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Abstract: Shrimp, as a high-protein animal food commodity, are one of the fastest growing food
producing sectors in the world. It has emerged as a highly traded seafood product, currently
exceeding 8 MT of high value. However, disease outbreaks, which are considered as the primary
cause of production loss in shrimp farming, have moved to the forefront in recent years and brought
socio-economic and environmental unsustainability to the shrimp aquaculture industry. Acute
hepatopancreatic necrosis disease (AHPND), caused by Vibrio spp., is a relatively new farmed
penaeid shrimp bacterial disease. The shrimp production in AHPND affected regions has dropped
to ~60%, and the disease has caused a global loss of USD 43 billion to the shrimp farming industry.
The conventional approaches, such as antibiotics and disinfectants, often applied for the mitigation
or cure of AHPND, have had limited success. Additionally, their usage has been associated with
alteration of host gut microbiota and immunity and development of antibiotic resistance in bacterial
pathogens. For example, the Mexico AHPND-causing V. parahaemolyticus strain (13-306D/4 and
13-511/A1) were reported to carry tetB gene coding for tetracycline resistance gene, and V. campbellii
from China was found to carry multiple antibiotic resistance genes. As a consequence, there is an
urgent need to thoroughly understand the virulence mechanism of AHPND-causing Vibrio spp. and
develop novel management strategies to control AHPND in shrimp aquaculture, that will be crucially
important to ensure food security in the future and offer economic stability to farmers. In this review,
the most important findings of AHPND are highlighted, discussed and put in perspective, and some
directions for future research are presented.
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Key Contribution: In this paper, first an overview of the current knowledge on acute hepatopancre-
atic necrosis disease (AHPND) is given, including the disease associated gross signs and histopathol-
ogy changes. Later, the current status on management/mitigation solutions for AHPND with respect
to shrimp aquaculture are summarized.

1. Introduction

Crustaceans, usually treated as a subphylum, form a large group of arthropods—
mainly aquatic invertebrates—which represent a group of animals important to aquacul-
ture. Crustaceans are considered as economic relevant aquaculture products with high
worldwide demand [1,2]. The total crustacean aquaculture production in 2017, from over
30 different species, was 8.4 MT valued at USD 61.06 billion, with an average annual growth
rate of 9.92% per year since 2000 [3]. The marine shrimp currently dominate crustacean
aquaculture at 5.51 MT or 65.3% of total crustaceans (valued at USD 34.2 billion), followed
by freshwater crustacean (2.53 MT or 29.9% total crustacean) and valued at USD 24.3 billion.
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Although shrimp represents only 6% of the global aquaculture production, they contribute
to around 16% of the production value of traded seafood products.

Shrimp production mainly consists of three species, i.e., Litopenaeus vannamei, Pe-
naeus monodon and Macrobrachium rosenbergii. Countries in East and Southeast Asia and
Latin America account by far for the major share shrimp production for, but a large pro-
portion of consumption takes place in the developed countries. Among crustaceans, the
white leg shrimp (L. vannamei) was reported to have the highest unit value at USD 26.7
billion [4]. The giant tiger shrimp P. monodon makes up ~15% of total shrimp production,
its production reached 0.74 million tonnes, worth USD 5.59 billion [3]. The giant river
prawn (M. rosenbergii) makes up the rest of the farmed shrimp volumes. M. rosenbergii is
native to Asia and production reached 0.23 million tons globally, with a value of more
than USD 1.90 billion [5,6]. As surveyed in GOAL 2019, the shrimp market is expected to
grow further with an annual growth rate of 5.4% between 2017–2021. This will result in a
global farmed shrimp harvest of 5.03 million tonnes (approx. 5.4 million tonnes including
M. rosenbergii) [7,8].

Moreover, as the global human population continues to expand at a high rate and is
expected to reach over 9 billion by 2030, shrimp aquaculture can provide global food and
nutritional security to people in both developed and developing countries and support
the livelihood and jobs of the global population [3,9]. However, due to the global demand
increase, the pressure for intensification and expansion of shrimp aquaculture systems
has rendered most aquaculture business fragile. In the aquaculture industry, economic
losses from disease outbreak have been estimated by the FAO to be over of USD 9 billion
per year, which is approximately 15% of the value of world farmed fish and shellfish pro-
duction. In particular, bacterial diseases have brought socio-economic and environmental
unsustainability to the shrimp aquaculture industry during the last decades. Vibriosis, an
important bacterial disease, caused by opportunistic Vibrio spp. continues as the most seri-
ous threat to shrimp farmers in the region [10–13]. V. harveyi, V. alginolyticus, V. anguillarum,
V. splendidus, V. salmonicida, V. vulnificus and V. parahaemolyticus strains have been found as
main causative organisms of vibriosis [14–16]. However, apart from “classical” vibriosis,
some Vibrio spp. are also responsible for causing acute hepatopancreatic necrosis disease
(AHPND), originally known as early mortality syndrome (EMS) [17–19]. The AHPND in
shrimp aquaculture has escalated since late 2013, when the industry collapsed in South-
Asian countries. AHPND, having a devastating impact on the shrimp aquaculture industry,
develops quickly, starting approximately 8 days post stocking and severe mortalities (up
to 100%) occur within 20–30 days [20,21]. Hence, in this review at first an overview of
the current knowledge on acute hepatopancreatic necrosis disease (AHPND) is given,
including the disease associated gross signs and histopathology changes. Later, the current
status on management/mitigation solutions for acute hepatopancreatic necrosis disease
(AHPND) with respect to shrimp aquaculture are summarized.

2. Acute Hepatopancreatic Necrosis Disease (AHPND)—An Overview

Acute hepatopancreatic necrosis disease (AHPND), a relatively new farmed penaeid
shrimp bacterial disease originally known as early mortality syndrome (EMS) has been
causing havoc in the shrimp industry. Since the AHPND outbreak first appeared in China
in 2009, it has spread to Vietnam (2010), Malaysia (2011), Thailand (2012), Mexico (2013),
Philippines (2015) and South America (2016) (Figure 1) [17–19,22]. The shrimp production
in AHPND affected regions has dropped temporarily to ~60% and has resulted in collective
losses exceeding an estimated USD 43 billion across Asia (China, Malaysia, Thailand,
Vietnam) and in Mexico [23–27]. AHPND affects multiple species of shrimp including
commercial species, P. monodon, L. vannamei and M. rosenbergii and crustacean model
Artemia franciscana [24,28,29]. Interestingly, the brine shrimp (A. franciscana), an aquatic
invertebrate characteristically small, highly osmotolerant and branchiopod crustacean that
can be reared under gnotobiotic conditions (allowing full control over the host-associated
microbial communities), serve as exceptional model organism to study the host-pathogen
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interactions in commercially important shrimps and other crustacean species [30,31]. More-
over, the early life stages of shrimp, in general, are more susceptible to AHPND infection.
AHPND is characterized by severe atrophy of the shrimp hepatopancreas accompanied by
unique histopathological changes at the acute stage of disease [18]. Furthermore, as disease
progress massive sloughing of hepatopancreatic or digestive tract epithelial cells in the
absence of any accompanying pathogen can be observed within approximately first 30 days
of shrimp post-larvae stocking [21,32]. In fact, the AHPND-causing bacteria were reported
to mainly target the digestive gland (hepatopancreas) and damage the hepatopancreatic
R (resorptive), B (blister), F (fibrillar) and E (embryonic) cells, resulting in dysfunction
and massive mortalities of shrimp [19,33,34]. The shrimp affected with AHPND exhibits
lethargy, anorexia, slow growth, empty digestive tract and a pale to white hepatopancreas.
However, these reported clinical signs for AHPND are common for some other diseases.
For instance, the gross signs induced by chemical factor, e.g., nitrite and ammonia or sec-
ondary bacterial (traditional vibriosis) and viral (white spot syndrome virus, yellow head
virus, etc.) infections could also lead to AHPND pathology [28]. Hence, identification of
bacterial virulence factor and AHPND-specific cellular changes coupled with gross clinical
signs are considered to be helpful for confirmatory diagnosis of AHPND in shrimp.

