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Abstract

Background: Genetic selection for host resistance offers a desirable complement to chemical treatment to control
infectious disease in livestock. Quantitative genetics disease data frequently originate from field studies and are
often binary. However, current methods to analyse binary disease data fail to take infection dynamics into account.
Moreover, genetic analyses tend to focus on host susceptibility, ignoring potential variation in infectiousness, i.e. the
ability of a host to transmit the infection. This stands in contrast to epidemiological studies, which reveal that
variation in infectiousness plays an important role in the progression and severity of epidemics. In this study, we
aim at filling this gap by deriving an expression for the probability of becoming infected that incorporates infection
dynamics and is an explicit function of both host susceptibility and infectiousness. We then validate this expression

integrating this expression into genetic analyses.

are required.

susceptibility and infectiousness.

according to epidemiological theory and by simulating epidemiological scenarios, and explore implications of

Results: Our simulations show that the derived expression is valid for a range of stochastic genetic-epidemiological
scenarios. In the particular case of variation in susceptibility only, the expression can be incorporated into
conventional quantitative genetic analyses using a complementary log-log link function (rather than probit or
logit). Similarly, if there is moderate variation in both susceptibility and infectiousness, it is possible to use a
logarithmic link function, combined with an indirect genetic effects model. However, in the presence of highly
infectious individuals, i.e. super-spreaders, the use of any model that is linear in susceptibility and infectiousness causes
biased estimates. Thus, in order to identify super-spreaders, novel analytical methods using our derived expression

Conclusions: We have derived a genetic-epidemiological function for quantitative genetic analyses of binary infectious
disease data, which, unlike current approaches, takes infection dynamics into account and allows for variation in host

Background

Infectious diseases constitute the number one threat to
livestock production, with potential devastating implica-
tions for food security and human health. With the rapid
accumulation of data on the genetic regulation of host
responses to infectious pathogens, the drive towards
strategies that control genetic disease is gaining momen-
tum. Genetic approaches to combat infectious disease
tend to focus on improving host resistance, i.e. the abi-
lity of a host to block pathogen entry or to counteract
pathogen replication within the host. However, despite
enormous breakthroughs in genomics, estimating genetic
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parameters for disease resistance has proven considerably
more challenging than analysis of production traits, and
this has hampered the incorporation of disease traits into
breeding programmes. These challenges partly arise be-
cause disease resistance is not a trait that is directly
measurable but relies on observable proxies. Due to the
requirement of large sample sizes for quantitative genetic
analyses, such proxies are often obtained from field data,
which are typically binary, indicating whether an indivi-
dual has become infected or not [1].

Current quantitative genetic methods analyse binary
infectious disease data essentially by contrasting the set
of individuals diagnosed as infected to those diagnosed
as non-infected, assuming that the observed phenotypic
differences represent differences in host resistance to the
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pathogens under consideration [2]. However, the corre-
sponding statistical models, such as threshold or logit
models, entail several intrinsic assumptions that are un-
realistic in the case of infectious disease: First, the obser-
vations (e.g. diseased/not diseased) are assumed to be
accurate but in reality, the diagnostic tools that are used
in the field rarely have complete sensitivity or specificity,
i.e. there is a considerable chance for misclassification of
individuals as healthy or diseased. Second, it is assumed
that exposure to infectious pathogens of individuals that
share the same environment is (a) equal between indi-
viduals, (b) constant over time and (c) purely environ-
mental. However, in large groups with a non-uniform
contact structure, there may be substantial heteroge-
neity in exposure at any given time. Thus, an individual
classed as healthy may have indeed greater resistance, or
could simply be misdiagnosed, or may not yet have
come in contact with the infectious agents. Furthermore,
for infectious diseases transmitted by direct contact, the
disease status of an individual is not just the expression
of its own resistance in a constant infectious environ-
ment. Instead infections result from dynamic interac-
tions between susceptible and infected individuals, and
genetic variation may be inherent to all such interac-
tions. As the number of infected individuals in a popu-
lation changes throughout the time course of a disease
outbreak, exposure will change as well. Lastly, exposure
depends on how infectious the infected individuals are,
which may differ between individuals, e.g. due to diffe-
rent shedding patterns of infectious material or different
durations of shedding. Thus, not only host resistance
but also host infectiousness, i.e. the ability of a host to
transmit an infection, may display substantial host gene-
tic variation.

