical 
test subjects. (a) High CNR (> 8 dB), where there is little signal within the LV and strong tissue signal in the 
myocardium, composing the LV. (b) Low CNR (< 2 dB), where there is high, incoherent speckle noise within the 
LV and weak tissue signal along with signal loss within the myocardium composing the LV. These images were 
taken from two female subjects, one aged 21 years old (y/o) and the other aged 24 y/o.



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:4008  | https://doi.org/10.1038/s41598-022-06878-1

www.nature.com/scientificreports/

 9. Rösner, A. et al. The influence of frame rate on two-dimensional speckle-tracking strain measurements: A study on silico-simulated 
models and images recorded in patients. Eur. Hear. J. Cardiovasc. Imaging 16, 1137–1147 (2015).

 10. Voigt, J. U. et al. Definitions for a common standard for 2D speckle tracking echocardiography: Consensus document of the EACVI/
ASE/Industry Task Force to standardize deformation imaging. Eur. Hear. J. Cardiovasc. Imaging 16, 1–11 (2015).

 11. Farsalinos, K. E. et al. Head-to-head comparison of global longitudinal strain measurements among nine different vendors: The 
EACVI/ASE inter-vendor comparison study. J. Am. Soc. Echocardiogr. 28, 1171-1181.e2 (2015).

 12. Yingchoncharoen, T., Agarwal, S., Popović, Z. B. & Marwick, T. H. Normal ranges of left ventricular strain: A meta-analysis. J. Am. 
Soc. Echocardiogr. 26, 185–191 (2013).

 13. Menting, M. E. et al. Normal myocardial strain values using 2D speckle tracking echocardiography in healthy adults aged 20 to 
72 years. Echocardiography 33, 1665–1675 (2016).

 14. Alessandrini, M. et al. Realistic vendor-specific synthetic ultrasound data for quality assurance of 2-D speckle tracking echocar-
diography: simulation pipeline and open access database. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65, 411–422 (2018).

 15. Meunier, J. & Bertrand, M. Echographic image mean gray level changes with tissue dynamics: A system-based model study. IEEE 
Trans. Biomed. Eng. 42, 403–410 (1995).

 16. Anuta, P. E. Spatial registration of multispectral and multitemporal digital imagery using fast fourier transform techniques. IEEE 
Trans. Geosci. Electron. 8, 353–368 (1970).

 17. Bohs, L. N. & Trahey, G. E. A novel method for angle independent ultrasonic imaging of blood flow and tissue motion. IEEE Trans. 
Biomed. Eng. 38, 280–286 (1991).

 18. Willert, C. E. & Gharib, M. Digital particle image velocimetry. Exp. Fluids 10, 181–193 (1991).
 19. Chu, T. C., Ranson, W. F. & Sutton, M. A. Applications of digital image correlation techniques to experimental mechanics. Exp. 

Mech. 25, 232–244 (1985).
 20. Bracewell, R. N., Chang, K.-Y., Jha, A. K. & Wang, Y.-H. Affine theorem for two-dimensional Fourier transform. Electron. Lett. 

29, 304–304 (1993).
 21. Reddy, B. S. & Chatterji, B. N. An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. 

Image Process. 5, 1266–1271 (1996).
 22. Chen, Q., Defrise, M. & Deconinck, F. Symmetric phase-only matched filtering of Fourier–Mellin transforms for image registration 

and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 16, 1156–1168 (1994).
 23. Giarra, M. N., Charonko, J. J. & Vlachos, P. P. Measurement of fluid rotation, dilation, and displacement in particle image veloci-

metry using a Fourier–Mellin cross-correlation. Meas. Sci. Technol. 26, 35301 (2015).
 24. Eckstein, A. & Vlachos, P. P. Assessment of advanced windowing techniques for digital particle image velocimetry (DPIV). Meas. 