Figure 1. Occurrence of acute hepatopancreatic necrosis disease (AHPND) in shrimp.

2.1. Gross Signs and Histopathology of AHPND

The AHPND-affected shrimps are lethargic and display erratic swimming behaviour.
The external appearance of shrimps is slightly changed with expanded chromatophores
across cuticles. Moreover, based on bacterial density and histological appearance, the
natural AHPND-affected shrimp are divided into three phases: (a) initial, (b) acute and (c)
terminal phase [35,36].

2.1.1. Initial Phase

The shrimp exhibits signs of damage in the hepatopancreas and in the gut there is
partial or total absence of food. Moreover, the changes in the digestive tract and hepatopan-
creas are visualized better by dissecting and removing epithelial membrane (Figure 2b).
The hepatopancreatic tubular epithelial cells are modified and elongated (display drops
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like appearance) towards the lumen (Figure 3a) causing cellular desquamation. Moreover,
as AHPND progresses, the size of hepatopancreatic R and B cells are further reduced
(Figure 3b).

Figure 2. Macroscopic observation of L. vannamei digestive tract affected by acute hepatopancreatic necrosis disease
(AHPND). (a) Healthy shrimp; (b) initial phase; (c,d) acute phase; (e) terminal phase. Yellow arrowhead demonstrates
completely damaged fibrous appearance hepatopancreas [36].
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Figure 3. Haematoxylin and eosin (H & E) stained section of hepatopancreas of L. vannamei with
lesions associated with acute hepatopancreatic necrosis disease (AHPND). (a,b) Initial phase; (c–f)
acute phase; (g,h) terminal phase [36]. The arrowhead in figures (a–h) represent the cellular changes
associated different AHPND phases in affected shrimp.

2.1.2. Acute Phase

The AHPND-affected shrimp exhibit signs of anorexia and lethargy with empty di-
gestive tract and loss of tissue pigmentation (Figure 2c). The hepatopancreas becomes
atrophied and whitish in appearance (Figure 2d). During the first hour of infection, the hep-
atopancreatic tissue are friable with an aqueous consistency. However, as disease progress
the tissue develops a hard consistency, becoming difficult to disintegrate. Microscopically,
massive shedding or sloughing of hepatopancreatic tubular epithelial cells are observed. In
addition, the tubular epithelial cells are severely necrotized and have massive accumulation
of haemocytes and dead cells in the lumen, a pathognomonic lesion reported for AHPND
(Figure 3c,d) [17,18,35,37].

Furthermore, at the first hour post-exposure, mitosis is interrupted in hepatopancreatic
E cells and the presence of cytoplasmic vacuoles is observed in the B and R cells (Figure 3e).
However, as the disease progresses the vacuoles disappear from the hepatopancreatic cells.
Interestingly, during the acute phase, no bacterial cells are observed in the AHPND-affected
tissue, which suggests that AHPND-causing bacteria secreted binary toxins, i.e., PirAVP
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and PirBVP might be responsible for mediating AHPND in shrimp at later stage of infection.
The PirAVP and PirBVP toxins are found to bind and induce significant damage to the
hepatopancreatic tubular epithelial cells, a phenomenon not observed in any other organ
or tissue of AHPND-affected shrimp [33,35,38]. At the end of acute phase, the tubular
epithelium is severely necrotized, in some instances it is completely absent, and significant
high amount of haemocytic infiltration are observed in the intratubular tissues (Figure 3f).

2.1.3. Terminal Phase

Similar to acute phase, the shrimps at terminal phase of AHPND are anorexic, lethargic
and have a completely empty stomach. The chromatophores are significantly expanded
and hepatopancreas are atrophied and whitish in coloration (Figure 2e). Furthermore,
when the hepatopancreas is squashed, it gives a fibrous appearance. Ultrastructure details
showed the presence of black streaks, indicating focal melanisation in the hepatopancreatic
tubular cells. In addition, the intratubular connective tissue, filled with a large amount of
haemocytic cells, are surrounded by haemocytic capsules as a response of bacterial load
and necrotic tissue (Figure 3g). During the terminal phase, the damage of tissue is mostly
done by PirAVP and PirBVP toxins. However, bacterial proliferation at the site of damage is
caused by secondary bacterial infections, possibly by a vibriosis (Figure 3h).

2.2. Causative Agent of AHPND

The AHPND is caused by specific strain of bacteria, e.g., V. parahaemolyticus, V. punensis,
V. harveyi, V. owensii, V. campbelli and Shewanella sp. that contains pVA1 plasmid (63–70 kb)
encoding the binary PirAVP and PirBVP toxins, homologous to the Photorhabdus luminescens
insect-related (Pir) toxins PirA/PirB (Table 1) [18,39–43]. The PirAVP and PirBVP are the
primary virulence factor of AHPND-causing bacteria that mediates AHPND aetiology and
mortality in shrimp [20,39,44]

Table 1. Bacterial species reported to mediate AHPND in crustacean species.

Bacterial Species Host Range Geographical
Distribution References

Vibrio parahaemolyticus P. monodon, L.
vannamei Worldwide [17,18,33,45–49]

V. parahaemolyticus Artemia franciscana Laboratory condition [16,24,29,32,39,44]

V. parahaemolyticus Macrobrachium
rosenbergii Laboratory condition [24,44]

V. punensis L. vannamei South America [42]

V. harveyi L. vannamei China, Malaysia,
Vietnam [42,50,51]

V. owensii L. vannamei China [41]

V. campbelli L. vannamei China [40]

Shewanella sp. L. vannamei Thailand [43,52]