All of the above characteristics that are inherent to
natural disease outbreaks are likely to affect estimates of
genetic parameters for disease traits. Indeed, we have
previously demonstrated that conventional quantitative
genetics models fail to capture host genetic variation in
infectiousness, if present [3,4]. Furthermore, theoretical
work has established that imperfect diagnostics and in-
complete or variable exposure produce a downward bias
in estimates of heritability and of SNP (single nucleotide
polymorphism) effects, and affect inferences about modes
of inheritance of SNP effects for disease resistance [1,5].
This theory is empirically supported by comparing results
from recent field and challenge experiments that aimed at
estimating genetic parameters and at identifying genetic
markers for the resistance of pigs to the Porcine Rep-
roductive and Respiratory Syndrome Virus (PRRSV) [6,7].
Both these studies included approximately 1200 animals,
but whereas infection resulted from natural transmission
dynamics in the field studies [7], the challenge experiment
infected all animals with the same dose of a particular
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PRRSV strain [6], thus excluding the various sources of
heterogeneity in exposure outlined above. In accordance
with theory, heritability estimates for viraemia were con-
siderably lower based on field data than from challenge
data (0.096 vs. 0.31) and the challenge study found a ma-
jor QTL for disease resistance that had not been identified
in the field data. Thus, both theory and experimental
evidence imply that, in order to use data from natural
disease outbreaks to determine the host genetic influ-
ence underlying infectious disease, current quantitative
genetics methodology must be modified to take transmis-
sion dynamics into account. In quantitative genetic ana-
lyses, it is customary to assume that binary data is the
realisation of a probability. Thus an important step is to
identify the probability function that links the epidemio-
logical parameters of interest, such as susceptibility and
infectiousness, to the probability of becoming infected.

Therefore, the aim of this study was to derive an ana-
lytical expression for the probability of an individual to
become infected within a given time period. We demon-
strate how this can be achieved by integrating funda-
mental principles of epidemiology into the quantitative
genetics framework. We then validate this analytical ex-
pression by comparing it with established theory in the
case of homogeneous populations and by using simulated
disease data generated for a range of epidemiological sce-
narios in genetically heterogeneous populations. Finally,
we examine the implications for implementing this prob-
ability function into quantitative genetic analyses.

Methods

Epidemiological principles and approaches

The study of infectious diseases typically falls within the
realm of epidemiology. A key measure in epidemiology
is the basic reproductive ratio R, defined as the expec-
ted number of secondary infections that one infectious
individual causes in an otherwise susceptible population
[8]. Efforts for epidemiological control of infections are
targeted to reduce Ry, ideally to a value below one, be-
cause if Ry is less than one, infection is unlikely to spread
and expected to die out. The higher Ry is, the greater are
the risk and severity of epidemics [8]. This key definition
points to two important host characteristics that con-
trol the spread of infection: first, the susceptibility of
non-infected individuals, i.e. the propensity of becoming
infected upon contact with an infectious individual or sub-
stance, and second, the infectiousness of the infected
individuals, i.e. the ability of an infected individual to
transmit the infection. As stipulated by Lloyd-Smith et al.
[9], for diseases transmitted by direct contact, infectious-
ness (or, using their terminology, individual reproductive
number with population mean Rj) can be regarded as
the product of three factors: ¢, the rate at which an
infectious individual comes into contact with others in the
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population; f, the probability that the disease is transmit-
ted to a susceptible individual, given contact; and D, the
duration of the infectious period. All three components
may harbour exploitable genetic variation.

Epidemiologists rely heavily on mathematical models
of transmission dynamics to predict the outcome of con-
trol strategies. For instance, using a conventional com-
partmental SIR model that describes the transition of
individuals between the Susceptible (S), Infected (/) and
Recovered or Removed (R) compartment, the change in
disease prevalence is described by % = BS(¢)I(t)-yl(t)
with parameters f (transmission coefficient) and y (reco-
very rate) [10]. This differential equation represents infec-
tion as a dynamic process that arises from the interaction
between susceptible and infected individuals (through the
use of a multiplicative term in S and /). The transmission
coefficient S is the product of the contact rate and the
probability that the contact between an infectious and a
susceptible individual results in a successful transmission
[10], and thus, depends on the susceptibility of the sus-
ceptible individual and the infectiousness of the infectious
individual. Furthermore, for SIR models with constant
population size, the probability P(¢) of an initially suscep-
tible individual to become infected within a time period ¢
is given by

P(t) = 1-eM® (1)

Where A(t) = Ry *R(t)/Sy denotes the force of infec-
tion, i.e. the rate at which susceptible individuals become
infected, and R(z) and S, are the number of recovered in-
dividuals at time t and the initial number of susceptible
individuals, respectively [10].