Sci. Technol. 20, 075402 (2009).
 25. Meyers, B. A., Goergen, C. J. & Vlachos, P. P. Development and validation of a phase-filtered moving ensemble correlation for 

echocardiographic particle image velocimetry. Ultrasound Med. Biol. 44, 477–488 (2018).
 26. Eckstein, A. & Vlachos, P. P. Digital particle image velocimetry (DPIV) robust phase correlation. Meas. Sci. Technol. 20, 055401 

(2009).
 27. Eckstein, A. C., Charonko, J. & Vlachos, P. Phase correlation processing for DPIV measurements. Exp. Fluids 45, 485–500 (2008).
 28. Alessandrini, M. et al. Generation of ultra-realistic synthetic echocardiographic sequences to facilitate standardization of deforma-

tion imaging. in 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI) vols 2015-July 756–759 (IEEE, 2015).
 29. Bell, M. A. L., Goswami, R., Kisslo, J. A., Dahl, J. J. & Trahey, G. E. Short-lag spatial coherence imaging of cardiac ultrasound data: 

Initial clinical results. Ultrasound Med. Biol. 39, 1861–1874 (2013).
 30. Lopez, L. et al. Recommendations for quantification methods during the performance of a pediatric echocardiogram: A report 

from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart 
Disease Council. J. Am. Soc. Echocardiogr. 23, 465–495 (2010).

 31. Youden, W. J. Index for rating diagnostic tests. Cancer 3, 32–35 (1950).
 32. Keane, R. D. & Adrian, R. J. Theory of cross-correlation analysis of PIV images. Appl. Sci. Res. 49, 191–215 (1992).
 33. Keane, R. D. & Adrian, R. J. Optimization of particle image velocimeters. Part I. Double pulsed systems. Meas. Sci. Technol. Meas. 

Sci. Technol 1, 1202–1215 (1990).
 34. Amzulescu, M. S. et al. Myocardial strain imaging: Review of general principles, validation, and sources of discrepancies. Eur. 

Heart J. Cardiovasc. Imaging 20, 605–619 (2019).
 35. Pedrizzetti, G., Claus, P., Kilner, P. J. & Nagel, E. Principles of cardiovascular magnetic resonance feature tracking and echocar-

diographic speckle tracking for informed clinical use. J. Cardiovasc. Magn. Reson. 18, 1–12 (2016).
 36. Jashari, H. et al. Normal ranges of left ventricular strain in children: a meta-analysis. Cardiovasc. Ultrasound 13, 1021 (2015).
 37. Dhooge, J. et al. Two-dimensional speckle tracking echocardiography: Standardization efforts based on synthetic ultrasound data. 

Eur. Hear. J. Cardiovasc. Imaging 17, 693–701 (2016).
 38. Amzulescu, M. S. et al. Head-to-head comparison of global and regional two-dimensional speckle tracking strain versus cardiac 

magnetic resonance tagging in a multicenter validation study. Circ. Cardiovasc. Imaging 10, e006530 (2017).

Acknowledgements
The authors thank Mary J. Craft for her time and effort in data collection, aggregation, and sharing between 
universities. The support of CTSI and NIH (UL1TR002529) is gratefully acknowledged.

Author contributions
B.A.M., M.C.B., and P.P.V. designed the algorithms. S.K. designed the study and coordinated subject enrollment. 
B.A.M. performed the data analysis. B.A.M. wrote the paper and all other authors made significant contribu-
tions to the writing.

Funding
This project was supported by the Indiana Clinical and Translational Sciences Institute and funded by Grant 
Number UL1TR002529 from the National Institutes of Health, National Center for Advancing Translational 
Sciences, Clinical, and Translational Sciences Award.

Competing interests 
PPV is founder of Cordian Technologies, a company having a portfolio of patents for B-mode and Doppler 
echocardiogram-based measurements. BAM and MCB have Purdue intellectual property licensed to Cordian. 
SK has no potential conflict of interest.



11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4008  | https://doi.org/10.1038/s41598-022-06878-1

www.nature.com/scientificreports/

Additional information
Correspondence and requests for materials should be addressed to P.P.V.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A method for direct estimation of left ventricular global longitudinal strain rate from echocardiograms
	Materials and methods
	Theory. 
	Pairwise Cross-Correlation. 
	Translation-invariant FT magnitude correlation for GLS estimation. 
	Direct global longitudinal strain estimation algorithm. 
	Speckle tracking strain. 
	Artificial echocardiograms. 
	Clinical imaging. 

	Results
	Error analysis results. 
	Clinical analysis results. 

	Discussion
	References
	Acknowledgements