The Photorhabdus insect-related (Pir) toxins are first identified in Photorhabdus luminescens,
a bacterium that maintains a symbiotic relationship with entomopathogenic nematodes of
the family Heterorhabditidae [53–55]. In moths and mosquitoes, the binary PirAB toxins, en-
coded by PirA and PirB genes, are necessary for oral toxicity [56,57]. In fact, during infection,
the pathology of oral toxicity can be visualized in the midgut epithelium of moth Plutella xy-
lostella larvae, resulting in swelling and shedding of the (apical) epithelial cells [56]. In shrimp
aquaculture, the virulent AHPND-causing bacteria containing pVA1 plasmid that encodes
PirABVP toxin genes, homologous to the insecticidal PirA/PirB toxins genes, are absent in all
non-AHPND bacterial species [33,58].
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Among the PirABVP binary toxin, PirAVP binds with specific ligands on the cell membrane
and receptors (e.g., monosaccharides like N-acetylgalactosamine (GalNAC) and oligosaccha-
rides) and facilitates target-specific recognition. While PirBVP toxin, containing N-terminal
domain (PirBN) and C-terminal domain (PirBC), induces cell death in host via pore formation
and is involved in protein–protein and protein–ligand interactions [28,59–61]. The PirABVP tox-
ins have been reported to bind with hepatopancreatic epithelial tissue, possibly via recognition
and binding to certain ligands on the cell membrane and receptor that leads to oligomerization
and pore formation and subsequent cell death [34,37,59]. Interestingly, Kumar et al. (2019)
reported that PirABVP toxins induced focal to extensive necrosis and damage epithelial ente-
rocytes in the midgut and hindgut regions resulting in nuclear pyknosis, cell vacuolisation,
mitochondrial and rough endoplasmic reticulum (RER) damage in different degree in gnoto-
biotic A. franciscana. In fact, as the disease proceeded, the epithelium was severely damaged,
and the remaining cellular components were further detached into the lumen and showed
signs of degeneration such as pyknotic nuclei and lysed cellular membranes, which leads to the
subsequent death of challenged larvae (Figure 4). Furthermore, the study showed that PirABVP

toxin affected the digestive process and A. franciscana larvae were unable to digest the supplied
food [39].

Interestingly, it is important to mention that in some publications it has been proposed
that PirBVP toxin alone can induce cell damage and mortality in the host, e.g., mosquito
larvae (Aedes aegypti and Aedes albopictus) and shrimp larvae (L. vannamei) [62,63]. The si-
multaneous occurrence of sloughing and presence of PirBVP toxin in the hepatopancreas
provides evidence that PirBVP toxin is enough to cause AHPND infection in shrimp [62].
However, PirAVP and PirBVP toxin mixture was reported to form complex and through
receptor binding, oligomerization and pore formation, exhibits a higher toxic effect on
experimental animals [19,28,38,53]. Although, PirAVP and PirBVP toxins are directly respon-
sible for shrimp mortality during AHPND [33,59], several other pathogenic extracellular
proteins (ECP) are identified in V. parahaemolyticus strains like hemin; enterobactin; vibri-
oferrin; type I, II and VI secretion system protein; chemotaxis protein (60 kDa); flagellin
(40 kDa); metalloproteases (PrtV protein, 62 kDa; VppC protein, 90 kDa and VPM protein,
90 kDa); and serine proteases (VPP1, 43 kDa; VpSP37, 37 kDa and PrtA, 71 kda), which
might contribute in toxicity of AHPND-causing bacteria [63–67]. For example, the AHPND
pathology induced by 1 µg of crude protein (60% ammonium sulfate) precipitated from
AHPND-causing V. parahaemolyticus broth culture, is equivalent to AHPND caused by
10 µg each of pure PirAVP and PirBVP toxins [28,37]. This indicates that ~10 times more
recombinant PirAVP and PirBVP toxin is required to achieve the same results in shrimp
larvae caused by crude total protein obtained from V. parahaemolyticus AHPND strain.
Hence, the AHPND-causing V. parahaemolyticus extracellular proteins apparently contain
some other toxins or proteins apart from PirAVP and PirBVP, which aggravate the toxic
effect of PirABVP toxins [39].
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Figure 4. PirABVP toxin binds the digestive tract and induces sloughing of epithelial cells in brine
shrimp larvae. (A–D) Immunohistochemistry analysis of brine shrimp larvae challenged with
PirABVP toxin. (A,B): PirABVP toxin binds to epithelial cells and induces shedding or sloughing of
enterocytes in midgut and hindgut digestive tract. (C,D): Necrosis and damage of epithelial cells and
intestinal lumen filled with moderately electron dense cells. (1–4) Transmission electron microscopy
(TEM) analysis of control and treatment group brine shrimp larvae. (1,2): The digestive tract epithelial
enterocytes appeared normal with an intact mitochondrion, nucleus, rough endoplasmic reticulum
(RER) and intercellular junctions. (3,4): PirABVP toxin challenge produce focal to extensive necrosis
and damages epithelial cells in midgut and hindgut region. The arrowhead in figures represent the
cellular changes associated with AHPND in affected brine shrimp [39].
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Since, AHPND-causing PirABVP toxins are released extracellularly, the presence of
toxins in the aquatic environment, apart from mediating AHPND and mortality in shrimp
(e.g., 20 µg toxin/g shrimp were reported to induce AHPND) [37], may modulate vibriosis,
caused by non-AHPND Vibrio species. Vibriosis caused by the opportunistic Vibrio sp.
has negative impacts on fish, crustaceans and molluscs [10–13]. V. harveyi, V. alginolyticus,
V. anguillarum, V. splendidus, V. salmonicida, V. vulnificus and non-AHPND V. parahaemolyti-
cus have been found as main causative organisms of Vibriosis [14]. Interestingly, Tran
et al. (2020) demonstrated that the presence of PirABVP toxins modulates the virulence
of non-AHPND Vibrio spp. in both in vivo and in vitro conditions. The PirABVP toxin
interacts synergistically with V. harveyi and V. alginolyticus and aggravating vibriosis in
a gnotobiotic A. franciscana model. However, supplementation of PirABVP toxin has sig-
nificant antagonistic interaction on in vivo virulence of V. campbellii, V. parahaemolyticus,
V. proteolyticus and V. anguillarum strain in the same model [16]. One of the factors that
might interfere with virulence of Vibrio spp. is the digestive physiology of the host ani-
mal [68,69]. The increased virulence might be a result of digestive tract epithelium damage
that possibly gives a suitable site of bacterial attachment and further helps in the entry
of the pathogen [70]. Kumar et al. (2019) reported that PirABVP toxins bind with epithe-
lial cells in the midgut and hindgut regions of A. franciscana larvae and induce necrosis
and damage the cellular structure [32]. Hence, when the Artemia larvae were exposed to
PirABVP toxin and Vibrio spp. together, the toxin-induced damage of epithelial cells in
the digestive tract of larvae might be giving a portal of entry for pathogens, resulting in a
significant synergistic increase in vivo virulence of Vibrio species. Moreover, the cellular
and humoral components of immune system present in the digestive tract play important
role in preventing the potential binding and invasion of intestinal layer by an incoming
pathogen [71]. As reported in sea bass larvae (Dicentrarchus labrax), the gut epithelial ente-
rocytes containing lysosomes mediate intracellular elimination of pathogenic V. anguillarum
cells [72,73]. The binding of PirABVP toxin with epithelial cells of the digestive tract, might
have induced immunological response in brine shrimp larvae [34,74], which subsequently
prevents the attachment and entry of pathogenic bacteria and decreases the in vivo viru-
lence of Vibrio species (and hence the antagonistic effect of PirAB toxin on vibriosis caused
by certain Vibrio species/strains). Therefore, it appears that PirABVP toxins will not always
aggravate vibriosis. Damage of epithelial cells might lead to synergistic effects while an
immunological response might result in antagonism, all strains are dependent.