Although epidemiologists acknowledge that there may
be variation between individuals in both susceptibility
and infectivity e.g. [11], classical epidemiology assumes
homogeneity between individuals or within subgroups of
individuals and therefore excludes the concept of host
genetics. However, this gap has been shown to have a
profound impact on the prediction of disease risk and
prevalence, e.g. [12-14]. In particular, recent field studies
have elucidated the important role of super-spreaders,
the small proportion of highly infectious individuals re-
sponsible for the majority of transmission events, on the
occurrence and severity of disease outbreaks across a
range of diseases [15-18]. Note that super-spreaders con-
fer host heterogeneity in infectiousness, not in resistance.
Therefore, understanding and controlling heterogeneity in
infectiousness, i.e. not only resistance, is now recognized
as an important measure to control disease [16]. However,
to date, the genetic contribution of the host to this vari-
ation in infectiousness is unknown since genetic analyses
tend to focus on disease resistance and, as demonstrated
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in [3] and [4], fail to fully capture host genetic variation in
infectiousness, if present, from binary disease data.

Derivation of a genetic-epidemiological probability
function

Binary disease phenotypes can be considered as the rea-
lization of a probability of having the observed disease
phenotype. In this section, we will extend the epidemio-
logical equation (1) for the (cumulative) probability of
an individual to become infected by a time ¢ for a het-
erogeneous host population with variation in both host
susceptibility and infectiousness. For this purpose, we
define f as the probability of an infectious individual k
to infect a susceptible individual with unit susceptibility
following contact, and g; as the susceptibility of an in-
dividual j following contact with an infectious individ-
ual of unit infectivity. Furthermore, we define the
indicator Xg(t) to be equal to 1 if k is infectious at
time ¢ and to O otherwise. Then, the probability of a
susceptible individual j of becoming infected following
contact with individual k& at time ¢ is the product
ZXe()fi. Let ¢ be the expected number of contacts
in a unit time interval between individuals j and k. Thus,
following the same approach as in [10], for a suscep-
tible individual not to become infected in a unit time
interval, none of the contacts must result in infection.
In other words, the probability of a susceptible indi-
vidual j to avoid getting infected in a unit time interval is
equal to

n

H (1—g,'Xf,k(t) k)cjk' (2)

k=1,k=j

The probability P;(&) of a susceptible individual j to
become infected during a sufficiently short time interval
[t t+ 8t] during which the infection status of infectious
individuals does not change is therefore,

n

Py (3t) = 1—( 1T

k=1,k=j

ot
(1-g a0 k)"*) - ®)

Let Py(t) be the probability of individual j, which was
susceptible at time zero, to have become infected by
time ¢£. Then for a small time-step dt,

Py(t + 8t) = P;(5t) (1-P;(t)) + P;(¢t). (4)

Note, that this equation may encompass single and re-
peated infections (e.g. infected, recovered and re-infected)
within the time interval from 0 to . Rearranging the above
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equation, dividing by 6t and taking the limit §t— 0
leads to
dP; P (6t
i(£) — lim (62)
dt 5t—0 Ot

(1-P;(2)). (5)
Note that the expression for P;'(8t) above can be writ-
ten as
P;(dt) =
n
6
1-exp <6t Z cjkln(l—ngf‘k(t) k)) (6)
k=1,k=j

Using the power series expansion of the exponential
function, and dividing by &t and taking the limit 6t — 0,
leads to

P;(6¢t) n
. j _ ) o
fim =, 2 in(1-8 X (08)
n (7)
~g Y o (Xex (D),
k=1k=j

using the approximation In(1 - x) = —x for small x. Sub-
stituting this last expression into the differential equation
(5) yields

dIZLEL‘) =g i ik Xyr k() & (I—Pj(t)). (8)

k=1k=j

Now, define

Aj(t): = /;(g; i: ciXr i (u )fk)du' (9)

k=1,k=j
so that
dp;(t) _ di(t)
pra (1-P;(2)). (10)

Multiplying both sides of (10) so that by e%® and
collecting all terms to the left hand side leads to

a( aw A —

dt(e Pi(t)-e" ) =0, (11)
or

eNit) (Pj(t)—l) = constant. (12)

Hence, the solution of the differential equation (10) is

(13)

The probability P(0) can be estimated as the prevalence
at the beginning of an observation period. For simplicity,

Pi(t) = 1+ (Py(0)-1)e™®).
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however, from now on we will assume that P(0) =0 and
hence,

Pi(t) = 1-e™0. (14)

Note that the quantity A(#) defined above can be written as

n

A(8) =g D cifiDi(?).

k=1,k=j

(15)

where Dy(t) denotes the duration of time within the in-
terval [0,¢] during which individual & is infectious. Thus, if
k has not become infected by time £, Di(£) = 0, otherwise

D(t) = zm:( min(tg, t)-ts,),

i=1

where m denotes the number of times that individual & got
infected during [0,t] and ¢s, and ¢z, denote the start and
end of the corresponding infectious periods, respectively.