2.3. Vibrio parahaemolyticus as a Causative Agent of AHPND

V. parahaemolyticus is the predominant species causing AHPND in shrimp [18,45].
V. parahaemolyticus is heterogenous Gram-negative, non-spore forming and comma-shaped
bacteria with a polar flagellum or with several flagella. This pathogen is part of the
autochthonous microflora of estuarine and coastal environments, as well as fish, bivalves
and crustaceans in tropical to temperate zones all over the world [75,76]. Apart from fish
and shellfish species (including shrimp and molluscs), this bacterium has been isolated
from water, sediment, plankton, and marine mammals [77,78]. Moreover, the level of
V. parahaemolyticus in the environment and in various fish and shellfish species may vary
depending on environmental and geographical factors. V. parahaemolyticus can thrive in
high sodium chloride concentration, ranging from 0.5 to 10% with optimal levels between
1 to 3%, and can grow in moderate temperature (5 to 37 ◦C) [79].

In shrimp aquaculture, V. parahaemolyticus is an important aquatic pathogen and several
strains are capable of causing acute hepatopancreatic necrosis disease (AHPND) and other
important disease resulting in significant economic losses [38,44,80]. The V. parahaemolyticus
strains implicated in AHPND are unique in carrying a pVA1 plasmid (70 kb) harbouring the
virulence genes, PirAVP and PirBVP encoding the binary PirAVP/PirBVP toxins [17]. The pVA1
plasmid are reported to contain 45 open reading frames (ORF) with known functions. These
include, five putative transposases, one putative ORF with homology to toxin-antitoxin gene
pndA associated with post-segregational killing (PSK) system, operon that encodes proteins
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(~30% homology) to PirAVP and PirBVP toxins, a cluster of conjugative transfer genes and
two plasmid mobilization genes. The PirAB operon has both upstream and downstream
transposases, suggesting that the operon can be acquired by lateral gene transfer. The PSK
system ensures that only progeny containing the plasmid survive, since the stable PSK mRNA
in a plasmid-negative strain will be translated into bactericidal pndA toxin [17].

Since, AHPND-causing pVA1 plasmid reported to contain two plasmid mobilization
genes and a group of transfer genes for conjugation [17], the plasmid has been reported
to mobilize to other Vibrio strains (V. punensis, V. harveyi, V. owensii, V. campbelli) and
even non-Vibrio spp. (Shewanella sp.) [41,43,50,52]. These processes explain the huge
possibility of conversion from non-pathogenic to pathogenic AHPND strain that positively
enhance the spread of AHPND [42]. In addition, the 70-kb AHPND plasmid present in V.
parahaemolyticus strains are not clonal, but genetically diverse, suggesting that the virulent
plasmid has been acquired from several genotypes of V. parahaemolyticus by lateral gene
transfer [81]. Recently, it has been shown that V. parahaemolyticus harbouring intact pVA1
plasmid and PirABVP genes (tested positive by PCR), did not produce AHPND-causing
PirABVP toxins. In addition, the AHPND positive strains failed to exhibit characteristic
AHPND histopathological lesions and mortality in shrimps [82]. Hence, the virulence of
AHPND-causing V. parahaemolyticus is reported to depend on the production of secreted
proteins, PirABVP toxins, and not on the copy number of PirAVP/PirBVP gene [83].

It is also noteworthy to mention that all human pathogenic V. parahaemolyticus strains
produce thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH), as the main
virulence factors [79]. The V. parahaemolyticus strains possess two sets of type III secretion
systems (TTSS); TTSS1 in all strains whereas TTSS2 (α and β, containing tdh and trh genes)
only in human pathogenic strains [84]. Moreover, the AHPND-causing V. parahaemolyticus
strains studied so far are reported to lack the genes for tdh, trh and TTSS2 [50,63]. For example,
Chonsin et al. (2016) investigated the conventional virulence factors of human pathogenic V.
parahaemolyticus strains and AHPND-causing V. parahaemolyticus strains. The results showed
that none of the AHPND-causing strains possess tdh, trh or TTSS2-related genes of human
pathogenic strains [81]. There are two identified types of V. parahaemolyticus AHPND bacte-
ria reported based on geographical variations [85]. The V. parahaemolyticus AHPND-causing
strains from Mexico and Central USA are reported to contain a 4243 bp Tn3-like transposon
insert at ORF4, that is not present in the Asian isolates (isolated from China, Vietnam and
Thailand) [33]. Moreover, the transposon-like insert is unrelated with AHPND aetiology and
shows no difference in the virulence between two AHPND isolates, even if it is found on the
virulent plasmid [18]. Recently, González-Gómez et al. (2020) analysed nine AHPND isolates of
V. parahaemolyticus from Mexico harbouring pVA1 sequences along with 38 previously reported
pVA1- harbouring V. parahaemolyticus. The AHPND strain nucleotide sequences were clustered
into three phylogenetic clades (Latin American, Malaysian, and Cosmopolitan) through pange-
nomic and phylogenetic analysis. The results highlight that among Latin American and Asian
AHPND strains, the main structural difference is the absence of Tn3 transposon in the Asian
strains. In addition, some deletion in the PirAB region were also found in two of the Latin
American strains. Interestingly, the study demonstrates that diagnosis of AHPND through
PirAB toxin gene detection may be inadequate due to structural variability of these genes, as
noticed in different isolates [86].

3. Control and Management of Acute Hepatopancreatic Necrosis Disease
(AHPND)—Current Status

The prophylaxis measures to control AHPND mainly focus on pond management
(aeration, feeding, etc.) and disinfections before shrimp post-larvae stocking [87]. However,
these approaches are not capable to stop the epidemiological situation once AHPND has
emerged in a pond or in neighbouring ponds and hence more effective therapeutic measures
are urgently needed to control AHPND in shrimps. The conventional approach applied so
far in the mitigation or cure of V. parahaemolyticus AHPND strains, such as interrupting
feeding or application of antibiotics and disinfectants has had limited success [28]. In
addition, due to development of multiple resistance, their usage in the food producing
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sector is under severe scientific and public scrutiny [88]. For example, the AHPND-causing
V. parahaemolyticus strain from Mexico (13-511/A1 and 13-306D/4) were reported to carry
tetB gene coding for tetracycline resistance gene [89], and V. campbellii from China was
found to carry multiple antibiotic resistance genes [19], hence the application of traditional
methods like antibiotics may be ineffective to control the AHPND in shrimp farming
system, especially in the long term.