Function validation

Two forms of validation of the above derived probability
function given by equation (14) with A;(t) defined in (15)
were carried out. First, we assessed whether in the ex-
treme case of zero heterogeneity in susceptibility and
infectiousness, the derived function is consistent with
existing epidemiological theory. Second, the function
was validated with binary disease data (infected or not in-
fected) generated by simulated stochastic epidemics in
closed genetically heterogeneous populations of constant
size, as described in detail in [3,4]. Two methods were
chosen to illustrate this second validation: (i) a direct com-
parison of the probability of infection predicted by the
derived analytical expressions (14) and (15) with the pro-
portion of individuals that became infected in the simula-
tions, and (ii) Receiver Operating Characteristic (ROC)
curves. A ROC curve is a widely used graphical represen-
tation of the ability of a predictor to discriminate between
cases and controls by plotting the True Positive Rate
(TPR = sensitivity) against the False Positive Rate (FPR =
1-specificity) [19]. Here, the ROC curves plot the propor-
tion of infected individuals that have an estimated prob-
ability of infection greater than a given threshold (True
Positives) against the proportion of non-infected individ-
uals that have an estimated probability of infection greater
than this same threshold (False Positives). Thus, the Area
Under this Curve (AUC) describes the probability of cor-
rectly ranking any infected/non-infected pair of individ-
uals using the derived probability function. Thus, if the
analytical prediction is entirely unrelated to the probability
of becoming infected in the simulations, then individuals
would be classified at random and the AUC would be
equal to 0.5. However, if our function accurately describes
the probability of becoming infected in the simulations,
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then the AUC would be close but not equal to 1, due to
the stochastic nature of the simulations.

The stochastic epidemiological model used for valid-
ation simulates disease progression in isolated groups of
n individuals and provides the disease status of indi-
viduals (infected/not infected) over time as output. The
epidemic was simulated as a Poisson process, starting
with one randomly chosen infected individual per group.
The times at which subsequent infection and recovery
events occurred and which individuals were affected
were determined by the pairwise transmission param-
eters 5;(f) and by the recovery rates y,(£), respectively, as
outlined below. It was assumed that infected individuals
became immediately infectious and remained infectious
until they recovered. No transmission was assumed be-
tween groups.

Individual variation in host susceptibility and infec-
tiousness was first incorporated into the model by assign-
ing for each individual j its own level of susceptibility g;
and infectivity f; The dynamic, pairwise transmission par-
ameter f3;(t) was then calculated as:

Bi(e) = ~cln (1-X e (0 X140 ). (16)
as derived in [3]. Thus, in line with standard epidemio-
logical theory S;(¢) encapsulates the contact rate and the
transmission probability. To reflect whether susceptibil-
ity and infectivity are expressed at time ¢, the individual
constants g; and f; are scaled by X, (¢) and Xy (£), res-
pectively, which are equal to 1 if j is susceptible at time ¢
and if k is infectious at time ¢, respectively, and O other-
wise. Similarly, individual recovery rates were assumed
to be equal to yj(f) = Xi(2)y;, with y; and Xg; (£) as de-
fined above.

It was initially assumed that host susceptibility and in-
fectivity were the only sources of individual variation.
Thus, parameter y; was set equal to 0.1 for all individuals.
For simplicity, it was further assumed that the expected
number of contacts per unit time interval between two
individuals in the same group was homogeneous and,
without loss of generality, was set equal to ¢y =1. This
homogeneity assumption is likely to be satisfied in inten-
sive farming conditions. The values of B;(t) and y;(t) were
calculated at each event time, starting from time zero.
Based on these, Gillespie’s direct algorithm was used to
determine the next event (infection or recovery), the time
of the event and the affected individuals, as outlined in
[3]. The simulation was run until the time ¢ at which ap-
proximately 50% of individuals had become infected.

In order to demonstrate that the derived probability
function given by equations (14) and (15) is valid for a
range of epidemiological models, binary disease data were
also generated by simulating an epidemic using a stochas-
tic SIR model with additional variation in recovery rate
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y and a stochastic SLIRS model, following the same
principles as described above. In a SLIRS model, the epi-
demiological compartments are: Susceptible (S), Latently
infected but not infectious (L), Infectious (I), Recovered
and temporarily immune (R), and Susceptible (S). The
speed of transition between compartments S and L is
given by f(t), as described above. Similarly, all other indi-
vidual transition speeds were assumed equal to a constant
value for individuals in the relevant compartment and 0
otherwise. Specifically, the constants were; 0.5 for L — 1,
0.1 for [ >R and 0.2 for R — S. Similar to the previ-
ous simulation, it was assumed that the expected
number of contacts between two individuals per time
unit ¢y =1 for all individuals from the same group.
This simulation was run until the same value of ¢ as above,
which resulted in approximately 58% of individuals
becoming infected.