Most of the therapeutic and control measures developed mainly targets AHPND-
causing V. parahaemolyticus. However, the presence of AHPND-causing pVA1 plasmid (63–
70 kb) encoding the binary toxins named PirAVP and PirBVP in non-Vibrio parahaemolyticus
and even on non-Vibrio species has generated concerns since the management measures
used to control a particular AHPND causing bacterial strain may not be useful and can
generate unwanted economic pressure to farmers. Therefore, the management measures
adopted, based on presence or absence of PirABVP toxins in the shrimp and aquaculture
system, can be more suitable to control and eradicate AHPND from shrimp culture system.

Shrimp, lacking an adaptive immune system, rely on their cellular and humoral com-
ponents of innate immune responses to combat the invading pathogens, due to which the
development of therapeutic agents that enhances the adaptive immune response, e.g., vac-
cines against infectious disease in shrimp aquaculture had very limited success [28,85].
Therefore, methods that can boost the host innate immune response and enhance disease
resistance against diseases have drawn much interest in recent years [2,90]. The disease
caused by bacterial pathogens in shrimp farming systems are generally controlled by using
appropriate management strategies, including supplementation of immunostimulants,
prebiotics, probiotics or phages, maintaining optimum water quality, stocking density,
post-larvae quality, aeration and feed quality and quantity [91,92]. However, since the
outbreak of AHPND in China in 2009, the research has mainly focused on epidemiological
studies including characterization of AHPND aetiological agents and associated patho-
logical changes from various geographical locations. Hence, there is an urgent need to
develop promising new methods that can become a potential tool to protect the shrimp
against AHPND-causing V. parahaemolyticus. Moreover, some studies have reported man-
agement strategies to control the disease and possibly prevent AHPND outbreak in shrimp
aquaculture. Details of potential therapeutic or control agents are summarized below.

3.1. Probiotics

Probiotics have emerged as promising alternatives for improving disease resistance in
farmed shrimp against AHPND. The probiotics microbes potentially secrete a wide range
of extracellular substances and antimicrobial peptides, which improve feed digestion and
absorption, boost shrimp health and immunity, promote shrimp growth and reproduction,
and enhance survival upon exposure to pathogenic microorganism (Figure 5) [93]. More-
over, the beneficial effect of probiotic microorganism is generally influenced by several
factors related to rearing conditions under larger scale, survival ability until reaching the
gastrointestinal tract of the host, method of administration, dosage, probiotic strain and
shrimp species [2]. Therefore, before application, attention must be paid in course of
selecting an appropriate probiotic strain, since unsuitable strain can negatively impact the
colonization, nutrient metabolism and assimilation, growth response, immunomodulation
and resistance against pathogenic microorganisms.
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Figure 5. Potential beneficial role of probiotics in shrimp aquaculture.

Maintaining a biological balance among bacteria and algae in aquaculture ponds
and gastrointestinal tract of shrimp is one of the ways to reduce the effect of AHPND in
shrimp [94]. Probiotics can participate in establishing a balance of gastrointestinal microbial
flora, improving the digestive functions and immune system and increase the survival of
L. vannamei against the pathogenic V. parahaemolyticus AHPND strain [95,96]. Since the
AHPND-causing bacteria were reported to infect and damage hepatopancreas, subsequent
studies to investigate the effect of probiotics mediated balanced gastrointestinal microbial
flora on AHPND bacteria and hepatopancreas morphology add further understanding on
probiotics mechanism of action. Moreover, Kewcharoen and Srisapoome (2019) reported
that supplementation of Bacillus subtilis AQAHBS001 strain through the feed resulted in
proliferation and colonization of this strain in gastrointestinal tract of shrimp. Addition-
ally, the shrimp postlarvae exhibited enhanced growth performance and immune gene
expression and increased disease resistance against V. parahaemolyticus AHPND strain [97].
In another study, Chomwong et al. (2018) found that two lactic acid bacteria (LAB), Lac-
tobacillus plantarum SGLAB01 and Lactococcus lactis SGLAB02 strain activate the proPO
system, by significantly increasing haemolymph phenoloxidase (PO) activity, improving
the survival of L. vannamei upon challenge with AHPND-causing V. parahaemolyticus [98].

Moreover, several probiotic strains are reported to possess antimicrobial abilities
against Vibrio species, especially V. parahaemolyticus, V. harveyi and V. alginolyticus [99].
The probiotic bacteria were reported to produce a wide range of extracellular substances
such as trypsin, lipase, amylase and antimicrobial substances (e.g., bacteriocins and hy-
drogen peroxide), against a variety of bacterial pathogenic factors [100,101]. For instance,
Bacillus, Lactobacillus, Rhodopseudomonas and Pseudoalteromonas probiotic strains are reported
to inhibit the activity of pathogenic AHPND-causing bacteria by producing inhibitory
compounds, one of the mechanisms of action of probiotics [95,96,99]. A total of 19 lactic
acid bacteria (LAB), isolated from L. vannamei, were characterized based on morphological,
biochemical, sequencing techniques and analysed for their ability to inhibit the AHPND-
causing V. parahaemolyticus strain. The results showed that 3 among 19 isolated LAB strains
have the highest antagonizing ability against AHPND V. parahaemolyticus strain in vitro,
generating inhibition zones ranging from 18 to 20 mm in diameter. In addition, the shrimps
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fed with LAB supplemented diets displayed significantly higher survival (approximately
80%) upon AHPND V. parahaemolyticus challenge [102]. Recently, Wang et al. (2020) demon-
strated that the natural product amicoumacins A purified from the cell-free supernatant of
Bacillus subtilis BSXE-1601 strain harboured acillibactin, fengycin, surfactin, bacilysin and
subtilosin A, which are responsible for both in vitro and in vivo anti-Vibrio activity against
AHPND-causing V. parahaemolyticus strain in L. vannamei [103].

3.2. Phage Therapy

Bacteriophages are viruses, discovered for the first time over 100 years ago in bacterial
host by Twort et al. (1915), with dsRNA, ssRNA, dsDNA and ssDNA genome, that can
infect prokaryotic organism [104,105]. The bacteriophages are abundant in nature and
have been found in both terrestrial and aquatic environment (non-polluted waters, 2 × 108

bacteriophage/mL), and in association with plants and animals [106]. Phages have been
proposed as potential management strategy to control infectious disease in both human and
animals [107]. The life cycle of bacteriophages includes either a lytic stage (bacteriolytic) or
a lysogenic stage (Figure 6). Since, the emergence of bacterial antibiotic resistance problem
in animals and humans, the use of phages as a therapeutic agent (shows an effective
bacteriolytic activity) is advantageous as it is natural and relatively inexpensive, without
serious or irreversible side effects reported to date [107–109]. In shrimp aquaculture, the
use of phage therapy is well-documented; work is still going on to develop a commercial
phage product for shrimp aquaculture. Bacteriophages used in shrimp bacterial pathogens
may belong to the family Siphoviridae or Myoviridae [110,111]. In general, the family
Siphoviridae member bacteriophages are reported to be lytic phages [112]. For instance,
Yang et al. (2020) found that lytic bacteriophages, namely vB_VpS_BA3 and vB_VpS_CA8
(belong to the Siphoviridae family), isolated from sewage were capable of killing the
multidrug resistant V. parahaemolyticus and hence its use was suggested as a potential
biological control agent [113].