Thus, the different epidemiological models used for
simulation were (i) a SIR model with host variation in
susceptibility and infectivity only; (ii) a SIR model with
host variation in susceptibility, infectivity and recovery
rate; and (iii) a SLIRS model with host variation in sus-
ceptibility and infectivity only.

Each model was run for a population of size N =100
000 individuals, randomly divided into 10 000 isolated
groups of size 10 chosen, which is equivalent to simulat-
ing 10 000 independent epidemics. Susceptibility and in-
fectivity were assumed to be distributed according to a
right-skewed gamma distribution I'(a,6), which is repre-
sentative for a variety of infectious diseases [16]. More-
over, skewed distributions allow for larger variation when
the distribution is confined to positive values. For sim-
plicity, susceptibility and infectivity were assumed to be
independent. Similarly, additional individual variation in
recovery rate was incorporated into the above described
SIR model by sampling individual time to recovery 1/y;
from a right-skewed Gamma distribution I'(2,5). In other
words, it was assumed that most individuals recover
quickly, that a few individuals may take a very long time
to recover, and that the mean time to recovery was ten
time units. This simulation was run until the same value
of ¢ as above, which resulted in approximately 41% of indi-
viduals becoming infected.

Each epidemiological model provided the binary dis-
ease state (infected/not infected by time ¢) for every
individual as output. Furthermore, the period of time
during which each individual remained infectious (Dy)
was recorded for validation purposes. Note that the dura-
tion of the infectious period D in equation (15) captures
individual variation in the transmission speeds between
compartments L—I, I »R and R—S. Knowledge of the in-
fectious period, together with the known input values of c,
g and f; allowed calculation of the quantity Aj(t) using
equation (15) and hence the probability of becoming
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infected by a time ¢, based on equation (14). This was then
compared with the observed proportion of individuals
that became infected by time ¢ in the simulations,
within a given class of Aj(t). The class size for Aj(t)
was taken as 0.02 to ensure that sufficient records
were available within each class.

Results

Validation of the probability function

Concordance with epidemiological theory

We first demonstrate that for homogeneous populations,
equations (14) and (15) are consistent with existing epi-
demiological theory and with the method of survival
analysis. In a homogeneous population, i.e. when there is
no variation in susceptibility (g; = g for each individual j),
infectivity (fi = f for all k), contact rate (cj, = ¢ for all j, k)
or any of the other epidemiological parameters, equation
(15) becomes

MO =M = e Y Dile). (17)

k=1.k=j

Also, following equation (16), in the case of homogen-
eity, for any pair consisting of a susceptible individual j
and an infectious individual k (i.e. Xg;(t) = X¢i(t) = 1), the
transmission coefficient is

B = —cln(1-gf) =~ cgf, (18)

for small values of g and f.

Furthermore, the sum of the infectious period of each
individual in a group, within the time interval from 0 to
¢, can be written as

> outo) = [ 1,

k=1,k=j

(19)

where I(t) denotes the number of infectious individuals
at time T. In an SIR model with constant recovery rate y,
the number of recovered individuals, R, changes over
time according to dR/dt = yl(t), thus yielding the follow-
ing for the above sum over infectious periods

> Dutt) = L&) (20)

k=1,k=j

Note that in an SIR model, the basic reproductive ratio
R() is

Ro:/)’&,

. (21)
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where S, is the number of susceptible individuals at the
start of the epidemic [10]. Substituting equations (18) to
(21) into (17), yields for A(t) = A(t)

_ Ry R(2)
=5

A(2) (22)

and hence for Pj(t) = P(t) according to equation (14)

P (t) = 1-exp <— RO—R(t)>
So

Hence, the expression for the probability of becoming
infected derived, as in the paragraph “Epidemiological
principles and approaches” for heterogeneous populations,
i.e. equation (14), is consistent with equation (1) from epi-
demiological literature if there is no individual variation.

The probability function (14) is also consistent with
the notion of failure in survival analysis, where the fail-
ure function F(t) represents the probability of failure by
time ¢ and is defined as F(¢) = 1 — e *®, where A(t) is the
cumulative hazard function [20]. In this context, failure
represents becoming infected. Therefore, equation (14)
can be considered a failure function with a cumulative
hazard function given by equation (15).

Function validation with simulated disease data

Figure 1 shows the proportion of individuals that had
become infected by time ¢ in the epidemiological simu-
lations, for a given time ¢ and calculated values of Aj(t),
as well as the analytical expression for the probability
of becoming infected derived in equations (14) and (15).
Figures la,b and c indicate that the probability function
provides a good fit to the probability of becoming infected.
Moreover, this function provides a robust fit across a range
of epidemiological scenarios, as shown in Figures 1a,b and
¢ for, respectively, the SIR model with variation in suscepti-
bility and infectivity, with additional variation in recovery
rate, and the SLIRS model. Note that parameter values
used in the simulations (see the above paragraph “Deriv-
ation of a genetic-epidemiological probability function”)
are arbitrary and not expected to affect the fit.

Figure 2 shows ROC curves for predicting whether an
individual has become infected or not by time ¢, with
the derived probability given by equations (14) and (15)
as the classification criterion. According to Figure 2, the
derived probability is effective at predicting whether an
individual will become infected or not by time ¢ in a
manner that is consistent with an accurate probability
function, i.e. with an AUC that is close to, but not equal to,
1. Moreover, the predictive ability of the derived probability
function is robust across a range of epidemiological scenar-
ios, with an AUC between 96-97% for all simulations.

The probability function (14), with A(t) defined in (15),
captures different sources of host (genetic) variation, which
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may not be easy to estimate in practice. In particular,
whereas susceptibility g and infectivity f may harbour sub-
stantial genetic variation, the duration of the infectious
period D within a given time interval are more likely to de-
pend upon a combination of various genetic (e.g., g, f and
also in y) and environmental (e.g., choice of time interval),
or other stochastic factors. In order to determine the im-
portance of estimating these components of Aj(t) for pre-
dicting the future disease status of an individual, ROC
curves were also generated with the classification criterion
estimated by assuming either no (genetic) heterogeneity in
g and f (i.e. calculating A;(t) according to equation (17)), or
by assuming genetic heterogeneity but equal non-dynamic
exposure (Di(¢t) = D for each individual k) in the prob-
ability function. The first scenario may be considered to be
in line with current epidemiological theory, as outlined in
the above paragraph “Derivation of a genetic-epidemio-
logical probability function“ (equation (17)), whereas the
second scenario may be considered to be more in line with
current quantitative genetics theory that ignores dynamic
exposure. Note that exact values of Di(t) may not be
available from field data and, therefore, using the fur-
ther approximation from equation (20) is more in line
with current epidemiological practice. However, applying
this approximation results in discrete values of D(t)
rather than a continuous curve (results not shown). None-
theless, the resulting discrete values are close to the curve
obtained without using this approximation. Figure 3
shows a comparison of the ROC curves that correspond
to these ‘epidemiological’ and ‘genetic’ assumptions, with
the ROC curve that combines genetics and epidemi-
ology in the derived expression for Aj(t) outlined in
equation (15). The ROC curves in Figure 3 reveal that
quantifying the exposure over time explains most of the
ability to predict whether an individual will become in-
fected or not. Furthermore, predictions of an individual’s
disease status are considerably improved when all sources
of genetic and epidemiological variation are included in
the calculations.

Discussion

Extension to current epidemiological and quantitative
genetics theories

Using mathematical principles, a genetic — epidemio-
logical probability function was derived that links binary
disease data to the underlying epidemiological traits, host
susceptibility and infectiousness. The function is an ex-
tension of the established epidemiological equation for the
probability of becoming infected by a time ¢ (1) from
homogeneous to heterogeneous populations. Indeed, in
line with epidemiological theory, the quantity A(t) des-
cribed in equation (15) may be called the individual
force of infection of an individual j at time t. Defining
infectiousness of individual k towards individual j until
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time ¢ as the product ¢y(f) = ciifiDi(?), as previously pos-
tulated by Lloyd-Smith et al. [9], simplifies the expression
for Ay(t) to:

(23)

Thus, the force of infection for an individual j is the
product of the individual’s susceptibility and the cumu-
lative infectiousness of its group members towards it,
which reflects that an infectious disease results from in-
teractions between susceptible and infectious individuals.
Note that under the assumption that cj =c; for each
individual k, the infectiousness ¢(f) derived here corre-
sponds to the individual reproductive number with pop-
ulation mean Ry, as defined in epidemiological literature
[9]. In the context of quantitative genetics, the cumula-
tive infectiousness replaces the concept of exposure. Ra-
ther than an equal, constant and purely environmental
exposure, as is typically assumed [5], the individual force
of infection in equation (23) illustrates that exposure de-
pends on the number of infectious individuals, which
may change over time as their infection status changes,
as well as on their contact behaviour and infectivity,
where some or all of these components may be partly
genetically determined. In particular, the time Dy(z) dur-
ing which an individual remains infected may be partly
genetically determined since it encapsulates several me-
chanisms that are determined by the immune system,
such as recovery and latency. Thus, there is potentially
much to be gained by incorporating epidemiological in-
formation into genetic analyses, and vice-versa, as illus-
trated in Figure 3.