In a study by Vinod et al. (2006), the bacteriophage treatment was found to improve
the survival of giant tiger prawn, Penaeus monodon, larvae and postlarvae against Vibrio-
induced luminous bacterial disease [114]. In another study, bacteriophages are reported
to control the growth of pathogenic V. harveyi and improve the survival of P. monodon,
against luminous bacterial disease [115]. These studies showed that bacteriophages can
be promising alternatives strategies for effective shrimp larval health management and
disease control.

Until now, there are only few attempts have been made to control AHPND in shrimp
using bacteriophages. Jun et al. (2016) studied bacteriolytic activity of phage pVp-1 (family
Siphoviridae phage) against AHPND-causing V. parahaemolyticus strains, the infectivity
was tested against 22 strains from geographically diverse regions (5 Asian types and 17
Mexican types). The results showed that the pVp-1 phage can infect 90.9% (20 strains among
22 strains) of V. parahaemolyticus AHPND strains and further demonstrates bacteriolytic
activity against three strains, known to be highly pathogenic [116]. In another study, Jun
et al. (2018) found that following prophylactic and therapeutic treatment, pVp-1 phage-
treated shrimps exhibit significant recovery from AHPND histopathological lesions [108].
These results highlight that phage could be suitable for prophylactic and/or therapeutic
use against AHPND-causing V. parahaemolyticus.

Overall, these studies suggest that the usage of lytic phages could be a potential
approach to combat AHPND-causing V. parahaemolyticus strains. However, considering
that the host range for selected phages was 65–70% and the possibility that bacterial strains
may develop resistance [78], phage therapy with a consortium of phages would ensure
the efficacy against a wide range of bacterial species/strains reported to cause AHPND
in shrimp.
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Figure 6. A schematic overview of the bacteriophage life cycle, including lytic and lysogenic cycle. In lytic cycle, bacterio-
phages infect the host and release of viral genome into bacterial cells. Once a phage infects a bacterium, it shuts down the
defence mechanism and takes over its cellular machinery to synthesis new phage particles. The number of phage particles
synthesized eventually reaches a point where they rapture the bacterial cells resulting in release of phage particles into
the environment that then infects the new host. In lysogenic cycle, phage DNA is incorporated into the bacterial host
genome, where it is passed on to the subsequent generations. Environmental stressors such as starvation or exposure to
toxic substances may cause the prophage to excise and enter the lytic cycle.

3.3. Plant-Derived and/or Natural Compounds

The use of antimicrobial agents in aquaculture could lead to the emergence of resis-
tance in the microorganism. Hence, alternatives are being sought over the last few years
and the plant-based compounds are one of the available options for this purpose. Plants are
a rich source of bioactive compounds like alkaloids and glycosides and synthesize aromatic
compounds mostly phenols or their oxygen substituted derivates that might serve as po-
tential antimicrobial agent to control pathogenic bacterial infection in shrimp aquaculture.
For instance, the plant-based products, e.g., essential oils and phenolic compounds have
been tested and used as an efficient and alternative treatment against microbial infection in
aquaculture [117,118]. The important function of plant-based compounds as antimicrobial
includes binding to substrate or metal ions and making them unavailable for microbial
pathogens, microbial cell membrane disruption, binding to bacterial cell adhesins or other
proteins and inhibiting the binding of bacteria to cell membranes, inactivating the microbial
enzymes, blocking the viral cell fusion or adsorption in host cell, etc. Moreover, the natural
or plant-based products are preferred because of their biodegradability in the environment,
i.e., the residues from plant derived compound treatment tend to be biodegradable in the
water whereas, from antibiotics or other chemical treatment. However, the plant-based
products (e.g., essential oils) might also have an effect on non-target organism [119,120].

Few studies have reported that natural/plant-based compounds can minimize the
effect of pathogen and improves the immune system and survival of shrimp species against
the V. parahaemolyticus AHPND strain. The rose myrtle, Rhodomyrtus tomentosa, seed extract
shown significantly high antimicrobial activity against AHPND bacteria. In addition,
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the extract was found to improve the survival of L. vannamei against AHPND-causing V.
parahaemolyticus strain [121]. Later, a study was carried out to determine the effect of plant
extract, Phyllanthus amarus, against AHPND-causing V. parahaemolyticus strain in white leg
shrimp, L. vannamei. The results showed that both dried and fresh extract from P. amarus,
exhibited in vivo antibacterial activity against V. parahaemolyticus AHPND strain [122]. In
another study, essential oil mixture prepared from 10 plants, i.e., Lavandula latifolia, Pinus
sylvestris, Jasminum officinale, Citrus limon, Prunus avium, Viola odorata, Gardenia jasminoides,
Cocos nucifera, Rosa damascene and Eucalyptus globulus, were tested for anti-V. parahaemolyti-
cus activity. The essential oil mixture was found to exhibit antimicrobial activity and
significantly improve the survival of L. vanaamei against AHPND-causing V. parahaemolyti-
cus strain [121]. Moreover, seaweeds are also reported to display antimicrobial activity
against bacterial pathogen and possess several health-benefiting properties. The protein
extract used from red seaweed, Gracilaria fisheri, was evaluated for its anti-bacterial activity
and protective role against AHPND-causing V. parahaemolyticus strain in white leg shrimp.
The results exhibited that protein extract inhibits the growth of virulent V. parahaemolyticus
strain. In addition, the G. fisheri protein extract supplementation significantly improved
the survival rate of L. vannamei with normalized histological features of hepatopancreas
following V. parahaemolyticus AHPND strain infection [123]. Furthermore, it has been
demonstrated that microalgal-bacterial consortia containing microalgae Picochlorum strain
S1b and bacteria Labrenzia sp. strain 8, Muricauda sp. strain 50, or Arenibacter sp. strain
61, can significantly inhibit the growth of AHPND-causing V. parahaemolyticus strain and
increase the survival of L. vannamei [124]. A synthetic herbal-based polyphenol compound,
pyrogallol, demonstrated to exert high in vitro bactericidal efficacy including increased
killing rate and degenerative effects against AHPND V. parahaemolyticus cells. The study
suggests that pyrogallol based antimicrobial agent could be a promising method to control
the AHPND in shrimp producing sectors [125]. Although, the above-mentioned studies
have documented that plant-derived compounds exhibit a broad spectrum of pharma-
cological and health promoting effect, the mechanism of action of these compounds in
mediating these effects remain a topic of debate. Therefore, further study to understand
the underlying mode of action of these compounds in generating protective responses will
be helpful to develop a holistic strategy to control AHPND in shrimp.

Immunostimulatory Properties of Plant-Based Compound

The natural products from medicinal plants and marine seaweeds, are considered as
potential alternatives for prevention and treatment of AHPND in shrimp. Apart from antiviral,
antibacterial and antiparasitic properties, the plant-based compounds are rich in secondary
metabolites and phytochemical compounds that play an important role in feed intake and
digestibility and improving growth performance and health of shrimp [126,127]. Plant-derived
compounds can be administered as a whole plant or parts (leaf, root or seeds) or extract
compound, via water routine or feed additive—either singly or as a combination of extract
compounds—or even as a mixture with prebiotics or immunostimulants (Figure 7) [128–130].