The concept that an individual’s phenotype is not only
controlled by its own genes but also by the genes of
interacting individuals is not new in quantitative gene-
tics, and has already been successfully incorporated in
the form of indirect (or associative) genetics effect (IGE)
models [20-22]. We have previously applied such IGE
models to estimate genetic parameters associated with
host susceptibility and infectivity from simulated binary
disease data [3,4], and found that IGE models can indeed
capture some of the genetic variation underlying infec-
tiousness. However, we have also found use of the cur-
rent IGE framework in the context of infectious disease
to have shortcomings since crucial dynamic aspects are
ignored, which leads to bias in parameter estimates [4].
As outlined in more detail below, the derived genetic-
epidemiological probability function offers a means to
extend the current IGE model framework to infectious
diseases in populations that display genetic variation in
diverse epidemiological traits for which expression varies
throughout the time course of infection.
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as in equation (17) (AUC = 0.895); purple = ‘Genetics’ - /\; was estimated assuming (genetic) variation in susceptibility and infectivity, but equal non-dynamic
exposure, ie. Dy(t) = D for each individual k (AUC = 0.710); black = random classification (AUC = 0.5); grey = perfect classification (AUC = 1).
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Implementation of the probability function into
quantitative genetic analysis

In order to incorporate susceptibility and infectiousness
into genetic selection programs, knowledge of the res-
pective genetic (co)variances is required. Moreover, it
might be desirable to use estimated breeding values of
these traits for genetic selection or for genome-wide as-
sociation studies. Estimation of breeding values by best
linear unbiased prediction requires not only knowledge
of the genetic variance [2] but also the use of mixed
models, as these allow simultaneous estimation of fixed
effects and random genetic effects [2]. Susceptibility and
infectiousness are difficult to measure directly and, as
was assumed in this paper, field disease data is often bin-
ary, indicating whether an individual became infected or
not. It is customary to use a generalized linear (mixed)
model (GL(M)M) to analyse binary or categorical data
[23]. In such models, the observed trait is linked to an as-
sumed linear model of the underlying continuous trait(s)
via a non-linear link function. Canonical link functions
that are commonly used for binary data are the probit and
logit link functions [23], which assume that the probability
of the trait to be equal to one, i.e. to have become infected
in our case, follows a cumulative normal or a logistic
distribution, respectively [23]. Despite their convenient

mathematical properties, neither distribution, however,
arises naturally from epidemiological theory, as demon-
strated in the present study. A consequence of this is that
interpretation of such analyses in terms of epidemiological
parameters is problematic at best. A suitable link function
for a GL(M)M transforms the observed trait into a
linear expression of the parameters of interest. How-
ever, in the genetic epidemiological probability func-
tion Pj(t) (equation (14) with Aj(t) defined in equation
(23)), the parameters of interest, i.e. the epidemiological
traits susceptibility and infectiousness, enter in a multi-
plicative rather than in a linear manner. However, if there
was genetic variation in susceptibility only, it follows from
equations (14) and (23) that the probability Pj(t) can be
linked to the following linear model in susceptibility using
a complementary log-log link function:

(24)

In(A/() = ln(gj> + 1n< Z &, (t)).

k=1,k=j

Assuming no genetic variation in the epidemiological
traits ¢jk, fk and Dk that underlie infectiousness, the se-
cond summand of equation (24) can be considered to be
an error term ej(t). However, in contrast to using the
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canonical logit and probit link functions, this model cap-
tures and completely separates the individual’s suscepti-
bility from the dynamic aspects of exposure.

However, when there is genetic variation in both sus-
ceptibility and infectiousness, it is not straightforward to
link the probability Pj(t) of becoming infected to a linear
model that includes both susceptibility and infectious-
ness. Indeed, the complementary log-log link function
(24) is no longer adequate when there is variation in in-
fectiousness since the logarithm of a sum does not equal
the sum of the logarithms. It is, however, possible to
linearize the force of infection from equation (23), in
both susceptibility and infectiousness, using e.g. the Taylor

. . n
series expansion of A;(t) = g/Zk:I,k¢j¢k(t) near the po-
pulation mean susceptibility g and the population mean
infectiousness ¢(¢) up to time ¢:
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Note that the Taylor series of A(t) in equation (25) is
not truncated and that it includes only one non-linear
term in susceptibility and infectiousness. Following a
GL(M)M framework, if the last term of equation (25)
was negligible, the expression for Aj(t) would be linear
and thus an appropriate link between observed binary dis-
ease data (infected or not infected) and the underlying epi-
demiological traits, host susceptibility and infectiousness.

Note that truncating equation (25) after the linear terms
in g; and ¢j(t) corresponds to an IGE model for the indi-
vidual force of infection Aj(t). IGE models describe the
phenotype P; (here P; = A(t)) of an individual j as a linear
combination of the individual’s direct effect Ppj, and the
cumulate indirect (or associative) effect Pg of its group
members, i.e.

Pi(t) =u + Pp, + Z Pg,,
k=1,k=j

(26)

with an underlying genetic component for both the direct
and indirect effects and with p denoting the population
mean phenotype, e.g. [20,21]. The connection between
host infectiousness and indirect effects has been estab-
lished previously [3] but the exact nature of this connec-
tion was unknown. Thus, comparison of the linear part of
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Figure 4 ROC curve for predicting disease status using an IGE model. Data from simulation of the SIR model with variation in susceptibility
and infectivity; curves in green = the probability function with lambda estimated as in equation (15) used as classification criterion (AUC = 0.964);
brown (overlapping with green curve) = the probability function with lambda estimated using the Taylor expansion from equation (25) used as
classification criterion (AUC =0.964); purple =an IGE model (equation (26)) used as classification criterion (AUC =0.751); black =random
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equation (25) with equation (26) offers a new interpret-
ation of direct and indirect effects in this context and of
previous results. Indeed, according to equation (25), the
direct effect corresponds to the susceptibility of individual
j (expressed as deviation from the population mean sus-
ceptibility), scaled by the cumulative average infectious-
ness of the group members up to time ¢, and the indirect
(or associative) effect of a group member corresponds to
its infectiousness (expressed as deviation from the popula-
tion mean infectiousness until time ¢), scaled by the aver-
age population susceptibility. Furthermore, equation (25)
may shed some light on potential causes for the previously
observed bias in the genetic parameter estimates in infect-
ivity [4]. This bias may have resulted from the inadequacy
of the linear and logit models used in the previous ana-
lyses, as neither emerges from epidemiological theory and
the appropriate link function was yet unknown. Further-
more, as illustrated in equation (25), the non-linear in-
teraction between susceptibility and infectiousness may
become non-negligible if there are large deviations in in-
fectiousness ¢ from the population mean. This is illus-
trated in Figure 4, which shows the ROC curves with the
classification criterion estimated with the full (AUC =
0.964) and truncated (AUC =0.751) versions of equation
(25). In other words, in the presence of super-spreaders,
i.e. highly infectious individuals, the use of a GL(M)M or
any other linear framework is likely to create bias. For the
purpose of identifying super-spreaders, it would therefore
be desirable to develop computational algorithms that do
not require linear approximations of the force of infection
function. Such non-linear algorithms would also be nee-
ded to disentangle the individual components of infec-
tiousness, e.g. to separate genetic variation in the ability
to transmit the infection upon exposure (i.e. variation
in f) from genetic variation in the duration of the in-
fectious period (i.e. variation in D). These sources of
variation likely correspond to different immunological
processes (e.g. shedding vs. recovery) and may there-
fore be controlled by different sets of genes. However,
separating infectiousness components in genetic ana-
lyses may come with additional data requirements. For
example, repeated binary measurement of an indivi-
dual’s disease status over time rather than one single
snapshot in time may be required to infer genetic vari-
ation in the duration of the infectious period. These
measurements may be taken from on-going epidemics
by using equation (13) instead of (14), with P;(0) equal
to the prevalence of the disease in the first observation.
Markov Chain Monte Carlo methods [24], with their
hierarchical iterative sampling process, appear well sui-
ted to incorporate the dynamic expression of host sus-
ceptibility and infectiousness. Such methods may also
lend themselves more easily to the consideration of
other uncertainties that frequently affect observed disease
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phenotypes, such as incomplete sensitivity or specificity of
diagnostic tests.

Conclusions

We have derived a genetic epidemiological function for
quantitative genetic analyses of binary infectious disease
data that takes genetic variation and the dynamic ex-
pression of host infectiousness into account. The func-
tion describes the probability of an individual to become
infected given its own susceptibility and the infectious-
ness of its group mates. When variation is limited to
host susceptibility, it is possible to estimate genetic vari-
ation for this trait in a manner compatible with epi-
demiological dynamics using the complementary log-log
link function. When there is genetic variation in both
susceptibility and infectiousness, it is possible to use the
logarithmic link function with a linear IGE model but
this is likely to generate prediction bias if there is a large
variation in infectiousness. Future work will concentrate
on developing computational algorithms that can in-
corporate the genetic epidemiological function without
linear approximations, in order to identify potential gen-
etic super-spreaders. These algorithms would enable us
to uncover the genetics underlying epidemics and thus
shape the epidemics of tomorrow.
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