Enhancing the immune system of shrimp has gained considerable attention as a poten-
tial method that can contribute to protective immunity and help to fight against diseases.
The immunostimulatory activity of plant-based compound are contributed in part by phenolics,
alkaloids, terpenoids, essential oils, lectins, polypeptides and polyacetylenes (Table 2). There
are several reports, which suggest that treatment of crustacean species (like brine shrimp, Mac-
robrachium spp.) with polyphenols, significantly enhances the innate immune response and
provide protection to abiotic (salinity, heat) and biotic (pathogenic bacterial infection) stres-
sors [131–133]. In recent years, plant-based compounds are identified to possess the property of
inducing heat shock protein within the animal in a non-invasive manner [130,134,135]. These
compounds/molecules are also commonly called as heat shock protein inducers (Hspi) [136].
Functionally, the protective function of Hsp70 is documented to be due to its molecular chap-
erone activity maintaining protein homeostasis by protecting the nascent polypeptides from
misfolding, facilitating co- and post-translational folding, assisting in assembly and disassembly
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of macromolecular complexes and regulating translocation [134]. Additionally, Hsp70 is also
reported to confer thermal resistance, protect against osmotic stress, prevent oxidative toxicity
and damage and improve tolerance against microbial infection [137–139]. These observations
suggest that HSP plays important role in host immunity and health. Hence, natural com-
pounds/molecules can be used to induce Hsp70 production in host and provide protection
against biotic and abiotic stress.

Figure 7. Effect of plant based or natural compounds and conventional compounds in shrimp and environment.

Recently, it has been demonstrated that polyphenol plant-based compound (phloroglu-
cinol) is a potent in vivo enhancer of Hsp70, and this effect mediates induction of resistance
in brine shrimp and Macrobrachium larvae against AHPND-causing V. parahaemolyticus
M0904 strain. The ability of polyphenol plant-based compounds to induce resistance in the
host and prevent microbial infection has been described to be functionally dependent on
antioxidant property, pro-oxidant activity and anti-microbial effects [140,141]. Similarly, the
phloroglucinol-induced protective effect in brine shrimp larvae against V. parahaemolyticus
were found to be linked to its pro-oxidant activity (e.g., generation of hydrogen peroxide,
H2O2). The pro-oxidant action was linked with increased Hsp70 protein production, which
stimulate the immune response and induce resistance in brine shrimp and Macrobrachium
larvae against AHPND-causing V. parahaemolyticus strain [24,127].

Though, the plant-derived compounds are reported to improve immunity and health
of shrimp, some of them are known to carry toxicological properties as well. Few studies
indicate that plants used a food source, may have mutagenic or genotoxic potential [142].
The toxicology of plants may originate from chemical compounds originated from either
leaf, root or seeds [143]. Hence, before application, the investigation of optimum dose
requirements in different species and life stages, mode of application (immersion, feed or
injection) and residual effects on non-target species must be carried out in order to achieve
a safe treatment with plant products.
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Table 2. Role of plant-based compounds in shrimp health.

Class Chemical Structure Sub-Class Example Role in Aquatic Species

Phenolics Quinones, lavonoids, flavones,
tannins, flavonols

Allium spp. (A. cepa, A. sativum, A.
tuberosum), Cynodon dactylon, Viscum

album, etc.

Immunostimulant, antioxidant,
antimicrobial, growth promotor,

anti-helminthic, antiviral

Alkaloids
Camellia sinensis, Nicotiana tabacum,
Aconitum napellus, Atropa belladonna,

Conium maculatum, etc.

Immunostimulant, antioxidant,
antimicrobial, growth promotor,

anti-helminthic, antiviral

Terpenoids and essential oils
Pistacia terebinthus, Lavandula
angustifolia, Mentha piperita,

Melaleuca alternifolia, etc.

Immunostimulant, antimicrobial,
antioxidant, anti-helminthic, growth

promotor

Lectins and polypeptides Glycine max, Arachis hypogaea,
Triticum aestivum, Cocos nucifera, etc.

Antioxidant, antiviral,
immunostimulant

Polyacetylenes Anethum graveolens, Carum, carvi,
Daucus carota, etc.

Immunostimulant, antimicrobial,
antioxidant
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3.4. Environmental Manipulation

Aquatic bacteria are often subjected to fluid shear and hydrodynamic forces, cre-
ated by either natural factors or anthropogenic activities such as the use of aerators and
pumping devices frequently used to enhance shrimp productivity [144,145]. Moreover, the
microorganisms, including both single-celled and multi-cellular, have evolved to survive
in variables and at times extreme conditions and by changing the phenotype it senses
and mount effective response to environmental heterogeneity [146–148]. Interestingly,
V. parahaemolyticus cells are capable of replicating in less than ten minutes, as compared
to other Vibrio species takes over one hour [75,149]. Hence, any change in environmental
condition might triggers phenotype switching in V. parahaemolyticus that could affect the
biological features and induce remodelling of transcription and translational networks
requiring to adapt and maintain cellular status. The V. parahaemolyticus cells incubated at
constant agitation of 110 rpm (called M0904/110) were demonstrated to develop cellular
aggregates or floccules and exhibited significantly higher EPS and biofilm formation (~4
folds). In addition, at M0904/110, the cells produce levan and develop purple colonies.
However, cells grown at 120 rpm (called M0904/120) did not produce floccules, had lower
EPS and biofilm formation, and produce orange-red colonies. Hence, a critically low
shaking frequency might favour the production of self-aggregating biofilm in M0904 like it
was described in other species such as Pseudomonas [150]. Furthermore, the study revealed
that AHPND-causing V. parahaemolyticus strain, under differential flow conditions (low
fluid shear stress) switches to biofilm phenotype causing a major shift in the protein secre-
tome, e.g., alkaline phosphatase PhoX is produced instead of PirAVP/PirBVP toxins [151].
Since, the virulence of AHPND strains is reported to be mediated by the production of
PirABVP toxins, the decreased production of virulence related genes including Pir toxins
at M0904/110 (biofilm phenotype) results in significantly reduced virulence of AHPND
V. parahaemolyticus strain in the host model species, i.e., brine shrimp (A. franciscana) and
freshwater prawn (M. rosenbergii) [44]. The study highlights that AHPND V. parahaemolyti-
cus strain has two phenotypic forms (virulent and non-virulent) and shaking condition
determines the existence of phenotypic form. Hence, designing methods that can induce
phenotype switching in AHPND-causing V. parahaemolyticus in an aquaculture setting will
open the possibility for effective management of AHPND in shrimp farming, without
necessarily removing the AHPND-causing bacteria from the culture system.

3.4.1. Biofloc Technology

Growing shrimp in a biofloc system can be a promising alternative strategy to improve
environmental conditions and health status of cultured animals. The basic principle of
the biofloc system is to recycle waste nutrients, in particular, inorganic nitrogen resulting
from uneaten feed and faeces into microbial biomass, that can be used in situ by the
cultured animals or be harvested and processed into feed ingredients [152–155]. In fact,
the metabolic processes and biochemical transformations take place directly in the water
column, which promotes the overall balance of the system and the health of the farmed
shrimp [156]. The heterotrophic microbiota is stimulated by steering the C/N ratio of the
water through the modification of carbohydrate content in feed or by addition of a carbon
source in the water, so that bacteria can assimilate the waste ammonium for new biomass
production [155]. Hence, ammonium/ammonia can be maintained at a low and non-toxic
concentration so that water replacement is no longer required (Figure 8). For instance,
Avnimelech (2007) noted that the use of biofloc in intensive tilapia culture significantly
improved the nitrogen recovery from 23% to 43% [153].

The biofloc are rich in free amino acids such as alanine, glutamate, arginine and glycine,
which are reported to serve as diet attractants for shrimp [157]. Hence, it is noted that shrimp
in biofloc system consume up to 29% flocculating particles of their daily feed intake [158].
Moreover, apart from serving as protein and lipid sources these aggregates flocs can contain
microbe-associated molecular pattern (MAMP) and microbially bioactive components such as
carotenoids, vitamins, glutathione, antioxidants and minerals, which nutritionally modulate the
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shrimp health and immune response and result in better growth performance and increased
resistance against pathogenic microbial infections (Figure 8) [157,159–161]. For instance, in situ
utilization of microbial flocs in biofloc system by aquaculture organism as well as the utilization
of processed biofloc as a feed ingredient has been reported to improve growth performance
and the health of shrimp [161–166]. There are few reports that have illustrated the role of
biofloc in stimulating the non-specific immunity and resistance of shrimp against microbial
pathogens including AHPND V. parahaemolyticus [167,168]. Hostin et al. (2019) designed an
experiment to investigate the effect of autotrophic (with or without probiotics) and heterotrophic
bioflocs (with or without probiotics) on L. vannamei against AHPND bacterial strain. The results
showed that heterotrophic bioflocs (with and without probiotics) and autotrophic bioflocs (with
probiotics) can decrease the impact of AHPND-causing V. parahaemolyticus and the highest
survival of L. vannamei was observed when challenged in the presence of their respective biofloc
suspensions (shrimp grown in biofloc environment but challenged in clear water were not
protected). So, the protective effect in shrimp was depending on operational parameters of
the biofloc system, namely C/N ratio [91]. Recently, Kumar et al. (2020) demonstrated that
the biofloc system regulates the expression of bacterial virulence genes resulting in enhanced
survival of L. vannamei upon AHPND-causing V. parahaemolyticus challenge. The study showed
that, in the biofloc system, AHPND-causing V. parahaemolyticus possibly switch from free-living
virulent planktonic phenotype to a non-virulent biofilm phenotype, as demonstrated by a
decreased transcription of flagella-related motility genes (flaA, CheR and fliS), Pir toxin (PirBVP)
and AHPND plasmid genes (ORF14) and increased expression of the phenotype switching
marker AlkPhoX gene in both in vitro and in vivo conditions [46]. Taken together, the ability of
the biofloc system to boost the water quality, growth performance and resistance of L. vannamei
against V. parahaemolyticus AHPND strain makes it a potent aquaculture technology that will be
valuable to prevent microbial infection including AHPND and increase the shrimp production
with high-density and minimal or no water exchange culture.

Figure 8. Schematic overview of possible role of biofloc system in host, pathogen and environment in a shrimp aquacul-
ture facility.
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3.4.2. Pond Management

The above-mentioned management practices including probiotics, phage therapy
and plant-derived compounds have shown promising results to control the outbreak of
AHPND in shrimp. However, most of these studies are based on laboratory trials and
further validation of dose, route of delivery and associated risk factors are still needed
to establish the effectiveness in shrimp farm conditions. Moreover, recently Putth and
Polchana (2016) demonstrated that by adopting a better farm management practice, shrimp
farmers can control AHPND and avoid production losses. The study showed that pre-
stocking and post-stocking measures, including evaluation and screening of the health
status of post-larvae, feed quality assessment and disinfection of input materials (e.g., sea
water) is helpful to control AHPND in shrimp farms [169].

Apart from management measures, the polyculture system has been identified as a
potential strategy to control AHPND in shrimp farms. Tran et al. (2014) studied the effect
of polyculture system, including tilapia and L. vannamei, in controlling AHPND infection
and mortality. The results showed that tilapia induced beneficial algal and bacterial blooms
in water, promote healthy and balanced biota communities that confer positive effects in
controlling AHPND in shrimps [170]. In another study, Boonyawiwat et al. (2017) evaluated
factors related with farm characteristics, farm management, pond and water preparation,
feed management, post-larvae and stock management in occurrence of AHPND in shrimp.
The results demonstrated that the presence of predator fish, multiple shrimp species or
high stocking density in culture system contribute to increased risk of AHPND infections.
However, alternative approaches like polyculture, water ageing (≥ 7 days long) and delay
in feeding after stocking were likely to promote protection against AHPND in shrimp [171].

4. Conclusions and Future Perspective

Shrimp aquaculture is one of the fastest growing food producing sectors in the world.
However, an outbreak of acute hepatopancreatic necrosis disease (AHPND) has caused
significant economic losses in the shrimp farming industry since 2009. The disease is
caused by a specific virulent strain of bacteria, including V. parahaemolyticus, V. punensis, V.
harveyi, V. owensii, V. campbelli and Shewanella sp. that contains pVA1 plasmid (63–70 kb)
encoding the binary PirAVP and PirBVP toxins. Interestingly, the AHPND affected shrimp
show unique histopathological changes, including massive sloughing of hepatopancreatic
epithelial cells without any accompanying signs of a pathogen, which demonstrates the
involvement of bacterial secreted binary PirAVP and PirBVP toxins in inducing AHPND.
Moreover, recent studies have demonstrated that, apart from PirABVP toxins, the AHPND
associated strains have other specific virulence factors that might be involved in virulence
of AHPND-causing bacteria and disease pathology. Hence, by using the host-pathogen
model, further molecular, microbiological and histopathological studies are still needed for
effective characterization of virulence factors of AHPND-causing bacteria and diagnosis of
AHPND in shrimp.

In the past, chemical and antibiotics have been commonly used in the shrimp cul-
ture system to control bacterial diseases including AHPND. However, the excessive and
indiscriminate use of antibiotic has resulted in the development of antibiotic-resistant
microbes, which may have potential risks for consumer health globally. Moreover, the
above-mentioned management approach discussed in this review, including, probiotics,
phage therapy, use of plant-based compounds and environmental manipulation might
be applicable in shrimp culture system to control the AHPND (alone or in combination).
However, even with these developments, the industry is continuously confronted with
the devastating impacts of AHPND. Hence, the quest for alternative methods to control
AHPND-causing Vibrio spp. is an important challenge for the sustainable development of
shrimp aquaculture.
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